
C-Based VLSI Design

Dr. Chandan Karfa

Department of Computer Science and Engineering

Indian Institute of Technology, Guwahati

Module - 07

Efficient Synthesis of C Code

Lecture - 24

High-Level Synthesis of Loops

Welcome everyone to my course C based VLSI design. In today's class, we are going to

learn about High Level Synthesis of Loops. So, as you know this high-level synthesis is

an process of converting a C code into equivalent RTL code.

So, in the C code one of the important construct is loop right and the in this class, we will

try to understand how this loop will be effectively mapped into hardware and since loop

is something is iterative and its efficient executions is very important, otherwise it might

has hindered the performance ok.

(Refer Slide Time: 01:19)

So, the loops are actually implemented in the hardware in four different ways. One is the

rolled implementation or the iterative executions and then, partial unrolling, full

complete loop unrolling and loop pipelining. In today’s class, we are going to discuss

about this rolled implementation, partial loop unrolling and full unrolling and in the next

class, we are going to discuss in detail about the loop pipelining ok.

(Refer Slide Time: 01:49)

Before going into the discussion I am going to introduce certain terms which is important

in the context of these loops and their execution. In hardware, the first term is called

Initiation Interval ok. So, the initiation interval says that how number of cycles between

starting of two consecutive iteration right. So, in the loop there are multiple iterations,

right. So, the II the or initiation interval says that how frequent the iteration starts ok.

And Latency is says the number of cycles needed to process one set of inputs. This is a

number of clock cycle. Once you give an input, what are the number of cycles you need

to get the corresponding output ok. So, that is called latency and then the another

important term is called Throughput. Throughput is a there is the number of cycles

between two outputs right. So, you are getting output 1 corresponding to input set 1 and

we are getting output 2 corresponding to input set 2.

So, what is the time difference between these two outputs? Remember this latency may

and this throughput is always not the same because a latency is something say you are

giving some input and it needs a 10 cycles to get an output.

So, the latency of the design is kind of 10 cycle, but your throughput can be 1 because if

you design the circuit as a pipeline mode, then what is going to happen that your

whenever your first output come in the next clock, your second output might come if it is

a optimal pipelining right.

So, your throughput will be 1 although your latency is 10, ok and initiation interval also

not always same as latency because so it depends on how you are going to execute the

design, ok.

(Refer Slide Time: 03:31)

So, let me take two examples to explain these two terms in more detail say you take the

left hand side example where I am actually having a pipeline execution of the loop body,

ok. So, what is happening say suppose that as the example. I have given that you would

say that if you give an input, you need ten cycle to get the output ok to process the input

to obtain the output in a 10 cycles, ok.

So, you are giving the input one here and you are getting your first output here, ok. So,

that is the latency 10. You are giving your input here and you are getting your output

again. It is 10 cycle right. So, distance between the first input to first output, second input

to second output is 10 cycle.

So, the latency of this design is 10 cycle. So, what is the initiation interval? Because you

are giving the inputs in every cycle because its a pipeline executions. So, the initiation

interval or task interval is 1, ok and also you can see the difference between the output 2,

output is also 1 throughput is also 1 for this design. So, this is the pipeline, a execution of

the loop right.

Now, you think about the iterative iteration of the loop. So, you are giving the first input

here and you are getting your first output here and say you need some time to read and

all. So, total latency is 13 cycles ok and after 13 cycle, you are giving the second input

and you are getting the output again. So, again the latency is 13 cycle.

Now what is the Initiation Interval? It is basically 13 because you are giving input here

and then you are giving input after 13 cycle, right. So, here initiation interval is 1, here

initiation interval is also is 13 ok and the throughput is also 13 in this case because you

are getting throughput every 13 cycle right not in every cycle, ok.

(Refer Slide Time: 05:28)

So, let us take an another example say suppose this is the loop body, ok. So, this is the

loop body and this is the schedule you need 3 cycles to execute this, ok and assume these

are all array basically some data which is basically available right. So, now what is the if

you execute in an iterative manner iterative execution. So, what is going to happen? So,

you give one set of data at clock 1 right, clock 1 and your output will come so 1 2 3.

