
C-Based VLSI Design
Dr. Chandan Karfa

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Module - 01
Introduction to C - based VLSI Design

Lecture - 03
C- Based VLSI Design: Problem formulation

Welcome students, in this class we are going to learn about this in more detail in high-level

synthesis.

(Refer Slide Time: 00:58)

So, in the previous class, we try to see we take an example and so, how high-level synthesis

can convert C code into an equivalent register transfer level code. So, we try to formulate the

problem in each step right what are the problems are we going to solve in every step, and

what are the challenges I am going to face in each stage that I am going to talk about also, I

am going to talk about giving you a very high-level idea, how the common C constructs get

mapped into the equivalent things in RTL.

So, just to start with that we have already discussed that C based VLSI design means we will

start the VLSI design flow start from C code, and then we will convert it into RTL and from

RTL we will do this gate-level transformation by logic synthesis tool and from gate level to

transistor-level by physical synthesis tool and so on.



And then finally, we will get that cheap IC after fabrication, but we will primarily focus on

this high-level synthesis because that is something that is completely new in the context of

EDA design flow right. So, the logic synthesis and physical synthesis parts are kind of

matured. So, the primary focus of this course will be on this C to RTL conversion by

high-level synthesis.

So, we have already seen that high-level synthesis is something covert and equivalent to C

code into an RTL or register transfer level code and it has become a unique benefit like

productivity, portability, and permutability right. So, productivity in the sense that, it lowered

the design complexity because you do not have to develop anything on RTL, you can write

just specifications in C and you can completely get your IC quickly because you do not have

to develop your RTL and also see if you.

So, checking the specification correctly or not will be done at the C level which is much

faster than the RTL simulation. So, you have this low design time as well as low design

complexity and it is a faster simulation so, faster verification ok. Portability is something so,

we have a specification written in C, you can actually map it to FPGA you can map it to

ASIC because the high-level synthesis tool you can just set the parameter that I want to map

it to FPGA or I want to map it to ASIC and it will generate the RTL according to that right.

Even at the FPGA level you can have different vendors right you can have Xilinx we can

have Intel Altera and so on even for those FPGAs have different components. So, you even

you can actually target for specific target boards right. So, this is something that gives you the

portability right.

From the same specification which is written in high-level C++, you can actually make it to

different targets right; that is the big biggest benefit of high-level synthesis. And then the

permutability which is basically the design of space exploration.

So, from the same specification which is basically he is untimed there is no objective right

whether it is something for power area or timing nothing it is just a specific its untimed C

specification, and I can actually explore different kinds of design from the same specification.



(Refer Slide Time: 04:04)

Here is a very nice example that supposes I have a given very simple example of this right

which is doing this the addition is basically in 1 plus in 2 plus in 2 in 3 plus in 4. Now,

suppose I want to target it for reducing the latency right so; that means, I do not I want to do

it very fast right and the corresponding data will be this, data path will be this because there

are no intermediate registers. So, the latency will be 1 right, but it is the area is 3 adders right.

So, I can generate this RTL using high-level synthesis just specifying certain pragmas or

certain parameters in the tool or suppose I want to optimize for an area. So, I can take these,

and I can convert this here. So, I can see here that I can actually take one adder and I am

storing the intermediate results and it is basically it will take 3 cycles to complete these 3

addition operations because I have one adder right.

So, the area will be one adder, but there will be two registers also. So, the area will be one

adder two registers, but the clock will be very faster right. So, earlier it is 1 by t clock. Now,

it is a 1 by 3 clock it is a three-time faster clock right because you are not the total delay of

the combinational circuit is 3 adders here, here it is only one adder right.

So, that is the advantage but its area is less, but it is slow it will take 3 clocks right, and then

if you want to improve the throughput; that means, you want to get your output fast you will

get a pipeline circuit like this, where you just still you are adding 3 adders, but it is in pipeline

mode so, that after one the pipeline stages are filled you can get output in every clock right.



So, if you just suppose you want to do it for a streaming data right you are continuously

giving the new set of data, you will get the output in every clock here, but here it is not like

that right here you will get it, but the latency is 1, but here the delay the clock is very slow,

but here the clock is still faster and you will get output in one clock.

