
C-Based VLSI Design
Dr. Chandan Karfa

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Module - 10
Verification of High-level Synthesis

Lecture - 33
RTL to C Reverse Engineering for HLS

Welcome students, in today’s class we will talk about this RTL to C Reverse

Engineering for High-Level Synthesis. It looks interesting because High-Level Synthesis

converts a C code into RTL, but I am talking about it here, I want to generate a C code

from the RTL is the reverse of the High-Level Synthesis process ok.

So, try to understand here that this RTL to C does not mean that I want to get back my

original C code, but I want to get some form of C code that represents my RTL ok. It is

not that I want to get back my original C code.

(Refer Slide Time: 01:25)

So, this work is primarily published here I am going to follow this paper for in this class

ok, in this discussion.

(Refer Slide Time: 01:31)

So, what is the motivation for doing this right? So, I want to generate a C code from the

RTL which is fine, but what is the motivation. So, to motivate yourself, let us look into

this simulation-based verification that I have discussed in the previous class and we have

mentioned that I will write a set of test bench. I first simulate my C and make sure my

specification is correct and then I convert it into RTL, then I will do RTL simulation to

verify that my RTL is correct ok. That is ok, but what is the problem here.

(Refer Slide Time: 02:05)

So, to do that you just look into this table ok. In this table what I try to do is I have taken

some standard High-Level Synthesis benchmarks like des, MIPS and this and then I run

that specification using GCC for say set of inputs I mean most likely it is 30 k and this is

the simulation time. You can see where it is taking some 28 seconds, 1 second, 12

seconds, 14 seconds very fast right, for 30 k; 30,000 test cases right.

Now, I simulate I mean I convert this specification into RTL using Vivado HLS and then

I run the two RTL simulators one is the RTL co-simulator which is within the Vivado

HLS, and the Modelsim. There is another very popular simulator and see the time 28

seconds, 34,000 seconds right so; that means, it is basically 1000 times at least right

10,000 time slower.

14 seconds 4,000 second, 12 second 4,000 second, 1 second 2600 second. So, what this

number suggests is the same RTL same number of test case it is at least 1000 times

slower right; that means, from this discussion I can conclude that my RTL simulation is

very slow and why it is specifically because it is actually do all this clock wise

simulation see to do it actually analyze the all RTL in every clock and take lot of time

right. And that is something a bottleneck for verification of High-Level Synthesis.

(Refer Slide Time: 03:48)

So, this particular talk is talking about motivation is, if we convert this RTL to a

equanvalent C code what is the advantage I can give? I can now use GCC to simulate my

test case and I can actually achieve this faster simulation right. The only thing you have

to make sure it is not only that I will just convert this RTL to C which is the motivation,

but I have to make sure that this generated C code must satisfy these things.

Obviously, once we have the C code if I use GCC it will do a faster simulation there is

no doubt about that, but it must satisfy the functional correctness of the RTL. You have

to make sure that this generated C which I extract from the RTL actually is equivalent to

the C code, that is the first thing. The second most important thing is the cycle-accurate

simulator RTL simulators are cycle-accurate in the sense that they will give you

precisely every clock information in the simulator.

If you want to see the value of the register in a clock cycle of 45 it will give you 5

points. So, basically, you can actually monitor the whole design each registers any

component at every cycle. So, you have to make sure that you do not; not only generate

the C code it must ensure the cycle-accurate simulation.

The second is the accurate performance estimations. So, once you run the RTL

simulation it actually says how many clocks are needed and what is the maximum

throughput every data will get right. So, you should be able to have the estimations. That

is give the performance estimation and your C must satisfy this the most important is that

you make sure that your generated C code is highly readable and it is to debug friendly

right. So, highly readable in the sense that it at least you can see the code and you can

read and you understand what is happening there.

And if there is a bug you identify during simulation you must be able to debug it back to

RTL because you are not any longer actually simulating the RTL rather you are

debugging the C code. So, this cross-relation must exist for this debugging-friendly

simulation, and also this must support the following things because we have seen that in

High-Level Synthesis there is a lot of optimization that happens right.

Specifically, array maps to memories and, functions become modules there are a lot of

optimizations like loop pipelining, loop unrolling, task-level pipelining, and data flow

optimization so, many things are happening right you must satisfy that your RTL to C

conversion can support all those things right. If you can ensure both then I can use this C

which is I generate from the RTL for faster simulation ok. So, that is the objective ok.

(Refer Slide Time: 06:19)

So, just to give a very idea that in this faster simulation of High-Level Synthesis is a real

problem and there is two recent works, one is Verilator and one is called FLASH.

Verilator basically generates a C++ code from the Verilog ok problem is that this High-

Level Synthesis generated RTL is a very specific structure because it is a generic tool it

does not take care of that and as a result that particular C ++ code we generate it is not

so, readable and not debug friendly.

And the second thing is that this Flash basically generates a C code from the scheduling

information after scheduling right. It does not generate from the RTL. So, as a result, it is

not actually verification of the High-Level Synthesis because it is just verification of the

scheduling. So, it cannot give the correctness of the allocation binding, data path control

generation steps right.

(Refer Slide Time: 07:12)

So, these are the two links for these two. If you are interested you can look into them.

But, in this particular work that we have done, we have shown that I can convert is RTL

into C by taking advantage of the RTL structure the generated by High-Level Synthesis

tool. So, what is the RTL structure? So, as I discussed many times that the RTL that is

generated by High-Level Synthesis has a very separable control on a data path right.