So, after third clock cycle, only your clock 4 you are going to get the first output at the

start of clock if you assume there is a register here, right. So, otherwise you can assume

that it is after third clock is available let us say there is no register, ok. So, that means

here and then after. So, your latency of this design is 3 because there are 3 cycles ok to

process the data and since this design is not pipelined.

So, your initiation interval, that means you have to wait until these things are processed.

You have to wait and then only you can give your next set of input, ok. So, then the IR,

II is also 3 and throughput is also 3 because every third cycle you are going to get the

output. Now suppose I make this design pipeline, right. So, I am adding this pipeline

stages everywhere, then what is going to happen?

So, now I can give input in every cycle because this stage 1 will process one set of data,

this stage 2 will process another set of data and stage 3 will process another set of data,

right. So, for pipeline version we have the initiation interval is also 1 and then latency is

also latency is 3 because for every set of data you need 3 cycle to get the output, but your

throughput will be 1, ok. So, this is how we calculate these values and these are the

important parameters in context of loop execution, ok.

(Refer Slide Time: 07:38)

Now, let us move to the first version of the loop which is called Rolled Implementation

or Iterative Implementation. So, this is the by default executions for loop. So, loop is

basically have iterations, right. So, its running for say n iterations and 1 iteration, there

may be some 10 operations, right.

And now you based on your resource availability, you have to you can schedule that

particular loop body and let us say that scheduling that loop body 1 iterations of the loop

take k cycle. So, that means you give one set of input, you run k cycle. One iteration is

over, then you run the next cycle and so on. So, the overall time it will take is n into k,

right.

So, the overall time will be taken in this way is basically n into k and it is the most

simplest version of the loop, right. So, you have you the schedule the loop body

whatever the say it takes a 3 cycle to execute and then, you just loop it for n times right.

So, if n if i less than n you do this and otherwise I less not n, then you go to the other part

right.

So, this is how the controller FSM will be generated and it will keep executing the loop

for n into k minus cycles and the rest of the things, we will wait until the loop complete

its execution right because this is how I am going to execute the loop, ok. So, this is how

this is what the basic or the default implementation of the loop.

(Refer Slide Time: 09:07)

Let us take example to understand better say I have this loop given where I am doing

some accumulations of this din and since this din is the small array. I am assuming this is

flattened, ok. These are actually put into registers ok. Now what I am going to do? So,

basically in every iteration what is happening?

So, acc equal to acc plus d in i, right. So, I need one of addition operation and that this is

operation. So, the scheduling we will take only 1 cycle right since I am assuming this

array is splitted into registers. So, this particular for this adder one input will be the

accumulator, right. So, this accumulator is coming here like this. So, I have just put 0 and

otherwise because the accumulator initially should contain 0.

And whenever the initially I can reset this accumulator with 0, so I just a choose a

multiplexer to reset this. So, this is your basically accumulator and the other input is

basically din and now, you have to choose this among din 1 to din 4. So, you need a

mux, right.

So, that will choose the appropriate value from din 1 to din 4 and then, this will send it

here. So, this is my din i basically, right and this is calculation will be done and it will

put into the accumulator right and we have a counter i which is basically will count from

0 to 3, right.

So, whenever this i so it will automatically increment from 0 1 2 3. So, whenever it is

basically become 4, it will automatically reset to 0 right. This is how that this counter

will work and that particular counter this counter this direction should be in the reverse.

So, this will be the selection of this data right because if it is i equal to 0, I am going to,

so if it is 1, I am going to select this and so on right. So, this is how I can select the data

based on this i value and also this i less than 4 will be the write enable for this

accumulator register accumulator is a register.

So, till the time it is less than 4, I am going to write after that I am going to stop. So, this

is how I am going to execute the behavior in the hardware, ok. And you can understand

that this is basically a single loop operation and this is basically looping here right. So,

for i less than 4 and once it is not, I will go to the rest of the thing right. So, this is how I

can actually store the when execute this and it will need since there are four operations.

So, you need 4 cycle, right. So, you need 4 cycles to execute this. So, this is very simple

and you need minimum resource. The important factor here is that it need minimum

resource because you are taking only one iteration of the loop at a time and you are

actually assigning resource for that right, but it takes lot of time because it is take

maximum possible time to execute the big array, right.