So, the point he tries to make is that you can actually all get all these 3 kinds of data paths

just by setting certain parameters in the high-level synthesis tool right. So, that is the kind of

you can actually explore the design space using high-level synthesis easily right. So, that is

the biggest advantage we have already talked about.

So, let us now move on to the high-level synthesis we have seen that high-level synthesis

consists of several sub-steps right. It IS a complex transformation process. So, it goes through

several sub-steps like pre-processing scheduling allocation binding and data path and

controller generation, and then finally, you get the RTL right.

So, what I am going to do is that I am going to try to see what are the exact problem I am

going to solve here in every sub-step and what are the things involved there right. So, I am

going to discuss this in today’s class.

(Refer Slide Time: 06:49)

So, as I mentioned in the pre-processing step is something you have a C code, you convert

into some intermediate representation. So, the task is like you actually identify you break the

big expression into 3 address form, you identify the basic blocks, you identify the control



flow, you identify the data flow, and then you actually represent that that input CV we are in

that IR form right so in terms of a control and data flow graph right this is what is happening

here.

And if you look into this compiler because this is a C code you need a parser right you need a

compiler that basically can parse a C code. So, and we have very common we already know

that GCC LLVM. So, we can use any of such parsers because I do not have to write my own

code it is something it is a C code, I can utilize the GCC or LLVM parser which actually

parses this input C code.

It will just do the syntax analysis and semantic analysis and it give me the IR and then most

importantly the IR level we can apply the various kind of optimizations which we will cover

in some subsequent classes so that we can actually optimize certain things in the input code

itself if there are some redundancies. And then finally, that IR is something we will represent

in some form which you understood by the high-level synthesis tool ok.

(Refer Slide Time: 08:06)

As I mentioned there is some dataflow analysis is involved here. So, there is information like

a control flow analysis to be done. So, what is the control flow we have to identify the back

edge, we have to identify the loops for that we have to do the dominator analysis right? So,

all those things are part of this compiler right, and also have to identify the data flow, and the

dependency among the operations within basic blocks and across the basic blocks right.



You have to do this analysis for as I mentioned it is basically inter-procedural if there are

multiple functions right you have to do it for the hierarchy of functions or within the function

also right inter-procedural also.

Within the function what are the dependencies within the function you have some local

dependencies which are called basic blocks right? So, we have already understood that. So,

all analysis involved in the pre-processing step, and at the output level what we understood is

that we actually get the basic blocks right.

(Refer Slide Time: 08:59)

So, we will represent our behaviour as a basis set of basic blocks and their control flow right.

So, within the basic block what do we have? We have a sequence of 3 address operations

where we have actually each operation consist of single operations and it is a there is no

control flow right. It is this code that is going to execute at the top to the bottom sequentially

right and this is the control flow right.

So, after that, you will go here and once say this particular condition does not hold you will

go to this basic block and so on right. So, the pre-processing steps do all those things in the

context of high-level synthesis since all the high-level synthesis tools just have integrated one

of the existing C compilers say either GCC or LLVM.



So, we will expect that our input is already converted into those 3 addresses in terms of basic

block representation ok. And in this particular course, I am not going to go into detail about

this because this is a very conventional compiler you will get in any compiler course.

So, I will assume that you have certain knowledge about that and I will expect that whatever

the input for my high-level synthesis is after the pre-processing right where you will get the

code in this form and what I am going to do, I am going to take one basic block at a time and

then I am going to do the scheduling and then we try to do the allocation binding where we

try to identify the minimum number of registers and function units which can be shared

across basic block also right that we will discuss in detail in subsequent classes ok.

So, now let us move on to the next step is something scheduled. So, we already know that

scheduling is something where we assign a timestamp to an operation. So, what is my input?

We have this input; we have this basic block information.

So, we have these operations we construct a kind of data flow graph DAG the data

dependency graph. So, which basically represents the dependency of operations and how the

operations are dependent on each other is given to me.

(Refer Slide Time: 10:59)

So, we will learn that it will be represented by a graph called sequence graph ok and then we

have also the delay of the nodes. So, we have not discussed in a previous class that these



operations may not be always single-cycle some operations may be multiple cycles, some

operations may be single cycles, and so, on. So, that information is also there.