So, in the data path you have function unit, registers, multiplexer, and demultiplexer all

the interconnections and controller is basically FSM right.

(Refer Slide Time: 07:45)

And what happens there. So, in this is say suppose sample data path right. So, data path

and this is a sample controller FSM right. So, in the controller basically, the data path

component has some control signals right. This control signal basically every clock

controller gives 1 0 signal assigns the value to this control signal.

Say, for example, this is 1. So, if this 1 comes here. So, suppose this one is this so; that

means, in this time this operation will be happening right not this one. Similarly if say

this one is 0 so; that means, this particular register say this last signal is nothing, but this.

So, this r4 will be updated, and say this is 0 which means this r3 will not be updated right.

So, this is this.

So, this is how the controller actually controls the operations in the data path in every

clock. So, this is very specific data structure of the RTL. So, what we want to do is that

we want to take these control assignments. I want to identify what are register transfer

level operations is happening here. If I can identify say suppose for this signals say

suppose say is happening like R4 = R1 - R2 * R3.

So, I am just given example. So, if I understand that given these control assignments if

this operation is happening I can replace this with this operation right. It can be there are

many more than one operation that can also happen right. So, if I do this that I from this

operation, this control signals I identify what are the register transfer level operation

happening and I replace this by here, I replace this by this.

So, then my FSM converted into FSMD. What is this, finite state machine with a data

path ok this is very interesting? So, now, this is a finite state machine with a data path

and now I actually abstract out my controller. I abstract out my data path and I get a

behavioral description and I can actually write this description in C. How I will explain.

So, this is what is my objective. I want to analyze my data path for the controller input

every clock and I want to identify what is the operation happening, then my FSM

converts into FSMD finite state machine with a data path and which is basically a

behavioral description of the RTL, and then I can actually utilize this behavioral

description to convert or write I can rewrite this behavioral description in any language

format like C ok. So, that is the overall idea right.

(Refer Slide Time: 10:20)

So, the core idea of this whole work is how to obtain these register transfer operations

from the control signals. So, that is the very core idea of this whole process. If you can

do this rest of the things are can be handled. That is the core idea. So, to do that what we

have done is we apply a method called the rewriting method ok. What is that? So, as I

mentioned that in the data path the flow of the data is actually controlled by the control

signals.

For example you take this mux again. So, in this mux there are two micro-operation is

possible, either this value will come here or this value will come here and this is

controlled by this. So, this is how first we have to identify what are the micro-level

operation is happening data flow is happening in the data path. So, that is my first task

ok. So, I will identify a set of micro-operation. Micro-operation is the minimum number

of data flow from the input to the output of any component ok.

So, I will identify these micro-operations and their corresponding control signals right

for example, here so, here this m_out = R2_out, if this is equal to 0 and m_out = R3_out.

If this is equal to 1. So, I am going to identify these control signals every micro-

operations and their corresponding control signal values ok. So, this my step one next is.

So, in the data path, there are many such operations is happening right many micro-

operation is happening.

But, if I give a specific control signal only some of them will be active right for example,

in this example again if this value is 0 then this operation is active. If this value is 1 then

this operation is active. So, in a control state, this value will be either 0 or 1. So, one of

the micro-operations is active and the other is inactive ok. So, for now, what I am going

to do is to take a control assumption assignment and I will identify what are the active

micro-operations in the data path ok which is possible to do.

(Refer Slide Time: 12:21)

So, I have taken an animated example. So, suppose this is my data path and these green

signals are the control signals ok. So, first, what I am going to do is I am going to,

identify all micro-operations all these red arrow is saying the micro-operations for

example, here this is means this wire will be updated. So, this is r1 equal to this f_out

right. So, this is f_out and so on. So, this way I am going to identify all my micro-

operations this is the first step.

(Refer Slide Time: 12:55)

And say suppose I give the value to this signals is these values right. So, this becomes 1

this becomes 0, 1 becomes 0, this is 1, and so on right. If I do this not all micro-

operations will be active, only some of them will be active. So, I am going to remove the

inactive one. So, these are the active micro-operation in this state ok. So, this is to this

point it is a clear right and I have just noted it down.

So, these are the active operations happening in the data path. The third step is very

important and most important. So, these are the active operations and they are

performing some register transfer operations right. So, let us try to take an example say

this r1 = r2 + r3 right. So, this is the operation happening.

So, then what will happen? First, this micro-operation is to be happening right. So, this

will happen then this micro-operation to be happening right this addition operation to

happen, then this mux this data should come here, then these micro-operations should

happen and then this data will come to this signal and this data will come to signal right.

These are the micro-operation is happening and you can see that in the hardware it is

basically this is these operations are happening and this is basically happening in

parallel, but it is actually data flow is happening like this right.

So, from this, I will go here. From this, I will go this way to this and I will go to this to

this right. So, then only this r1 = r2 + r3 is happening. So, there is a special sequence of

operations. So, what I understood from this there is a sequence of operations is

happening here which actually makes sure this operation is happening and which RT

operation is happening we have to identify that sequence of operations and that is where

I apply the rewrite method.

So, from where I should start. I will start from a micro-operations where the left-hand

side is a register when the register assignment is happening right. So, I am going to take

this r1 = f_out. So, I will start with this micro-operation where the left-hand side has a

register and then I am going to see the right-hand side whatever the signal who is

rewriting that right. So, from here I can identify this signal is rewritten by this micro-

operation because this is what is happening.