(Refer Slide Time: 12:03)

So, let us take an another example where I can actually do some resource sharing. So, I

will just show the execution of this part. So, since this is the big array and these arrays

are big, so I cannot put them into, I should not split them into register because it will

consume lot of registers right.

So, I have now 4 arrays array a b c and d right. So, I should have that counter. So, I am

writing some abstract design. So, this counter will decide the address, right. So, this is

the address right. So, this is address basically.

So, if I give this i, so it will just select a i right and there should be some write enable.

So, I can actually just check whether i less than n or not. So, that will be my this enable

signal. So, this is read enable right. So, this would be, so I am going to say that this is

basically a negation of this data.

So, I will say that this is a read you just read from this data and then, I will get this a i b i

c i and d i here, right. So, this is how I should access this. I am assuming this arrays are

mapped to block ram ok. So, now I have all this data and it will need 1 cycle right

because these are all 4 parallel ram. So, this is one, this you need 1 cycle right and then I

want to schedule this. So, this scheduling can be you can actually draw different kind of

thing right.

So, basically it can be like this right. So, you are doing say acc a, then b, then c, then d

right. So then if you try to do this, you need basically 4 cycle right. So, you need 4 cycle,

but you can actually do these things using a single adder because it is a single addition

operation and you can actually mux multiplex the input, right. So, let me try to do that

only. So although there are 4 operations, I can actually execute in a single resource. So,

let us say I have one adder.

So, what is the input? So, I have the left input is basically is that accumulator. So,

whatever the accumulator so basically here this is accumulator i, right. So, I am updating

the accumulator i, but what I can do is I can store this register in a temp register, right.

So, I am going to store this register in a temp register right. So, this is my temp register

and then I have a mux which will select between this accumulator or this temp, right, so

or actually I do not need this accumulator here.

So, I can actually just select this temp because initially this temp value ok I also need the

let us put it like this. So, this is a abstract design do not get much. So, there may be some

minor bug, but it is ok the basic idea I am just try to convey. So, this is what is the mux,

right. So, this is again controlled by this i right. So, this i sorry this is ok. This is

basically not I you should have a timer for this scheduler, right.

So, there is a scheduler time. So, there is s which is basically there is a counter s which is

learning from 1 to 4 because there are 4 cycle, right. So, that will be control by this

schedule time ok. So, then what is happening here?

(Refer Slide Time: 15:50)

So, and this I can also have some way you can control whether you take the acc i or t,

right. So, what is happening in the first clock, you read all those things. So, the read will

be done in say first clock. In the next clock, you are actually performing this acc plus a i

right.

So, this mux will select acc i and this will select a i and that summation. This result will

be stored in this t right and then in the next clock, this s will decide and this basically this

counter would not increase until. So, this is counter is basically s into i into s, right. So,

this is not basically n into s and you can actually do a mod here, right.

So, s mod here mod s because this I will increase once one execution is over. So, the so

basically you can assume this counter is n into s and this I will be this is my i which is

can be obtained by just do a mod s, right.

So, after every 4 cycle, you increase i right. This is how I am trying to mean this. So,

next I will increase this s and then now it will select this t here and this b i here and then,

it will do this operation and store this result into t again, right.

And then again in the next clock this t will be come here and c i will come here and it

will do this operation and you can do this and then, last cycle you can do this and it will

come here in the next cycle. Somehow you can actually use this s to put a enable here.

I mean some version of some version of this, so that you write this data into acc I. This is

the final value right or this is actually I am sorry this is actually out i right and your acc i

is something another input basically sorry.

(Refer Slide Time: 17:55)

.

So, this is actually out i because this is the output and say acc i is another array which

will store like this and then this will store in out i only, right. So, this is contain all zeros

basically. So, this is an very abstract level design. So, this counter control things. We

have to accurately design, but the overall idea of this counter control thing is that I will

increase only to i plus 1 once this one iteration is over, right.

S is done and then, I can actually take i 2 and again I will allow it for 4 cycles, but the

important factor is that although there are so many operations and i since I try to do this

in say 4 cycle, these operations I can actually execute these things using a single adder,

right. So, the basically the objective abstract of this discussion is to emphasize that even

if there are many operations and if I do a rolled implementation my resource requirement

is minimum, ok.