So, a single cycle means, it will complete this execution in one cycle and if it is a two-cycle

operation it will take two-cycle to complete the execution. So, now, that so, this is the called

delay. So, for each node, I know the what is the delay value, and then also I have certain

kinds of constraints. So, whether how many resources I can use or how much time I can

utilize. So, that information also is there, and what scheduling does do? It is basically as I

identify where the operations to start.

So, the start time of the operation ti for node vi. So, for each operation, it will say when this

operation starts. So, if it is a single cycle, it will complete the execution within the same cycle

if it is multi-cycle, it will start here, but it will complete in I mean after I mean. So, if it is a 2

cycle so it will take 2 cycles I mean 2 clocks, and all right.

So, this is something that schedule does. So, given this data dependency graph of a basic

block and the delay information it just says when this operation will start right. So, this is

what the stacks of the scheduling are, but what are the complexities here let us try to

understand this ok. Say suppose I say I just give you a graph and some sequence graph or

data dependency graph and say you schedule it in 4 cycles right. So, I just give you this.

(Refer Slide Time: 12:46)



So, here is an example. So, if you take that example that DIFU example you can actually

schedule this behaviour in 4 cycles that we know right and now we will just see how many.

So, I will just show you some possibilities ok. So, this is one of the schedules where you see

the main idea is that your schedule does not violate the data dependency which I forgot to

mention here.

So, you have to just find out the start time, but you make sure that the operation data

dependency must satisfy right. So, this is something that must make it is not that we just

assign timestamp, but you make sure this data dependency is not violated and whatever the

timing or resource constraint given to us that is also not violated ok.

So, now given behaviour and say suppose I give you that you use only 4 cycles to schedule it

right. So, you can have many scheduling possibilities. So, I have shown 3 scheduling

possibilities here you see here. So, all are actually satisfying the data dependency, here all

these data dependencies are satisfied.

So, that satisfying data dependency in the sense, if there is an operation, is dependent on the

operation. So, the previous operation must be executed then only the dependent operation can

execute right otherwise the data will not be available right. So, data dependency will be

violated.

So, you see here I have 4 3 solutions here which all take 4 cycles ok, but here you see how

many multipliers happening here? 4 right; that means, there are 4 multipliers that are going to

execute in timestamp 1. So, that means I need at least 4 multipliers to do this here only 1

multiplier.

So, there are 6 multiplication operations, there are 6 multiplication operations in this

behaviour and I identify because of this schedule since there are 4 operational schedules is 1 I

need at least 4 multipliers because these 4 will run in parallel. So, what does it means? 6

multiplication operation need 4 multipliers ok.

And if you look into these 4 multipliers only one will be used here, one will be used here and

none of them will be used here so; that means, in this particular clock 4 multipliers will be

utilized and the rest of the time most of the multiplier will remain idle. So, this is the one

solution.



So, remember these are the all-valid solution because it does not violate the data

dependencies ok and now see this is another solution here there are 3 multipliers scheduled

here, and still it is 4 cycles right this is also 4 cycles, this is also 4 cycles. So, here because 3

multiplier is in parallel here 2 and it is one here.

So, it will take at most 3 basically 3 multipliers to execute this right. So, both are 4 cycles,

both have 6 multiplications, it needs 4 multipliers, this needs 3 multipliers. So, let me take

another solution here. Here 2 multiplier is scheduled here, 2 multipliers are scheduled here,

and 2 multipliers are scheduled here. So, I need two multipliers right this also takes 4 cycles

and all 3 are the valid solution because it satisfies the scheduling constant.

So, this gives you a very classic example that given a timestamp also you can have many

scheduling possibilities, and non-necessary that all possible possibilities will give you the

same resource right. I have a very nice example here that I have taken and behaviour where

there are 6 multiplication operations, I show you 3 schedules, and all take 4 cycles 4 clock

cycles, but this is the best solution in terms of resources because it can do it in 2 multipliers

right.

So, basically, the point here is that in the scheduling given some even the time limit that time

constant says 4, there are many solutions right you have to develop some algorithm that will

actually even to identify this solution right this is something the better solution other than

right. So, that is; that means, your scheduling problem is not only identifying a valid solution

but an optimal solution right or a good solution right. So, that is something that is going to

happen during scheduling.