So, what I can do. I can replace this with this expression right. This is the rewriting I am

rewriting the right-hand signal with the I identify a micro-operation which left-hand side

is f_out and I take a signal f_out and then I will replace this f_out by this expression fLin

and fRin right. So, this is how the sequence is happening that is what is happening here.

So, I take this and then I found that this f_out is nothing, but f_out =fLin + fRin or say

f_out = fLin-fRin.

So, then this is what happens. So, this is the sequence. Then what I can do I will take

another signal again. I am going to take a signal again and I will identify is there are any

operations for the left-hand side is fLin, yes this is the operation. So, then I can replace

this fLin by r3_out because this fLin is nothing, but fLin = r3_out. So, this sequence of

operations. So, this is what I am done.

And then similarly I take this fRin. I will replace it with r2_out because this is the micro-

operation that is happening here. So, I will replace this by this operations then this

r1 = r3_out – r2_out, I will take this r3_out. I will see r3_out is nothing, but r3_out = r3. So,

I can replace this r3_out with r3 right. So, this is what I do, similarly, I can do this r2_out

I will take r2_out and I identify there is an operation called r2_out = r2. So, I can replace

this r2_out by r2.

So, what I got? I got r1 = r1 - r2. So, for this control assignment 1001 these things in my

data path r 1 equal to r 1 minus r 2 is happening ok. So, that is the basic idea that if I just

do this for all steps, I can convert this into this FSMD right that is the idea. So, once I do

this I have an FSMD right. So, this is what I just to explain.

(Refer Slide Time: 17:00)

And now so, this is the overall technique and the overall methods. So, what I am going to

do at the High-Level. I will take for each state I identify what are the active micro-

operations in that state and then I will identify for each micro-operation where the left-

hand side is a register because those many RT operation is going to happen. I will

identify a micro-operation where basically for a replacement I identify micro-operations

where my μ is the left-hand side right.

So, I will replace that and then I will keep doing this until all my right-hand expression

signals become input or register right. So, this is an I just whatever example I provided it

is the same example you can go into the steps and you understand. I will keep doing this

for all such micro-operations where left hand is a register. So, once this is done then I

will replace that control signal with the corresponding RT operation that I obtained here

right.

And then I am going to do it in each state right this is how I am going to convert my

FSM into an FSMD ok.

(Refer Slide Time: 18:04)

So, at this point, we will understand. So, basically, it is a process that I have already

explained. With this, I convert this FSM plus data path into this. So, the beauty of this

method is that I now remove all my clock, reset, RAM, and ROM everything is right I do

not have anything. I do not have any multiplexer. I do not have any adder multiplier. I

have this behavior right. I do not have any control.

So, this is the abstraction happen. Once this happen now the question is that how I can

write this in C form and the answer is very simple right. You just write a main() see this

is a very small example there will be some input. So, you just specify the inputs. So, that

will be there in a bigger practical circuits and then you just define all the variables, all

the variables here as integer or whatever the type you give some type for them and then

you actually write this as a level operations right.

So, I just have a level q1. I have a level for each state that will become a level in the FSM

right. So, in the state FSM, this is my state level I am going to do these operations. I will

write these two operations and then I am going to state 2. So, I just go to state 2. So, I am

going to write it in terms of go to. I am not writing if-else, for loop and all this. This is a

very simple one. Then in q2 if this condition satisfies I am going to do this and this. So, I

am in state 2.

If this condition is true I am going to do an operation then I am going to state q3 else I am

going to do if these operations and go to state q4 right. So, this is how I just write for

each state operations and what is the go-to statement and these are the levels right. So,

whenever you say I go to state q2 till my control flow automatically come to this time

right and this is nothing, but a C code. You can see here this is something a C code that I

generate from my RTL which is generated by the High-Level Synthesis tool.

And the beauty of this code is that I have an r1. I have an r1 in my hardware. I have r4. I

have an r4 in hardware so; that means, the variables of this behavior are my registers. So,

it basically has a very one-to-one correlation with my data path. This is not my input C in

my input C there may be some variable b1, b2, or b3. This is not something like this. It

does not have any for a loop this does not have anything it actually represents my

hardware, my registers, my state these are the states right.

So, this is cycle-accurate because I have information for each state right. So, if I just put

a counter ++ every state then I can say that if I run this how many clocks it takes this;

this clock right and every clock what operation is also happening I can actually track it

right. So, if I want to go to say state 2 what are the operation is happening I can print that

my debug right.

So; that means, this is cycle-accurate because I have all the state information and

operation is happening state-wise. I have to debug friendly because this is the register the

variable represents the registers of the behavior. It is a C code. So, it is a it can be used

for faster simulations. So, most of my targets whatever I specify the mass support it

satisfies my this generated C code right. So, that is great.

So, only thing is that this is the basic core idea. This is how I can convert it or when you

take a practical circuit there may be many complexities that will come right. So, those

are the complexities that will arise when you try to convert an RTL into C that I am

going to discuss next ok.

(Refer Slide Time: 21:40)

This is the overall flow that you use High-Level Synthesis you generate a Verilog and

then you basically have to do some kind of pre-processing that I will talk about.

And this is my main RTL to C parser that I have already explained and then once I

generate this C, I can use this for using C simulation. So, this C simulation is nothing,

but my RTL simulation right and I can actually verify whether the output is correct if it is

not you just debug because this code is debug friendly. You have all the cycle

information you have all the register informations and you can actually debug and go

back to the RTL and fix the thing right.

