
C-Based VLSI Design
Dr. Chandan Karfa

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Module - 06
C-Based VLSI Design: Allocation, Binding, Data-path and Controller Generation

Lecture - 22
Data-path and Controller Synthesis in High-level Synthesis

Welcome everyone to this course C-Based VLSI Design. In today’s class, we are going

to learn about Data Path and Controller Synthesis in High-level Synthesis. So, let us

again look into this high-level synthesis flow.

(Refer Slide Time: 01:07)

So, if we have already seen that high-level synthesis consists of pre-processing,

scheduling, allocation binding, data path, and controller generation then finally, we will

get the RTL right. So, we have already have discussed about this scheduling and also

allocation binding. So, scheduling assign the operations to time steps.

So, we understand what operation is going to execute in which time step and then,

allocation and binding actually identify the number of registers needed and how these

variables get mapped to registers, how many FU’s needed and how the operations are

getting mapped to FU’s right. So, after this allocation and binding, we already have that

information with us. So, we know how many registers are there and how many FU’s are

there and exactly, how the operations and variables are mapped to them that is also note

to know.

So, the next phase is data path and controller generation. So, in this step so, we have to

make the connection from this register to FUs right because I know this operation is

going to happen in FU and the data should come from registers so, we have to make the

connections from the register to FU’s and also once the operation is done in the FU, that

data has to go back and to be returned to the registers. So, this is what is the inter-

connections and that is what is the data path synthesis.

So, based on this inter-connection requirement, you try to then make the connections

right. So, obviously, wants to try to make the connections, your objective will be to

optimize the inter-connection cost. So, we will come to that point what is the inter-

connection cost and how to optimize it, but the overall idea is that ok.

So, once the connection is also made right so, then the controller generation comes. So,

we already know how many states are needed to execute the behavior. So, we know the

FSM states and the transitions right. So, this is also known. So, what are the states

needed and what is the transitions so, these are all known to me.

So, what is this controller FSM does? Because this data path is going to execute this

behavior now and this data path inter-connections are basically time-division

multiplexed. So, we have to make sure that in every clock so, suppose you are in clock 1,

the operation to be executed in operation time step 1 is going to happen in the data path

right. So, that is something you have to make by the controller.

So, based on that, it has to assign some proper control signals to this inter-connection

units and also to the registers (Refer Time: 03:33) right. So, these are the control signals.

You have to assign appropriate the operation that is scheduled in that state right. So,

based on that, this controller will identify how many minimum control signals is needed

and what is the value of those control signals in every time step right so, that is what is

the controller FSM.

So, basically here, it will just identify the value of these control signals and so on right.

So, this is what is the controller synthesis. So, once you get both, your final RTL is ready

right so, this is your final RTL. It consists of a data path and a controller and they

actually do handshaking, this controller generates the control signals for the data path to

perform operations and the data path gives some status signal based on which the step

transition actually happening in the controller FSM ok. So, this is what is the high-level

synthesis flow. In today’s class, we are going to learn about this phase ok.

(Refer Slide Time: 04:34)

So, let us move on. So, as I mentioned in the previous slide that after scheduling, we

know in every time step what operation is going to happen. So, this is my schedule

information, after register allocation and binding we will know how many registers are

needed and what is the mapping of the variable to the registers and after FU allocation

and binding, we know how many FUs we need and what are the operation is going to

map to each FU right. So, this information is it there.

So, now, we can combine this and this and we can get the RTL behavior ok. What I can

do? I can rewrite my schedule behavior which is schedule behavior which I can combine

this allocation and binding information and then, I will get the register transfer level

behavior how, what is there?

So, in every time step so, in the time step 1, there is an operation t1 = u * dx right. So,

how t1 is stored in the hardware? It is R1. So, I can replace this by R1 this u store in R5

so, I can replace this by R5 and dx store in R7 so, I can replace by this R7 and this

operation 1 is actually mapped into V1 is mapped to operation MULT 1(M1.