I do not this example does not give you another angle of this problem right. So, which is

basically here I told you these 4. So, I just mentioned to you that it is 4, but if I do not

mention that right. So, if I say I told you that I give you 2 multipliers, you identify what is the

minimum time required right so; that means, you might come maybe do it in 4 cycles, you

may do it in 5 cycles, you may do it in 6 cycles, but you have to identify their solution that 4

is the best solution right.

So, given 2 multipliers you might have many solutions which might take 4 cycles, 5 cycles, 6

cycles, 7 cycles, or 8 cycles, but you have to identify that for given a certain resource bound,

this is the best time I can obtain right. So, that is another angle of the problem.



(Refer Slide Time: 17:55)

So, in that way, there are two kinds of problems we can look into in this scheduling which are

called minimizing latency under resource constraint or minimizing resource under latency

constraint. So, these are two conventional two dual problems because if you just try to use the

minimum resources you have to number of clocks will increase right because their operation

has to be scheduled in more time right. If your number of resources is less you need more

time and if your resource is more, you need less time right.

So, these are the two conflicting requirements. So, usually in the scheduling, the two

problems that we want to solve is that I tell you that this is my resource constant you identify

the minimum latency you can achieve what is the best latency you can achieve using this

resource right this is one kind of problem we are going to solve.

Now, another kind of problem is that I have given you a latency bound just like the example I

have shown here that lets you schedule this in 4 cycles, but you identify the minimum

resource. So, this is another angle of the problem. So, both are important problems and we are

going to discuss the kind of efficient algorithm to do that right. So, that is about the

scheduling.

So, let us move on to the next phase which is allocation and binding. And we have already

understood high level that allocation means you have such a set of operations you have to

map that operation into a function unit because in hardware your operation is executed using

some function unit right.



So, the operation to be mapped to the function units and the variables of your program map to

be registers or RAM memories right. So, you are going to map the memories. So, this

problem is here you have a set of operations you can utilize the same number of resources

which is ok.

See if there are 6 multiplier multiplication operations examples here you can always utilize 6

multiplier function unit multiplication units, but it is not good right. So, I can show you that

in this particular example, I can actually utilize 2 multipliers because at most my requirement

of max multiplication in every state is 2 utmost 2. So, I need two multipliers right.

And I can put this multiplier into multiplier 1, this into multiplier 2, this into multiplier 1, this

into multiplier 1, this into multiplier 2, and this multiplier. So, this will not create any

problem right this is what is the resource sharing which is very important in the context of

hardware because I do not want to arbitrarily use a random number of hardware because that

will increase my area, increase my power, increase my time anything it will all increase right.

So, I have to always look for using a minimum number of resources right.

So, as I mentioned in this example perfectly that although there are 6 multiplication

operations, 2 multiplier is sufficient and I can actually share one multiplication function unit

for this 3-multiplier operation and I can use another multiplier function unit to share these 3

multiplication operations and that is what is important and that is what is being done in the

allocation and binding phase.

So, from this schedule, I identify that 2 multiplier is sufficient. So, that is my allocation. So, I

allocate 2 multipliers for this problem and then I bind these 3 operations this v 1 v 5, and v 6

into multiplier 1. So, this is the binding of this operation to the multiplier and I am binding v

2, v 6, and v 9 into multiplier 2. So, that is the binding of the operations to the function unit.

So, we understand that this allocation and binding. So, you identify the minimum number of

resources for a given schedule and you understand that for different schedule the resource

your resource recommend is different I have already explained in that example right. So, you

identify for a given schedule what is the minimum resource you needed and then you bind

them right.

So, during bind you make sure that there is the operation that is running parallel cannot be

bound into the same function unit because you can at a time, we can only execute one



operation in one function unit right. So, that is what is about this allocation and binding of

operation to the functional units.

Similar procedure proceedings have to be done for variables to register to bind. So, you have

many variables in your program and you want to map those variables into registers because in

the hardware you do not have variables, you have to store them in some hardware unit

sequential element which is registers and you have to do that.

Again if you have to say 10 variables you can always map them into 10 registers, but that is

again not the good idea because I want to utilize the resource right, I do not want to overuse

the resource and the basic idea here is that in C program whenever there is a variable, we

never thought about their lifetime or when its getting used right. So, it is not that one variable

is needed for the complete program.