So, to do these things this all these processes cannot happen in the Verilog. So, you have

need an intermediate dependency right. Any compiler will always convert into some IR

and here also we have we convert them into some AST representation. So, there is a

PyVerilog parser. So, the Pyverilog parser convert this Verilog into some AST

representations and in the AST level, all this processing is done right and then finally,

generates the RTL ok.

(Refer Slide Time: 22:45)

So, this pre-processing is something step that I just did not explain in the previous slide

this pre-processing. Why do we need some pre-processing of the Verilog because there

are certain operations which are supported in the Verilog and may not be supported in C

code? So, we have to convert that operation into an equivalent operation in C ok that is

what is the pre-processing.

(Refer Slide Time: 23:10)

(Refer Slide Time: 23:13)

I will give you two examples. There may be many. So, for example, the Concat

operations. So, in the RTL the Concat operation is very interesting. So, basically, you

can Concat two registers and you can write the data into this right. So, what is happening

here is. So, both this basically you have this that you convert into this is regC content,

this is regB content and this the whole thing will become my reg1.

So, this is not there are no such operations in C right which we do this what we can do it.

I can rewrite this. So, I can just shift this regB by the width of the regC right. So, this is

what I did here. So, I just shift the reg B by the width of reg C. So, what will happen then

in this you will have regB will come here and it will be all 0 here right. So, this I store in

a temporary variable then I just do this with or with regC right. So, there is a regC here.

So, if I just do a or of this, the regC value will come here right 0 and this. So, this

becomes this you can understand this. So, this reg C will come here now and this is my

regA. So, this is what I just do here right. So, sometimes some operations like the Concat

operation which is not supported by C because I have to execute this in C, I can rewrite

that operation in terms of using multiple such operations like the example I have given.

(Refer Slide Time: 24:38)

There is another one Part select say, for example, the example here is there. So, I just do

it like this I take this 51. So, both are 64 bits. So, I took some bit of register A right. So,

this is a register A so, this part I just took right. So, 11 to sorry till this 1 say ok 51. So,

this is my regB I want to take this part of the things and I put in the regA. I want to put

this till 0-64; 0 to 40 this part.

I want to take this part of the code and I want to put it here and rest I want to keep as it is

because if I just do this, I am not changing this content of this part of the regA right. So,

this is what this operation does. So, what I can do here I can do it very simply I can

actually take an integer where I just put all 0 and this I will put all 1 and all 0 right..

So, this is that number and if I do an AND with this. So, what will happen? So, finally,

my this content I am put a temporary variable right. So, then it will happen this will all

become 0. So, basically, I extract the value from 11 to 51 right. This is what I did here

and then what I have to do, in the regA what I have to do I have to make sure that I will

just keep this value as it is. I want to put this all 1 right I want to keep this value and I

want to put 0 here.

So, what I did I just take a integer which represents that 41 to 63 these bits are 1 and 40

to 0 are 0. So, this is nothing, but this number is right and if I do a AND width this is

what will happen because it is 0 end so, this will become 0. So, I erase this content, but at

this part, I keep it as it is right. So, whatever the value I had earlier I will keep it because

this is end with 1.

So, now everything is ready. Now, what I have to do I have to just copy this data into

this right. So, that is what I have done here. So, this is how we can actually have certain

operations in Verilog which you can manipulate at the bit level and you can actually do

the equivalent code in C. So, this is my equivalent C code ok. So, this is what the part

selected. So, there is two such operations I explained there can be many and you have to

do such things ok.

(Refer Slide Time: 27:05)

AST representation as I mentioned is an IR representation where you actually have all

the things as a syntax tree and you can actually do operations you can manipulate easily.

So, in the flow, you have to use some kind of AST representation and we use some

syntax tree for interpretation, but for discussion purposes, this is not so, important right

we need to understand the idea first right.

(Refer Slide Time: 27:34)

Then the Parser implementation that you convert the operation which is not supported

and you get an AST in which all those things are replaced and then you actually do that

rewriting part right. So, you have to extract these micro-operations. You have to identify

the rewrite operation these are all discussed. So, I am not going to go into detail things

that I have not discussed yet is how-to handle RAM, ROM, and functions right. So, that I

am going to discuss now.

And generated C code is also kind of discussed right. So, these are the things I miss I

will just discuss now.

(Refer Slide Time: 28:05)

So, in the RAM ROM in the hardware what is happening you have an instance right.

You just instantiate a RAM I hope you are familiar with this kind of syntax that it is 64-

bit data, address is 16 bit, address width is 4, and address range is 16 ok and these are the

signals you are connecting to this particular module instance of the RAM right.

Similarly, for ROM right. So, it has signals like q0 and then it has address it has clock

enable, write enable and data right. So, this is very standard you can actually Google it

and then what I am doing. So, basically, this RAM is instantiated on hardware right. So,

this is your top-level module and this there is a RAM here right and if you want to write

something to this you will basically do you just put write enable equally to one in that

particular clock.

I am not going to access this RAM in all clocks right all-state. It will be in a certain state

that I want to write some data say what I am going to do, I am going to put this write

enable equal to 1. I will put some address data some value of the address. I will put some

data in my d0 and then whenever the next clock come it will be written right. So, it is

nothing, but the RAM is something is say R1 right what is happening here. So, you just

perceivably putting in some location i some data this is what is happening in C.