So, I can replace this multiplier with (M1) right. So, this is my register transfer level

behavior. So, this is why I can replace all the operations by the corresponding registers

and the FUs and I will get this behavior right. So, this is what is called RTL behavior.

So, here, it is of transfer of register values that behavior is represented using the transfer

or register values, that is why it is the RTL behavior.

So, here, it is just given as the operations, but you have to realize this RTL behavior

using a data path and that is what you are going to get in this data path synthesis

diagram. So, if you want to get a data path that way we are going to realize this RTL

behavior which is written as a text file ok.

(Refer Slide Time: 06:34)

So, now, let us understand what is this data path interconnection synthesis problem. So,

as I mentioned so, we already know that these are the operation that is going to happen in

time step 1 in the register transfer level, and these are the operation that is going to

happen in the operation time step 2 in the register transfer level so on. So, you may; you

might have many states, I am just taking two states for explanation purposes ok.

So, what we can do for each FU, you can identify what are the inputs possible inputs to

this FU in the overall all-time step right. So, if you just think about M1, for M1 the so,

suppose this is your FU M1 which is a multiplier 1 so, in time step 1, R5 will come here

right. So, R5 will come here, and R7 will come here right so, this is in time step 1

(R1=R5 <M1> R7). In time step 2, this is again M1 and R1 will come here right so, this is

R1 will come here in time step 2 and here, it will R2 right (R2=R1 <M1> R2).

So, this how if here I have taken only two states, but if suppose there are 20 states so,

every time step, you can identify the inputs of that FU over all time step right. So, if you

just do this for each FU, we will get such behavior right. So, you will understand these

are the possible values of inputs. So, this may be in time step 1, 2 so, 3, 4, 5, 1, 2, 3, 4, 5

and this is the output right so, 1, 2, 3, 4, 5.

(Refer Slide Time:08:04)

In the previous behavior, what I have not done is basically this will go to multiple places

right. So, this is updating R1 in the time step 1, this is updating in time step 1, and this is

updating R2 in time step 2 right. So, you will and identify all the possible inputs for the

FUs and what are the possible outputs of these FUs and their actual time division

multiplex. It is not that all are coming in the same clock, they will come in different time

step right.

So, this information we can gather from this RTL behavior, and this is what does it been,

I have to make connections from this R1, R2 and this register to the left input of this right

and similarly, I have to make connections from these registers to the right input of this

FU.

I have to make connection from this FU output to those registers such that every clock I

have to give proper control signal so that that particular operation can happen ok. So, the

make the connections, there are two possibilities. So, the possible data path

interconnections are bus-based architecture and mux-based architecture. Let us

understand that.

(Refer Slide Time: 09:26)

So, in the mux-based architecture which is multiplexer-based architecture, see you have

the FU right and you have the set of registers, you know these things right so, this is

given, and I know what are the input should come to a ALU. So, you add a multiplexer

here just to multiplex the input.

So, in the previous example if you take, for this FU right, you put a multiplexer at the left

input. So, you put a multiplexer at each input of the FU right and then, you have R 1, R2,

R1, R5, R4 right and then, you need so, there are four in; five inputs so, you need kind of 3

bits control signal right so, there are 3 bits control signal.

And similarly, here you also put five inputs basically, this is 000, this is 010, this is 011,

this is 100, this is 101 say and similar to this. So, here, you are putting R6, R1, R5, R6 and

R2. So, and again you need a 3-bit control signal. And then in the first clock, you give

000 right and here also, you give 000 right.

So, you give 000 here, here you need to give 000 and similarly, this output is going to

this so, basically, this will go to all this register so, there should be some enable signal to

the registers and there should be a mux at the input of the register because I just talked

about one FU, but it maybe that the input to the register can come from multiple FU. So,

you have to put a multiplexer at the input of the registers also right.

So, that is this mux-based architecture. So, you have this multiplexer at the input of the

FUs, you have multiplexer at the input of the registers, we got the register input can

come from many FUs and to the input of the ALU can also come from many registers

ok. So, this is why you have to put this multiplexer.