(Refer Slide Time: 22:48)

So, you define a variable say here v equal to something and then say this is the last time

where you are using say for v 5 equal to v plus something ok. So, this is saying this is in line

number 1 and this is in line number 12 and say that complete program is 15 lines ok so; that

means, I need to store the value of the variable during this time ok. So, I do not need to store

this after the clock say 12 because after that the v value v never, we use right.

So, if there is another variable say v 6 is defined here and it is getting here. So, I can actually

store this v 6 and v into a single register say R 1 ok this is the way I am going to identify how



many registers I need. So, if there are two variables that are not getting used at the same time

or that means their life is not overlapping, I can put them into the same registers and that is

how the shearing happens.

So, this is how you identify how many registers you need to be allocated for these variables

and then you bind them this is what the binding I have done that v v register v and v 6 map to

register 1. So, this is what register allocation and binding we will go into more detail here

about how this buffering happens and what kind of algorithm to be done.

So, you have to always keep in remember that whatever I am talking about scheduling

allocation binding is not a manual job right we need a software which going to do that. So,

the most important part here is, how can I automate this process right. I identify this, but can I

write a program that will automatically identify the lifetimes of the variables.

And then identify the variables which have a non-overlapping lifetime and map them into the

same registers and you have to guarantee that this actually always results in the minimum

number of registers right. You can have many such mapping, but can you identify what is the

minimum number of registers needed right similarly for FUs.

So, these are the interesting problem that we are going to solve during this when this course I

am going to talk about different algorithms that I am going to do these things ok. Once this

allocation and binding happen, the next phase is kind of conventional, but important that you

have to make the data path right.



(Refer Slide Time: 25:03)

You have you know the how many function units are there, how many registers are there

what you have to do? You have to make connections and this connection is that because this

FU is getting shared or it is basically performing multiple operations in multiple time steps

their input may be different right.

So, it may be that one FU’s in the register. So, its input for this FUs is R 1 and R 6 in time

step 1 and say R 2 and R 1 in timestamp 2 and R 1 and R 5 in timestamp 3 and so, on. So,

these are the possible inputs coming to these registers to this function unit right. So, how to

make this connection? You have a set of registers. So, you have to put some kind of

multiplexer here so, that you can actually give these inputs and you can actually do a

time-division multiplexing right.

It is not that all values will come in the same clock rather in every clock one of the values

will come and I know which value will come in which clock accordingly I can give a control

signal here which will make sure that that in the timestamp 1 only R 1. So, it comes into FU

among all these inputs similarly in timestamp 1, R 6 only come into the FUs in timestamp 1

ok.

So, this is how the interconnection is made right. So, you have to identify for FU what are the

possible values are coming to this and make you make connections and you also make sure

you add proper control signals, and then in that particular control state you give that



particular value so, that R 1 should come right this is what is the data path and controller

generation right.

(Refer Slide Time: 26:35)

So, the controller is once the data path connections are done. You identify what are the

control signals you need for FUs in ALUs, for mux, and for register inputs. So, everywhere

there are control signals and you have to take control of the data right. So, you have let us

suppose 10 registers, but may not be all 10 registers get updated in a clock right. So, only say

3 of them get updated in a clock.

So, we have to make sure that in that particular state only in right enable for those three

registers are 1 and for rest of the things are 0 otherwise you will store some garbage value

will come into those registers right. Similarly, as I mentioned for the data path if there is a

mux that has 4 inputs to FU you have to make sure that in clock 1 what are the values I

should set so, that the corresponding correct register value will come into FU input right.

This is what is the controller synthesis that every state you identify what is the operation to be

performed. And accordingly, you set the control values control signals to 1 or 0 properly so,

that exactly the required operation going to be executed in that time and rest on rest things are

not going to happen in that state right.

This is what is the data path and controller synthesis and this in this particular part what is

important is how to identify these things automatically and what will be your interconnection



type, it can be bus base or mux base right. So, we will go into all detail, but this step you can

consider is kind of more convenient because most of the decisions are already taken during

the allocation and binding phase and scheduling phase.

So, this is where you have to make sure that whatever the decision has been taken in

scheduling allocation and binding is going to happen properly in the hardware right. So, that

is something is the interconnections ensured right that is going to happen in these steps ok.

(Refer Slide Time: 28:17)

So, with this, if you just follow all these steps finally, you will get an RTL that has a

separable data path and a controller right. So, you have a data path it is going to execute the

operations and you have a controller which is nothing, but an FSM finite state machine where

every state assigns these 1 0 signals and gives that value to the data path as it is and this

proper upper series going to execute in the data path right and in some state if there are some

conditional operations happen.