So, we have to do that right. So, what we did here is basically we identify the RAM,

what are the RAM module, what are their values right, what are the way you are actually

connecting these things from the instance, and then you see in which state these control

signals are becoming 1 and then if it is a write enable you just put these operations and if

it is a read enable. So, you just put d = R1[i] right. So, i is the address.

Whether you read or write. So, in this operation you have to just place in that particular

clock right. So, we basically identify the modules, identify the corresponding signals and

we will actually check the state in which state the writing is happening. So, if it is writing

is happening we will just write this statement there, if it is reading is happening then I am

going to put this statement in that particular state because the RAM is not accessing in all

clocks in which clock it is getting accepted you just put that operation there right.

(Refer Slide Time: 30:20)

So, the ideal in the C level it will look like this. So, say suppose in state 5, you get that

my clock enable = 1, write enable = 1, and my address is this so; that means, you want to

write something right. So, what I am going to do I will just put this kind of if(clock

enable == 1) then what I am going to do I am going to read this data whatever the

address is there that value I am going to read it to this value and if the write enable is

there I am going to write this value into this data right, this is how.

So, basically, I am not going to put this operation in every clock wherever this read

enable or write enable is 1, I am going to do this operation. So, this will be my

representation of the RAM or ROM in C code right is basically it is an array axis. So, we

have to abstract that level thing and only thing we want to make sure that in which clock

things is happening ok.

(Refer Slide Time: 31:16)

So, similar to the RAM and ROM the function is basically again to create a module right.

So, whenever there is a function, it creates a module right. So, this is my function in this

is a top-level module. So, what is happening this function may not execute again in every

clock. It is specifically executed in a particular state right. So, what we have to do is we

have to, basically we can actually again identify what are the modules function modules

are there in the RTL and then you specify what are the basically this input signals right.

So, from this you can identify what are the input signals for these particular modules

right and whenever I saw that particular values are set in a particular state, I just call that

function. So, this module in C level what is this is a function call right.

So, what I am going to do. I identify this and whenever to identify I see some assignment

is happening in a particular state, I just invoke this particular function in that state. It is

not that again the same thing this function is not going to execute in all-state. In some

states where it is getting executed it actually, we are get scheduled right and where it is

getting scheduled I can understand from this signals where these particular signals are

getting assigned ok.

(Refer Slide Time: 32:23)

So, basically the same way I just have an example here that if whenever this value is 1

some say so I am checking that this particular value is happening, I just call this function

right with the corresponding argument right. So, that is all and basically, if you go to the

RTL of Vivado HLS it has some ap start kind of signals which actually says that this

particular function is going to execute in a particular state ok.

So, this way basically objective is that the function is become a module to identify the

function module and then invoke that function call in that particular state where it is

actually scheduled ok. So, that is I am going to do.

(Refer Slide Time: 33:02)

So, with this, all these things are done and I have already specified how I am going to

write my FSMD into C basically using goto statement I will put a level for each state.

I am going to put the operation of that state in that state in that state and then I will say

go to the next state right, this is the structure. So, every state I will talk about this old

valuable thing. So, I just put the operations then if there are some conditional operations,

I am going to put that the RAM block function call these are the things. I am going to do

this under some conditions there may be this RAM ROM operation running then you go

to this state 3 and so on.

So, this I have already discussed. So, this is a very nice way I can convert an RTL into C

code and, but you have to remember this does not do not work for generic RTL. This will

work only for RTL which is generated by the High-Level Synthesis tool because I am

taking advantage of the data path and controller separation. If they are mixed you cannot

separate out you cannot do this ok. So, this is how I generate ok.

(Refer Slide Time: 34:06)

So, this is the basic idea, but as I mention that once you try to implement it in for

practical circuit there are many challenges which come you have to face it you have to

fix it and some of the challenges that I have we identified let me explain one by one ok.

(Refer Slide Time: 34:25)

The most interesting one is the data inconsistency. I think this is very interesting. So, in

hardware, if there are two operations is happening in the same state. So, they are running

in parallel because this is hardware every module run in parallel right. So, for example,

suppose in this example.

So, if I just do a = b and c=d is happening right. So, and b =x+y, and d=a+m this is

happening. So, if we do the rewriting actually a = x + y and c = a + m these two

operations it is happening ok. So, now, you try to understand. So, now, you can see here

a is getting updated and a is getting used here. In C code if I just write this way that

if (state 2) a = x + y ,if (state 2) c = a + m right.

If I just write this way what will happen if you run this C code what will happen, this

operation will execute first and this will be updated and this value of a will come here

because this is a sequential behavior in C, but in hardware, because this two operation is

running in parallel, this is the a_old, not the new value right. Before updating the ‘a’ you

have some value in the ‘a’. So, that value is going to use here it is not the this value is

coming here because this is a parallel execution right.

This ‘a’ will be updated at the start of the next clock, but this operation is happening in

the current clock right. So, this is something is called that the problem of data

inconsistency because in hardware since everything running in parallel, there is no read

after write dependency(RAW), but here whenever you place in sequential in C code it

will have a read after write dependencies and which is not correct because if you take the

new value it is something wrong.

So, how to solve that I already given you the idea that this a_old. So, use a_old right.

What I do here is that at the start of every clock I will take the value of every register and

put in some old value; that means, this is my old value, and then if in the right-hand

expression I am going to always use the old value. So, then what will happen if this a is

and this a_old is not the same. So, this will take my previous value of a.