You can also take this diagram and actually try to draw this version of this dependency

right. So, you can actually do this right. So, this is basically a i b i c i and d i right. So,

you do these things over here and then basically you do this addition here. So, then this is

done and then you actually add with acc right. So, then you just do add with acc. So, then

in this version you need 3 cycle instead of 4 cycles.

So, this is what is called tree height reduction. I reduce the height of the tree. So, since

here there are two parallel operations, I need at least two adder right. For this design I

need only one adder, but here I need two adders because there are two operations

running in parallel. So, based on your dependency or you can actually modify the

dependency based on your resource availability and actually you can improve the

performance.

So, this will take you can understand if it is a 4 cycle 4 into n cycle, it is 3 into n cycle

right and if you have two function which is available, why not doing this right. So, this is

the idea.

(Refer Slide Time: 20:09)

So, the key takeaway from this discussion is this loop rolled. Implementation of the loop

is the basic way of implementing things. It takes maximum number of iterations, but it

takes the minimum resource ok and based on your resource available, you can actually

modify the dependency to improve the time requirement per iteration.

So, I just modify these to this to reduce the time from 4 to 3, right. So, that was the idea I

will now move to the other extreme, right. So, this is the rolled implementation and I am

going to talk about the full unroll implementation, right.

So, that means in the full unrolled version there is a no loop. I am just removing the loop

and I am writing the all-iteration operations of all iteration together and I will just

completely remove the loop, right. So, then what will happen, it is basically become a

basic block right. It is a series of sequence of operations which is something is there. So,

that is what is the another extreme end.

So, you can understand here that in practice if there is no dependency between 2

iteration, this the iteration i and iteration i plus operations are in parallel right. So, if I

assume that one iteration take 1 cycle. So, I can actually execute the complete loop body

in single cycle right.

So, the earlier time it was n cycle. If I assume each iteration, take 1 cycle then it is n

cycle, but here it is 1 cycle. So, it is a complete extreme end, but there I need only say 1

unit of resource here, you need a any unit of resource because this all n iterations are

running in parallel ok.

So, this is the another exchange. So, usually you can actually do, you unroll yourself or

you can use the pragma HLS UNROLL of Vivado just to do that you just mention this

within the loop it will completely unroll the loop.

So, the point here is that if you is since you are completely unrolling, so it is actually

improved the parallelization because if the loop iteration there is no inter loop

dependencies. The whole loop is basically running in parallel right.

So, if your you have this resource allow, then all operation can be done perform in

parallel right. All iterations can be done in parallel and in best case, it can actually

complete the whole loop in single cycle. If I assume that there is an operation chaining

allowed and one iteration take 1 cycle to execute, ok.

(Refer Slide Time: 22:29)

So, let me take examples. So, suppose you have this loop and one important point here is

that for unknown you need to know the it should be static, right. So, unless you know

this is fixed value I cannot unroll the loop, right. So, that is the requirement and then now

you assume say there is this loop, right. So, now I suppose this is 4, right and.

So, then in the 4 iterations so if I unroll the loop, content will look like there is a no loop.

The code will look like this a 0 equal to b 0 plus c 0 a 1 equal to b 1 plus c 1 a 2 equal to

b 2 plus c 2 and a 3 equal to b 3 plus d 3, right. So, there is no loop. I have this and since

there is no dependency between this, so I can actually add I have say 4 adder operator

and I can actually do this.

So, this is a 0 b 0, I am just writing in short, a 1 b 1 this is a 2 b 2, this is a 3 b 3 and you

will get sorry this is, sorry this will be this should be b and c right. So, this is b 0 c 0 b 1

c 1 b 2 c 2 b 3 c 3 and this is a 0 a 1 a 2 a 3, right. So, this is what we can just do and you

can actually understand that I can actually do the things in single cycle, ok but your

resource requirement is 4, right.

So, if you try to execute this in an iterative manner, you need only one basically adder

and you need basically a mux which will basically or basically you have a ram, you

basically give I you will get b i and you have a ram which is storing say c and this is b,

you give the address, you get c i right and you just add it and this will be stored in a and

you give the address i, right.