So, the value of that conditional operation also returns back to the controller right. So,

suppose you are doing a less than b. If a less than b then you are going to happen some

operations if a less than b is false then you are going to do some operations right. So, that is

information must come back to the controller so, that controller understands what operation

to be done in the next state right.



So, that is something that comes back to the controller. So, once you have done that. So, your

data path will look like this, your controller will look like this and in combination, this will

the RTL which will execute the input behaviour that you have given to the high-level

synthesis tool right.

This is what is the automation automated conversion process. And as I mentioned in this

course, I am going to look into the algorithms that are going to do the scheduling the

algorithms that are going to perform this allocation binding, and the operation or the kind of

algorithm that can actually automatically synthesize the data path and the controller ok. So,

that will be a major portion of the course and which I am going to follow from the next week.

But in today’s class, I am going to give you some interesting facts that in the C, C++ there are

different constructs like you have functions, you have operations, you have variables, you

have arrays have a control flow for how those things are going to be mapped into RTL in

general by high-level synthesis what is the corresponding things in the hardware right.

That is something I will just give you a brief idea and obviously, again I am going to call take

each of them in detail and how efficiently they going to map to the hardware I am going to

discuss, but here I am just giving you some high-level idea that the common construct of C

what is the equivalent things in hardware.

(Refer to Slide Time: 30:31)



So, the first thing is the function. So, you just know that the function gets mapped to the

module. I mean I am expecting that you have some familiarity with the Verilog or VHDL or

HDL language if not please go through that otherwise you might face a little bit of struggle in

the latter part of the course.

So, the function gets to the module in hardware, the hardware is the module is a kind of a

component where you can perform specific tasks right. The argument of the function

becomes the IO port for the module, and operations map to the functional unit that we have

already discussed.

Scalar or the variables gets mapped to the wire or registers we will identify we will talk about

which is wire and which is register, the arrays mapped into memories RAM and ROM and

control flow is the control logic of the FSM ok this is the general mapping.

(Refer to Slide Time: 31:23)

So, I will just talk about them briefly before concluding today’s class. So, as a function. So,

function becomes a module right. So, you have the top-level function. So, the top-level

function becomes the top module. So, this is the module that is the RTL I am going to

generate, and whatever the input of this top-level function those will become the port of this

right.

So, suppose this top has input say x and y and it is producing out. So, it will create x and y as

input and it will produce out as the output. So, it will create two input ports for x and y and



one output port for y ok. Most importantly it actually generates the synchronization signal ok.

So, it is an x valid and this is y valid right.

So, you have whenever this value you give valid equal to 1, then only whatever the data you

are giving it is a valid data and I mean this RTL will take that right this will be useful for

synchronization because if once you create this module and if you want to integrate into a

bigger S o C, you need the synchronization.

When this data is the valid data is coming and when this particular module is creating a valid

output also because it may not give you always correct input right. So, if the latency of the

circuit is say 4. So, every fourth cycle is going to give you a correct value right. So, this

something has to the synchronization things has already maintained ok.

So, whenever there is a function, it creates a module. So, for example, in the top if you have a

function called A and B, it will create a module A which will implement this function A, it

will create another module it will implement B and then this function will be invoked by

instantiation of the module in the top-level right.

See in the top-level I am going to instantiate this module A and module B and I am going to

connect with the proper control signals so, that control signals and the value so, that operation

A actually can perform the desired operations ok and it can actually maintain the hierarchy

also right.

So, if this B again calls a function C, it will create a module and it will be instantiated within

module B. So, in general, it will create hierarchical RTL modules. So, which will maintain

the hierarchy structure of the original C code ok, but if sometimes the function is very small

and it might be in line also ok. So, just to so, it might get inlined in between ok.



(Refer Slide Time: 33:44)

So, as I mentioned that the function arguments. So, the function argument becomes the port.

So, here is the example that in 1 and in 2 become the port and out is the output port, but it

also has the valid signal so, that this whole process can be integrated into a bigger system

right.

So, this particular valid signal is automatically generated by a high-level synthesis tool and

just to give you the idea that if this particular take is taking say 4 cycles as I mentioned earlier

also. So, it is not that you can give input in every clock right so, it will take input in every 4

clocks.