So that means, although now if I execute this behavior sequentially this is actually if

taking it actually executing the parallel behavior of my hardware right. So, this is

something very interesting and this is how we fix the problem that you store the value of

the register at the start of every state and in the right-hand expression I am going to use

the old value, not the new value. So, there is an if, even if I put the operation in the

series, no read after write dependency will create here.

Because I am always using the old value which is not this value right. This is kind of

a_ new value ok. So, this is very interesting.

(Refer Slide Time: 37:14)

The next problem that we faced is basically signed conversion in the Verilog we have

whenever there is a number is a negative number or sign number it is used by the signed

right. So, sign number is basically it keeps the 2’s complement of that number right.

So, although this is 1 1 7 integer it is basically not it is a two’s complement of some

number. So, this is not actually 1 1 7, it is actually -11 right. So, if I just write 1 1 7 here

it will create a problem right. So, basically, what we did here very simple whenever there

is a sign signals are there sign words are there, we always use a two’s complement

function right. So, we just here define a two’s complement function and then I call this

value with this.

So, it will automatically convert these 1 1 7 into two’s complement form of 7 bit because

you have to give specify the bit width and then it will automatically this function will

determine -11. So, I am not going to use 1 1 7 rather I am going to use -11 similarly this

is a Yreg. So, it will just convert this an expression which is basically a two’s

complement of Yreg ok.

So, this is simpler, but you have to use the twos complement function to convert them

next one is also very interesting.

(Refer Slide Time: 38:27)

So, in the data path in hardware you always know that you can actually have any specific

data path width right your width can be anything right and register can be 43 bits, 27 bit,

7 bit, 9 bit, 65 bits anything right, but in C you have integer float and so, on right long

long int. So, integer is 32 bits, long long int is 64 bit and so on. So, how we will

represent these 43 bits in C that is a problem right.

Because you have say 33 bits you have integer say 32 bits then it is a problem and

specifically the problem will more severe. It is a underflow and overflow problem. I will

give an example say suppose you are doing a = b * c if say this is 32 bits, this is 32 bits

if you multiply this result will be 64 bits and say a is also 32 bits then in hardware if you

just do this operation automatically it truncate the 33 to 64 bits that part of the bits

because its automatic truncation happen.

Because since the data width of a is 32 bit it will only keep the 32 bits or say it is only 43

bits only it will keep although result is 64 bits, it will keep the 43 of bits of that and it

will store in this. So, this automatically happens as there is no problem of overflow and

underflow in C Verilog because this truncation happen automatically or zero padding is

already happened.

But, if you convert them because as I mentioned earlier that whenever you convert you

have to give a data type of this variable and we usually give int long int and this type of

data path. So, you do not have the opportunity to keep this 43 bits, 17 bits, 15 bits right.

So, that will create an overflow or underflow right, to avoid this what we do basically is

we just take those particular bits right. So, that is the basic idea right.

So, here is the example again you have to make sure that you take only the value that

will be stored in Verilog and the same part of the value in the hardware right. So, to

answer the first question that how do we represent 43 bits, I will use a 64 bit long long

int how do I store a 15 bits data, I will use an int 32 bits int to store that, but I will make

sure that whenever I do the assignment I will only store 15 bit. I will never store the 16

to 31 bits.

Then it will be a problem how I can do that it is very simple operation masking right. I

just mask that value with a 15 bits right the example that I took its here again this say

r_C = r_A * r_B you can see here all are 32 bits right.

(Refer Slide Time: 41:02)

So, r_A and r_B is 21 bits and r_C is 32 bits ok. So, as a result. So, this result will be 42

bits right and I want to take the 32 bits of that ok.

So, what I am going to do is. So, I do multiplication. So, this will be 40 bits, but what I

do here I will just put a all 1, 32 bits right. So, this is nothing, but 2 ^ 32 - 1 right. So, this

is this figure and these are all 0. So, this integer is nothing, but this right 2 to the power

32 minus 1 and if we do a AND of this what will happen. So, I have this 40 bits 0 to 39

and then I just try to do a AND where these are all 1 right. So, this is tool 31 bit and

these are all 0.

So, if I do a AND of this what will happen this will be erased right. So, this will all

become 0 and this will retain the value. So, effectively I store this data into a long long

int or say int because this is 32 bits, but I remove the value which is not going to be

stored in hardware. So, this is how I manage right. So, I always do a mask-appropriate

one and just end and make sure that whatever the operations or the data will be stored in

Verilog or in hardware that same thing will going to mimic in C.

(Refer Slide Time: 42:23)

So, these are the things you have to take care. The last one is another very complicated

thing is the level-triggered operations. The difference between level triggered and edge-

triggered operation is that edge-triggered whenever the positive edge of clock comes

then it happens in the level-triggered whenever the signals change right in the any RHS

operations expression signal changes, value changes that operation is going to execute

right.

So, I will take the same example here that earlier I have taken. So, b equal to say what is

happening here, I have happening b = a and here c = a + b. So, basically, a = a + b and b

= a, this two operation is happening right. So, if it is normal operation and this is

always(*) means level-triggered if it say here is the passage of clock was there then it is

basically this is a_old right, it is not taking the new value.

But, since this is a level-triggered operation what is going to happen that whenever this

value of a is changing here, this operation is going to execute and it is actually taking this

new value of a, it is basically a+5 ok. So, the fix that I had did earlier will create a

problem here because I use a_old here, that a_old will create a problem. So, what I am

going to do it now. I am not going to put a_old if it is a level-triggered operation.