So, this is the execution. So, this will take n cycle. So, n say 4, so I will say you just take

4 cycle, but 1 adder right. So, the 1 adder here it is 1 cycle 4 adder, right. So, this 1 cycle

is the extreme end because I am assuming that there is no dependency between the inter

iterations.

But if there is a dependency between iterations, so you may not able to execute

everything in single cycle and that is a next example highlight that, but try to understand

that this although I get the maximum timing benefit by my resource requirement also

increase in the same factor, right.

So, the performance increment in terms of timing or latency is same, as the same factor

of resource requirement ok. So, that is something obvious because you want to execute

in parallel.

(Refer Slide Time: 25:51)

So, now I take the second example or the first example that I have taken earlier that you

just do this accumulator d in and if you unroll here, you will get this right. So, basically

there is a no loop, right. So, you just have there is no loop. It become a straight line of

code, but here you can see that this iteration that because it is accumulator equal to

accumulator plus d in.

So, whatever I am calculating accumulator in i 0 i 1 will depend on that, right. So, it is

basically you can see here this accumulator is getting used here, this accumulator is

getting used here, this accumulator getting use here right. So, as a result so there is a

inter iteration dependencies. So, I cannot execute this if you want to execute. So, the

dependency looks like this right.

(Refer Slide Time: 26:32)

So, you have this, but this is your accumulator. So, there is a dependencies. So, in

general I have to schedule in 4 cycle right because if I assume there is that operation

chaining is not allowed, then you have to execute in 4 cycle. So, your although you

unroll, you do not get any benefit in this case right. So, apparently and you can actually

still execute this using 1 adder because you can actually multiplex this inputs time

division multiplexing of the inputs of this adder, ok.

So, that is one a possibility, but usually once you have these, you can actually rewrite

this dependency into this right. So now you can see here instead of 4 cycle, I can execute

the things in another there is a mistake here. So, the acc will come here in 3 cycle right.

So, it was 4 cycle, this is 3 cycles. So, after doing this although there is a loop carried

dependencies after unrolling, I can actually restructure this dependency graph to improve

the performance as well right. So, if the basic idea is that if there is a loop carried

dependency unroll does not help much right.

So, that is the basic take away from this discussion right, but if the loop is small and the

loop there is no dependency among the operations or the iterations operation into the

even iterations, so then this unrolling give you the maximum benefit, but as I shown in

this example that if there is a loop carried dependency unrolling may not be that much

helpful, ok. So, I will move to the middle path what is called partial unrolling, ok.

(Refer Slide Time: 28:12)

So, the partial unrolling basically is a tradeoff between iterative execution versus

complete unrolling, right. So, we have seen that the iterative execution is used minimum

resource, maximum time. Complete unrolling take minimum time, maximum resource

right. It is a complete end. So, can I make a tradeoff between this? So, what is the trade

off? It is the partial unrolling. So, instead of complete unrolling, you do the partial unroll

so by a factor right.

So, you mention that if my loop is a running for 64 iterations, I make it factor 8. So, now

my loop will iterate for 8 iterations and consecutive 8 iterations operation will be

executing 1 iteration, ok. That is the basic idea. So, it is decided by the unroll factor. So,

you can give your unroll factor based on your requirement ok.

(Refer Slide Time: 29:03)

So, let me take the same example the accumulator example. So, I have 4 iterations I just

say [FL] unroll factor is 2, right. So, what I am doing is basically I want to do 2 iterations

into 1 iteration, right. So, what I can do is basically I am doing this.

So, accumulator is equal to d in accumulator d in i plus 1 and I am incrementing i equal

to i plus 1. Here it is i plus plus right. So, now this loop will iterate 2 times because I

reduced the number of iteration of the loop by a factor of 2. As a result, I unroll the loop

by the unroll factor, ok.

(Refer Slide Time: 29:38)

So, this is how unrolling works and it you can understand that this is basically middle

path and based on your resource available, you decide the unroll factor. If you have lot of

resource available, you give a better the higher factor, then the number of iteration that

will be running in parallel will be more, but if you have less resource, then you give the

unroll factor less, ok. So, that the number of operations to be running in parallel will be

less and you can utilize your resource right.