And then, you have to give appropriate, you have to assign control signals and you have

to make sure that the operation that has to be executed in that particular control step, you

give that corresponding control signal, then things will happen right. So, for example,

suppose you have this is say R1, let me just complete this diagram. So, R2, R3 sorry this is

R7 and this is R4.

And let us assume there is a mux at the input of this registers right and this is one of the

inputs to this so, since I have only taken one FU so, I am just making one connection,

there may be some other FUs right, for that FU, the other connection will come and also,

there will be some enable signal. It may be that in some state, you do not want to update

one register at all right so, you need some enable signal as well ok.

So, now, suppose you give the answer this is so, this is a single bit and this is 01, 01, 01,

01, this is 01 ok so, just for simplicity I have assumed that. So, now, in the first control

step in cs 1, in time step 1 because I want to put R1 here, R6 here and R1 here so, the

operation is actually R1 = R1 <op> R6 right, this is going to happen.

So, if you put 000 here so, this R1 will come to this place, if you put 000 control signal,

this R6 will come here and since you give a 0 here so, this will basically go to this

register right. So, and for and you have to give the enable equal to 1 other enable is 0

right. So, if you do this, this particular resist person will do R1 = R1 <op> R6 that is the

operation is expected right.

In the time step 1, you should give 010 here, here sorry this will be 001, I mean you

understand that and here, you have to give 0 here and others will be 0 right. So, if you

give that, it will do R1= R2+ R1 so, R2 <op> R1. So, this is how the connections will

happen right.

This is what is a mux-based architecture that you take, you put mux at the inputs of the

registers as well as the FUs and based on the connection requirement, you put the control

signals and during the execution of the controller FSM, you give the assign the proper

control signal so that the expected operation is going to happen in that FUs ok.

The alternative architecture is called bus-based architecture ok. In the bus-based

architecture, we are not making any multiplexers so, so what we are doing? We are

taking a fixed set of buses ok so, we are going to take fix set of buses and the bus we are

going to connect these registers and the FUs based on the connections.

So, basically, we know one bus, if I connect say this r1 and then, there will be a switch

here ok so, so that if the switch is on, then this data, this bus will take and say I have also

connected r6 to this bus1 ok so, that means, if I put this value 0 and this is 1, then r5 value

will come to bus1 right.

If I put this is 0, this is 1, then this r1 value will come to this bus ok. So, you cannot put

more than 1,1 at a time step, then it is a race condition, there are two data coming to the

same bus so, it will be an unstable c-section right. So, at and in a control step, only one

of the inputs can give the data ok.

Similarly, if this r1 needs to transfer to this ALU1 so, I will make a connection from this

bus to this and I will put a switch and say from this bus1, say I want to make a connection

to this an ALU2 also, I will make a connection like this and I will put a switch here and

then, what is going to happen?

So, in say time step 1, the see if I put this 1 also that means, and say this is 1 so, what is

going to happen this r1 will come here and then, from this switch it will come to this. So,

the left input of this FU will be r1. Similarly, since this r2 is also coming to this switch

and this bus so, r2 can come here and this is also connected here. So, suppose I put this

control signal, you control come to this control signal 1 so, then we r2 will come through

this line to this ALU right. So, this way so, that means, R1 <op> R2 is going to happen

right.

And similarly, at the input of the register also need to add some buses and this FU will be

connected to this and there will be switch. So, every connection is basically a switch and

this register also switch and say suppose I want to put this data into say r3 so, what I am

going to do? I am going to put this equal to 1 and this equal to 1 so, that means, this

output of this FU1 will come through this line, it will come here and through this you will

go to r3 right. So, then it is basically R3=R1<op>R2.