It is complicated, but the idea is that if it is a level-triggered operations. I will not use the

a_old value. I am going to use ‘a’ itself and if it is edge-triggered I will use a_old value

right that is simple and also this ordering is important.

(Refer Slide Time: 44:00)

Because if you just put b = a and then a = a + 5 in C, this a will not take this value right.

So, I will just see if there is an expression and I will order these operations according to

the data flow.

So, you have to do some kind of data flow analysis in the tool and you have to find out

the order. So, level triggered is a very complicated scenario, but you have to manage

them this is how when you generate the C code ok.

(Refer Slide Time: 44:24)

So, that is all. So, now, as I mentioned that whenever you develop this RTL to C

converter, you have must support all the complicated optimizations of the HLS and some

of them are important is the loop unrolling, instruction-level pipelining, and task level

pipelining ok. So, let us try to understand them and how whether they will create a

problem in generating C from RTL.

(Refer Slide Time: 44:46)

So, loop unrolling you know that it basically you have a loop which you basically have

to unroll it right. So, now, it is basically sequential state of code and you can understand

clearly that if there is a loop and you convert them it is a sequence state line of code and

it will not create any problems because it can be handled by or parser.

So, this loop unrolling automatically get handled you do not have to take any special care

for that next one is the Loop Pipelining.

(Refer Slide Time: 45:13)

So, Pipelining you know that whenever there is a loop you try to execute them in

multiple iterations of the loop you write run in parallel right. So, this is iteration 1, this is

iteration 2, this is iteration 3 and you want to execute in every clock you want to run

some part of the iterations in parallel right.

So, if I consider a three-stage pipelining in this third clock the third stage of the first

loop, the second stage of the second loop, and the first stage of the third iteration which

going to execute right. So, the third stage of the first iteration, the second stage of the

second iteration, and the first stage of the third iteration is going to be executed right this

is how things will happen.

(Refer Slide Time: 45:53)

So, now let us try to understand the corresponding controller FSM. So, let us take this

example and say I have a nested loop and the inner loop is pipelined ok. I just put this

pipeline and I am actually calculating some address x and y and in that x y, I am going to

write some value right. So, there is two part to it. So, the address calculation x and y and

writing to the memory right. So, there are these things that are happening. So, now, if

your pipeline it say suppose you pipeline into two stages.

(Refer Slide Time: 46:23)

So, what is going to happen?

So, this is my stage, it will create a state single state in the controller FSM and it will

actually there a two-stage pipelining happening. So, stage 1 and stage 2. So, this is how it

will look. So, this is the inner loop. You can see here there is a loop here and this is the

outer loop right so; that means, whenever we apply a pipeline it will create a single state,

a single state in the controller FSM and within the single state there will be multiple

stages because it is a pipelining there will multiple stages.

And the example that I have taken it has two-stage pipelining and there are two stages. In

the first stage, you calculate the address x and y and in the second stage you write into

the array in that particular address ok. So, that is what is happening. You can see here the

stage 1 I calculate the address and then in the next stage, I just write this. So, how I can

convert this into C code. You can understand that these particular two stages happening,

but they are actually executing two different iterations.

And there are some stage signals are there in the controller. So, for example, this is the

flag for stage 1 and this is the flag for stage 2. So, I will just write this is my state 3. In

state3 if this particular flag is 1; that means, the state2, 1 is enabled I am going to

calculate this right and if this particular flag is 1, then I am going to write this ok. So, this

is how I just and it is basically in the RTL it will be always like this and these signals are

already available right.

So, and this is actually executing i+1th iteration and this is ith iteration and the

corresponding data will be also stored in x and y right. So, I do not have to take much

and this will be my generated RTL code, I mean generated C code where I have a state I

have two substages which is nothing, but control by this flag and whenever this flag is 1

that particular stage will be executed for an iteration ok.

So, this is also will not create many problems only the basic syntax to be understood and

can be managed.

(Refer Slide Time: 48:33)

The real problem or the real challenge will come whenever we handle the task level

pipelining which I have already explained it in the previous class where I just talked

about the data flow optimizations which is basically when you have a sequence of loops

you can actually run them in parallel right.

So, for example, here I have module_1, module_2, module_3, module_4 the same

example. I have explained in my previous classes and you call them in sequentially

module 1 2 3 4. So, if you run this in C the module_1 will execute first, then 2, then 3

and 4. It is basically total execution time will be the execution time of 1 2 3 4, four

modules time right.

But, if you just apply this task level pipelining in this loop that I have applied here in the

data flow, what the RTL tool will create it will create four modules. One for each module

and then these modules will run in parallel right and the data that is generated by this will

be stored in a FIFO in this FIFO because there is a channel from module_1 to module_2

and there is a dependency because module_1 is creating B it is used here creating C it is

used here and so on.

So, it will create it will put some intermediate buffer which is either FIFO or Ping-pong

style and then what will happen in the hardware these four modules will run in parallel

and whenever some data get produce, it will be written here and this module wait for any

data whenever the data available it will start the next iteration right so; that means,

ineffectively all these models running in parallel.

And they actually have a synchronization because if there is a blocking read whenever

there is no data you cannot read it and when the buffer is full you are going to write it.