So, if you just take the same example that accumulator, now I have two operations. So,

this is the first operation where I am doing this acc plus d in and this is that output and

this is my din din i plus 1 and this is din i. So, then the result is going there, right. So, I

am now selecting you can understand here that here in these operations acc equal to acc

plus din 0, right and here then I am doing acc equal to acc plus din 1, this is my i equal to

0 and i equal to 0, then my i will be 2, right.

So, when i equal to 2 what I am doing acc equal to acc plus d in 2 and then acc equal to

acc plus d in 3, right and I am done. So, for this input what I am going to select? I am

going to select between this and this because these are the things is going to added here

right. So, this is i that is why I am selecting d in 0 and d in 2, right and here for this

second output this i plus 1, i plus 1 is 1 and 3, right.

So, this is my 0. So, i d i. So, i plus 1 is basically d 1 and d 3. So, this is why this mux is

selecting between 1 and 3 and this is my i plus 1, ok. So, this is what try to. So, how you

should multiplex the this arrays and I am assuming this array is basically mapped to

registers, ok. They are all available in parallel ok.

You can understand this partial unroll; it depends on your resource availability. You

should decide your unroll factor and it will improve the performance, ok without much

increment of the resource requirement ok.

(Refer Slide Time: 31:51)

So, if you take the same example of this and if you just make a factor equal to 2, you can

understand that and then the rewritten code will be like this i equal to 0 i less than N,

then i equal to i plus 2, right and then here I am going to do a i equal to b i plus c i and

then, a i plus 1 equal to b i plus 1 plus c i plus 1, right. So, this is what the unroll factor

equal to 2, right

So, if you just write here pragma in this code if you just write pragma unroll 2 factor, 2

sorry this factor equal to 2 unroll factor 2, so it will automatically be converted internally

like this or you can write yourself, ok. So, both it is fine and I am not drawing the

diagram, but you can understand that you can use two operations to do these two things,

right.

So, this is a i, sorry this is b i, this is c i, this is b i plus 1, this is c i plus 1 and this result

is actually going to the a array. So, there are two data basically. So, this you write into i,

this you write into i plus 1. So, this is how I should execute this and you can understand

that my rolled implementation will take one complete unroll will take say if n equal to 4,

it is 4 adder and my partial unroll is taking 2. It is basically completely the middle one,

ok.

So, that is what. So, one important point to be noted here is that with this unrolling, the

access of array it is getting increased. So, right so you can see here that earlier in this

here every clock I am going to access one time a 1-time b 1 time c, right. So, now if this

a b and c are mapped to say blocked ram and then if I assume that this if I just doing the

factor by 2, I can see now actually in every iteration I am accessing two value of a 2

value of b 2 value of c right.

So, if that particular block ram is single port, then this will create a bottleneck because

you cannot access two. So, this benefit you will not get, right. So, you have to still do it

in a sequence. So, if that particular block ram is dual port, it is not a problem because

you can actually access two data right, but if the unroll factor is 8 10 or so on right in that

case your dual port or single port does not help.

So, how I can improve that? How can I make sure that even if I partially unroll and I am

accessing more than two data of a particular array I can actually achieve my required

performance by doing the partitioning of the array ok? So, I will take a concrete example

and I will show you how to do that, ok.

So, even if you take this example. So, since suppose there is a single port array ok, there

are two accesses and you can as see that what is that data is you are getting accessed here

a 0 2 4 6 and so on, right and here I am going to access 1 3 5 7 and so on.

So, what I can do? I can actually split the array a into two arrays, right array a to a 1 and

a 2. Here I am going to put the data of 0 2 4 6 and those things and here 1 3 5 7 and those

index data. So, now there are two arrays. These two arrays can be have to two different

block ram and I can actually access those data because these are two different array.

So, based on the access pattern I have to decide how to partition the array into multiple

arrays. So, the key takeaway or the key summary that I want to make from this slide is

that just doing blindly unrolling, partial unrolling may not help because your array

increment because loops are always come with arrays and since the array access is

increasing. So, if you assume that I am just doing unrolling, I will give get the desired

performance improvement. It will be bottlenecked by the array accesses.

So, always once we apply this unroll, partial unroll you have to make sure that you

partition the array based on their access pattern, right. So, the example that I tried to

show here and if you just partition the array into that way, then only your improvement

required performance benefit would be obtained otherwise you won't get that, ok.