So, this is how I can make the connections and I will add the switch in every place and

then, I want to make sure that in every time step, based on the transfer required, the

actual RTL operations I am going to set the bus signal to 1 and as a result, the

corresponding register input will come to the FU and based on the destination address,

based on the (Refer Time: 17:41) register, I am going to make the switch connection

accordingly so that the output of the FU will go to the actual registers right. So, this is

what is the bus-based connections.

Here, obviously, idea is that you use a minimum number of switches because you cannot

add all switches, then it is too much of switches and cost. So, you have to make sure that

you first determine how many minimum buses is needed and for each FU input, what are

the line it should be connected. So, you have to identify the minimum number of buses

and a minimum number of switches for each component, for each register, and what is

the bus needs to be connected. You identify the minimum such occurrences right.

Similarly, for each FU, it has to connected to how many, what is the minimum number of

buses it needs to be connected? Similarly, the output of the FU, it can be connected to

both or it may be connected only one based on the requirement. So, your optimization

objective is to identify the minimum number of buses and minimum number of switches

ok.

So, that is the optimization objective whereas, here, your optimization objective is to

identify the minimum number of muxes, what is the minimum number of muxes needed

that is the optimization objective. We will discuss this in detail in this class. So, we

understand this. So, we have already explained this for these connections, what is this

mux-based connection so, I can actually explain again for this what is the bus-based

connection.

(Refer Slide Time: 19:02)

So, say suppose you have a FU here right so, this is your FU right and your register say

R1, R2, R3, R4, R5, R6 right R7 and suppose so, basically here you know you have to

execute R1 = R1 <op> whatever the FU, suppose this is plus so, it will be R1=R1+ R6

right. So, suppose there are three buses here right so, to make sure, I have to make this R1

connection so, I can make a switch here so that this will come to bus1, and I have to also

make a switch here so that this R1 will come here.

Similarly, R6 unit so, you cannot put into this bus because in the first time step you need

this data so, this R6 must be connected to the other bus and similarly, you need a

connection here as well. So, then if you put 1 and 1 here, 1 and 1 here so, this data R6

will come here.

Suppose there are two buses here as well ok and this FU is connected here and the output

source go to R1 so, what is going to happen? This must be connected to one of the bus

and from there, there will be a connection here and if you put it 1 and 1 here so, then this

so, in this time step, this R1 = R1 + R6 is going to happen.

And in the next time step, the operation is R2 = R2 + R1 right so, that means, here you

need R2 at this input. So, what we can do? From R2, say suppose you make a connection

here, you make a connection here and you make a 1 here and then, this will come here

right so, then in the next step, you put this 0 so that only this R2 will come here and from

R1, you make another connection here and you put it 1 here, 1 here so, this will put come

on here.

So, through this bus, R1 will come here and through the second bus, R2 will come here

and these outputs will go into R2 so, I can put again a switch here which is already there

so, I can put 1 here and 1 here so, then this output now and this is 0 now so, then this

output will come through this right. So, this is how I am going to make the connections.

As I have already explained that here the objective will be to identify what is the

minimum number of buses and how to assign this variable to these buses so that there is

no overlap or contradiction and the use of buses is minimum right. So, that is something

is the objective during bus-based interconnection generation ok.

(Refer Slide Time: 22:01)

So, for this example, I will just try to show you how the mux-based connections happen

very quickly. So, we have already discussed that from this, if I combine this and this; if I

combine this and this, I will get this RTL behavior right that I have already discussed.

(Refer Slide Time: 22:17)

And suppose I have this RTL behavior is with me now, and I have to make the

connections, the mux-based connections so, here this FUs are there, there are 5 FUs and

these are the 11 registers and I have to put basically mux here right so, I have to put mux

here because there are many operations coming here.

And you have to put a mux at the input of the registers right. So, have to put mux here.

So, let us see for operation 1, R5 will come to the FU so, so this R5 will come here so,

this is a fixed line and in the next time step, R1 will come right.