So, this is how they will be synchronized ok. So, now, you can understand this particular

module is running in parallel all modules running in parallel and now I have to write that

execution in C and I cannot just write this because this will not be cycle-accurate because

as I mentioned here to execute this C code, it will total time will be a time of module_1,

time of time module_2, time of module_3, time of module_4.

But, here since they are all running in parallel one clock all four modules is running. So,

this is not exactly this execution right. So, I have to make sure that my generated C code

is cycle-accurate otherwise I cannot debug my C code right.

(Refer Slide Time: 51:06)

So, to do that we take a very nice idea that what I am going to do I create a global

main() ok. In the global main() what I am going to do I am going to call all these

modules in parallel.

So, the idea is that every clock you execute one state of all four modules ok. Say suppose

my module 1 state diagram is like this. So, let me explain this the basic idea here is that

in every clock I have to execute one state of every module that is the idea.

So, what I am going to do it here I am going to say this is my say the state diagram of say

module 1 ok. So, this is the controller FSM. So, there are three states right. So, S11, S12

and S13. How they transits have the transition happen that is given here.

So, in the model that I am going to create, I just put these three-state in parallel. If there

are four states I am going to put four states in parallel right and I always maintain what is

my current state. So, whenever I just call this function the current state will execute say

suppose the current state is say s11. So, this current S11 will execute and say in the next

state is under the current condition is S13.

So, then the correct state will be returned into S13 and then it will end and it will go back

to here next time whenever I call because my current state now is S13, now S13 will

execute right. So, basically, you can see here I have a created module where I just put

these states of the actual FSM in parallels right and there may be many states here I just

put 3, but it can be 4, 5, 10 states and I always maintain a flag which is the current state

and whenever I come here I execute the current state.

So, what is going to happen here in state_2 which is a single clock in my cycle-accurate

model, I will execute one state of this module, one state of this module, and one state of

this module then I will move to the next clock. So, this particular model is cycle-accurate

and it actually captures the parallel execution of the whole four modules right. So, that is

the idea.

(Refer Slide Time: 53:26)

So, let us now just move to the generated let me just revisit my objectives. So, I have

generated C code which will always give you faster simulation I will put this since I have

taken care of all the inconsistencies all these things. So, my generated RTL will be

functionally correct and then I also make sure that this is a cycle-accurate simulation

because I actually keep all state information as I mentioned earlier and it actually gives

you accurate performance because it actually can execute the clockwise behavior right.

And since I just put all the registered names as it is. So, it is a highly readable code and

also debugs friendly because I can always analyze things in the context of Verilog. So,

all the objectives that I specify is satisfied right and I also mentioned how to handle

memory, how to handle function, and how to handle this loop unrolling pipelining and

pipelining everything. So, all these objectives is supported by the RTL to C converter

that I have discussed today. Just to conclude I will just give you the results.

(Refer Slide Time: 54:28)

(Refer Slide Time: 54:41)

So, we have taken various benchmarks. You can see these benchmarks are very big it has

lot of if-else, arrays, functions, and loops. So, they are very complicated examples right

then the parsing time we convert the RTL that is generated for this benchmark by Vivado

HLS, we convert back into generated C. We can see here the number of lines in the

generated C and the RTL is mostly similar.

So, this is the number of lines in C and this is the parsing time you can see here within

one second we can actually generate the C from the RTL which is very fast ok.

(Refer Slide Time: 55:05)

So, this is the most important result. You can see here we have taken these benchmarks

and this is the time taken by our tool FastSim ok. So, which is our converter and this is

the time taken by if we simulate the input C code using GCC and this will also I simulate

using GCC.

And then I take this RTL co simulator of the Vivado HLS. We take model C and the

verilator the tool that I talked about earlier ok and we can see here if we compare the run

time, it is 91.91. So, it is bit slower 0.1 percent slower than the C simulator. So, almost

we achieve the speed up the time which is similar to the C simulation right. So, it is the

say 20 seconds, it is14 seconds, It is 0.6.

But, RTL co simulations its slower we have already discussed earlier and our tool is

almost 300 times faster than this RTL code simulator, with ModelSim it is 326 time

fasters, for Verilator it is 10 x faster. This is also generated C++ code, but this is since it

does not take care of the data path and controller it is not that faster. So, the tool that we

develop is as fast as the C simulator and it is much faster than any RTL simulator.

So, this RTL to C conversion is actually really helpful in having a faster simulation

verification of High-Level Synthesis ok.

(Refer Slide Time: 56:30)

(Refer Slide Time: 56:35)

So, there are some results for unrolling pipelining, but that is not so important because

the basic idea is important we also have results for task-level pipelining for various

benchmarks and we have a getting a benchmark speed up there as well.

(Refer Slide Time: 56:44)

So, the performance which is I just try to highlight here. We can see here this FastSim

give a performance is similar to the RTL co simulations you can see here the minimum

clock and maximum clock always same as the RTL co stimulation.

So, it is actually gives an accurate performance estimation that I mentioned earlier and C

synthesis also gives some approximate in some cases it cannot give specifically if there

is a loop where the loop bound is not known, but in our case, you can always give

because we run the actual data right and it is exactly same as RTL co simulations. So, it

actually meets the performance estimation requirement.

(Refer Slide Time: 57:21)

So, in conclusion. So, in this class, we discussed an RTL to C conversions for High-

Level Synthesis and we have shown that particular C can be used for faster simulation

verification of High-Level Synthesis and our tool supports all the requirements of an

RTL simulator. So, that way it can be used for simulation-based verification of High-

Level Synthesis ok.

Thank you.