(Refer Slide Time: 36:49)

So, I take a another good example say suppose I have this code, right. So, this code you

can see here, there are two-factor what is channel and one is samples, right and the total

number of iteration is basically channel into samples and what is happening here you see

carefully.

So, basically what I am doing here for every i i just get the reminder value which is mods

channel, right. So, the reminder value will be 0 1 to 7 one of the values right and then,

what I am doing corresponding that accumulator I am updating the adding the value din,

ok.

So, what you going to happen here so effectively and then that value I am going to return

out to v out. So, basically there are 8 channels, right. So, 8 channels and the

corresponding data. So, whenever some i comes and I am going to put that 0 8 16 24,

these data’s their corresponding d in value, I am going to put into that acc is 0. In the

channel 0, this is my channel 0 right.

Similarly, 1 9 17 25, this index values I am going to add, I am going to put into channel

1, right. This is my acc 1. You can understand this way I have the 8 channel which is acc

7 which will store 7, then 15 23 31 and so on those corresponding inputs, ok. So, this is

how this code is working ok. So, you can understand here that there is a good chance

because this acc there are 8 channel, right.

So, there is a good chance that I can actually do a unroll of this loop by a unroll factor of

8 because these channels, so that I can actually parallelize this operation. This is my 1

iterations of 1 channel. So, basically 1 channel content right. So, then this set of data will

go into the channel, right.

So, the same channel. So, what I can do, I can parallelize this. So, I can actually put a

unroll factor 8, so that the iteration 1 to 7 will execute in one time in 1 iteration. 8 to 15

will be executed in the next iteration, 6 to 23 will be executed in next iteration and so on,

ok. So, this is what I can do. So, I am going to do that.

(Refer Slide Time: 39:12)

So, I am going to do that that I am going to put a unroll factor equal to 8 into this code,

right. So, if you just do that, the tool automatically will rewrite this code into that way,

right. So, basically you can understand that there will be 8 copy of this code and this i i

plus 1, i plus 2, i plus 3, i plus 4 to i plus 7 will be used here right.

So, I am not writing that, but I hope you understand the corresponding loop body, ok but

with this what is the problem what the bottleneck I am getting here, you can see here that

now since I am going to execute this 8 copy of the body in same, so that d will be

accessed d in will be accessed 8 times now and d out is also going to be used 8 times

now. Earlier it was only one. So, now whatever the way you map into d in into 1 block

ram, you cannot access all 8 data right.

So, you although we try to execute this one, one complete channel of execution in 1

iteration, you cannot achieve it because of this array access problem, right. So, now I

have to split the array and you can understand how you should split into the array. I can

split the array into 8 copies right and such that this data I am going to put of d in into

array one this data. That means, index 0 8 16 24 and so on 32 and so on.

This I am going to put in the array 1, din 1 din 9 din 17 din 15 din 33. This I am going to

put say array 2 or d in 2 and so on. So, I am going to split this array or partition, the array

into 8 arrays and partitioning is also very important. It is a cyclic manner right. So, I am

going to partition the array such that 0 goes to partition 1, 1 goes to partition 2, 2 goes to

partition 3 and so on right.

So, this is how I am going to cyclic way I am going to partition. You cannot just partition

blindly, then also it would not work. You have to be see the access pattern and you have

to make sure that the iteration that are now I am going to running in parallel. The

corresponding data must be in the different different arrays. They cannot be in the same

array, then their performance improvement won't be achieved ok.

So, if I just do that, so that is what can be done by this pragma that you partition the

array d in by a factor 8 and you partition the dimension one, right. So, dimension one

means it is only one dimension. So, you can actually do that. So, basically this way it

will actually partition this way and you can this is actually important is the cyclic. If you

just write the cyclic, it will actually do that that. 0 will be proved in partition 1, 1 to

partition 2 and so on right.

So, this is what I try to emphasize that your unroll factor allow each channel to process

in parallel that 8 channel every 8 sample if only if the input and output array are also

partitioned into cyclic manner to allow the multiple access per clock cycle. So, whatever

I just explained, the same thing has to be done for d out as well because d out is also

going to access 8 times in 1 iteration.