So, you have to so, whenever or it will wait for the valid signal whenever the valid signal on,

then only it is going to take it and now if the valid is coming less than 4 cycles, it will ignore

that input because it cannot take in the input once it is taken in next 4 cycles right.

So, this is what is the idea and whenever it produces a correct, I mean valid output it will just

say this is the output is valid and you can integrate it into a bigger system which may have

some different module that might take this as an input and say there may be some another

module which might produce these inputs right.

So, this will actually be combined or you can actually integrate together so, that it will work

perfectly right. So, that is what this argument becomes and usually, a high-level synthesis tool

generates all these valid ports as well ok for each input.



(Refer Slide Time: 35:07)

And the expression I have already explained that it will become it will map to this function

units and usually the expression gets split into 3 address form, that I have already discussed

and then it gets scheduled right. So, it is not that the whole expression is going to execute in

one clock based on the target clock period and you might try to execute this in multiple

cycles that I had already I have discussed.

So, here is the example that you have. So, this is the first clock this is my clock 1, this is my

clock 2 and this is clock 3. So, this operation is going to execute in 3 clocks and the

intermediate data will be stored in registers ok.

This is a pipeline implementation, but you can have different implementations for that ok. So,

the expressions get into the function unit and how much time it will take to execute an

expression depends on the target clocks and the resource availability ok.



(Refer Slide Time: 36:00)

An array is mapped into RAM and ROM if it is a read-write array it will map to RAM if it is

a constant array; that means, only a read-only array is going to map to ROM ok. So, basically,

this array maps to RAM, and the interesting is that that index becomes the address for this

right for the RAM.

And one important thing to be noted in the hardware is that this array now once you map this

into RAM has different other signals right. So, it has that this address in which address you

are going to access, it is has some read enable signal whether you want to access this RAM or

not and this is a write enable.

So, whenever you want to write something you have to give this write enable equal to 1 and

you have to give this corresponding address and the value which 1 to write, and then the data

will be (Refer Time: 36:50) get into RAM. And similarly, once you read something you give

the address, you give the C equal to 1 write enable equal to 0 and the corresponding value

will come into A out ok.

So, this is how this access is going to happen, but in the hardware, this RAM is not exactly

like added. So, you can access any content at any time rather in the hardware this RAM will

be accessed using ports right either it will be a single port or dual port. So, that creates a lot of

bottlenecks and I will post a significant portion of this course time to talk about that that it is

not that if you have to say 10 access to an array in an expression, you can do all this 10 access

in the same clock because that does not support in hardware.



So, you have to come up with some strategies so, that you can actually perform that

operation. So, either you do it in multiple clocks or you rewrite your code in such a way that

this can be doing ok. So, we will talk about all these things in detail in this course.

(Refer to Slide Time: 37:51)

So, loops you in by default it is a rolled implementation that you have this loop. So, it will

create a one body of the loop and it will get iterated for n times right. So, this is called

iterative implementation or rolled implementation. If one iteration take say 4 cycle and it says

n times loop. So, it is it will take 4 into N clocks to complete that implementation ok.

(Refer Slide Time: 38:12)



So, other than that loop can get unrolled. So, we basically unroll the loop and you remove the

loop and you make it like this and you execute in the hardware or you can actually do a

pipelining.

(Refer to Slide Time: 38:21)

And the pipelining is one of the most important optimizations in a high-level synthesis that

you basically assume that you have an implementation of the loop and then you actually run

different iterations of the loop in parallel right.

So, basically, you add some pipeline stages and then you actually start this iteration 0 here,

and the next time you start iteration 1 and you have pipeline stages in between. So, basically

different parts of the stage of the pipeline perform the operations for different sets of inputs

different iterations right.

This is what the loop pipelining is very important optimization and as a result, you can

actually execute the looping order of n times if the number of iterations of the loop is n ok

which is very interesting and I am going to talk about in detail in the in this course, but in

general, this loop has loop is very important because it takes a lot of time.

So, you have you must have an efficient implementation of the loops in the hardware right.

So, again we are going to discuss this loop things in detail in a subsequent course ok. So, with

this, I conclude today’s class and from next week I am going to talk about the scheduling

problems.



Thank you.