So, if you just do both unroll and partition cyclic partition, then only you can actually run

the 8 iterations of this loop in 1 cycle right and you can actually achieve the desired

performance benefit, ok.

(Refer Slide Time: 42:40)

So, one more important small important factor that sometime suppose I want to put a

unroll factor which is not exactly divisible of this value. So, suppose this is my say 15

and I just put a unroll factor equal to 2. So, that means it is not that I am able to partition

these particular iterations into evenly, right.

So, because is 15 is not divisible by 2 so, but that is actually not a problem because you

can actually write this way that you because I want to put a unroll factor two. So, I just

put i i i equal to b i plus c i and i. If I just put a line if i plus is greater than you just break

here, otherwise you do this and it is i plus 2, right.

So, what is happening is when i equal to 0 a 0 equal to b 0 plus c 0 going to happen a 1

plus b 1 plus c 1 going to happen. When is i equal to 2 a 2 plus b 2 plus c 2 is going to

happen and this a 3 plus b 3 plus c 3 is going to happen, but when i equal to is 15, so the

only a 15 plus b 15 plus c 15 is going to happen, but this line won't be executed because I

am going to break it out from there, ok.

So, basically the takeaway from this particular slide is so if you just put a unroll factor,

you should not bother about whether it is a exact divisible or not because even if it is not,

tool will make sure that it would not execute unnecessary things, ok. It will stop

unnecessary thing but it is a additional check.

So, you try to factor it such a way that you should not have this kind of code because

whenever you add this code, it will always check. You should have a conditional

checking right which will take some resource and time, but it does not stop you from

factoring the loop, but if you try to do it in manually, this whole chain you have to

physically add this kind of line right.

So, similarly if you just try to do by factor 3 here, so you have to add a line like if i plus

2 is greater than equal to N, then you break right. Otherwise, you do a i plus 2 equal to b

i plus 2 plus c i plus 2, right. So, basically after every operation you have to check

whether the i plus 1 or i plus 2 or i plus 3 is greater than equal to N, then you should

break otherwise you do the next operation, ok.

So, this is how you can actually manually do that or if you do not do that, if you put

unroll factor which is not perfectly multiple of this for the actual number of loop

iteration, it will automatically do this in general but it is not advisable to do that because

it actually take extra condition check in the hardware, ok.

(Refer Slide Time: 45:14)

So, with this I am going to summarize this class. So, I have seen that in this class that

that loop the 3 way of executing the loop. One is the complete unrolling, partially

unrolling or complete rolled implementation right. So, if you take this loop, this diagram

summarize that. So, if you have a complete rolled implementation. So, you in iteration 1,

you will read a b 3 c 3 and then, do the addition operation and then you write a 3. So, this

is your clock 1.

In clock 2, you do read b 2 c 2, do the error multiplication operation and write a 2. So,

this is your clock 2 and then clock 3 and clock 4, right. So, you need 4 clocks and a I am

assuming this. So, basically this is the iterations and you might need multiple clock cycle

to do that, right. So, because your read might take some cycle, I am just saying that this

is the operations and you have to schedule them also, right

But this is how the iterations works right, but if you partially unroll say by 2. So, read of

3 and 2 is going to happen 2 multiplication is going to happen and 2 write to a 3 and a 2

is going to happen in the next iteration reading of b 1 c 1 b 2 c 0 and this two-addition

multiplication corresponding multiplication is going to happen and you are going to

write a 1 and a 0 and you need basically 2 iterations and if you completely unroll,

everything is single cycle right.

So, all 4 reads from b and c, all 4 multiplications and all 4 write to a is going to happen

in single iteration and how many clock cycle is needed for these operations, it depends

on your resource availability right. So, it might 1 cycle or k cycle based on your resource

availability and also, how these arrays get mapped that will. So, right so how this arrays

goes map to block ram, also it also is a deciding factor because based on this access

pattern you have to see right.

For example, here even if you do this and if you map this block ram into this b and c into

ram, then you cannot access 4, right. You have to wait for 4 cycles which a single port.

Even if you put into register, then you can access all them in parallel right. So, this is

what two factor depends and based on that your schedule time will be determined, ok.

So, with this I conclude this discussion.

In the next class, we are going to see how the loop will be pipelined in the hardware, ok.

Thank you.