(Refer Slide Time: 23:03)

So, what you have to do is basically there is a mux, you have to put here in the first time

step you need R5 and next time step you need R1 so, this will be a multiplex between R5

and R1. At the right-hand input, it is a multiplex between R7 and R2 so, I am putting R7

here and R2 here. So, this is multiplexing between R7 and R2. At the output, this will go

to R1 and this will go to R2 right. So, they will be connected.

So, now, for this mux, how I will decide? I will see one R1. So, this R1 is coming from

M1 right and in this time step, R1 is coming from M2. So, there will be a mux here and

one of the inputs will be from M1 and another input is from M2 right. So, this is how the

connections will be decided.

For R2, here it is coming from M2 and here it is coming from M1 right. So, again there is

a mux, you have to place at the input of R2 and there will be two lines, one is from M1

and one is from function unit M2 right. So, this is how you have to see for each time step,

what are the possible inputs are coming and based on that, you put a mux here and for

each registers input, you see how many.

So, for every time step, what are the FUs from which the inputs are coming, based on

that you have to put the muxes here and if you do this for all step, you will get some

connection like this. So, here I have just shown for two FUs, you can do all rest of the

things, I am not completing the whole complete discussion.

(Refer Slide Time: 24:30)

But if you just complete this for complete behavior, you will get a connection like this,

since this I got this. So, you can see here that we need a mux where the control signal

will be 1 bit, it is 1 bit, it is 1 bit, but here it is 2 bit, it is 2 bit because there are 4

possible inputs ok.

Here there is no mux needed because this only one variable is coming all the time ok and

similarly, here we need a mux of size two and this is a direct connection we did not need

any mux ok. So, based on this connection requirement, you can identify where this

interconnection and identify the mux sizes ok. So, this is what is all about.

(Refer Slide Time: 25:19)

So, for this bus-based, if you just take the same behavior, I have already explained so,

you have to identify the bus, the minimum number of buses that I have already explained

and also the switches because there are many registers here right so, there are many

registers here, I can connect this register to all switches and I can put switch there, but

then I need if there are say 4 registers and 3 buses, I need 12 switches which is

something may not be needed.

Because this will give you the maximum flexibility I mean any register value can go to

any bus, but you may need may not need that much of flexibility. So, it is basically the

maximum possible interconnections things so, I do not need that. So, probably by

analyzing this behavior, what I understand say probably I do not need this switch, or I do

not need this switch, I do not need this switch say probably right.

So, probably I do not need this switch and then say, I do not need this switch or say this

switch right and so on. So, this is the final connection. Similarly, for FUs, you can

connect this all input to all switches right. So, then, if the number of FU say k number of

for FUs and say n number of buses, it is (k * n *2) right, this is the number of switches

you need. Again, I mean we can show that this number of switches is too much so, you

do not need that right.

So, you can actually remove some of the switches right so, you can remove say some of

the switches right so, you can remove some of the switches. So, suppose you do not need

this switch, you do not need this switch, you do not need this and so on. So, this can be

determined by this RTL behavior right. So, what are the operations going to happen.

(Refer Slide Time: 27:25)

So, see if we try to summarize this data path synthesis, bus-based architecture binding

problem so, your first problem is basically you identify the minimum number of buses

first. What is the minimum number of buses needed to accommodate all this? So, this is

the first requirement.

So, the bus to make the inputs and you need also bus here for the register inputs right.

So, this is the input to the FUs, this is the register input to the registers. So, you identify

the minimum number of buses to accommodate all the data transfer right. So, that is the

problem 1.

And you can actually have another problem that you are given a fixed number of buses

right so, say suppose you somebody tell you that there are 4 buses at the input of the FUs

ok so, you have 4 buses here so, then, your objective could be that for each bus, you try

to put the maximum number of data transfers right.

So, so you have given 4 buses and then so, there are maybe say 100 data transfers so,

where all this 100 cannot be placed here right. So, for example, 50 can be the maximum

placed here. So, you identify what is a maximum number of data transfer can be placed

into these buses based on the requirement ok. So, this is what is the problem here right.

(Refer Slide Time: 28:42)

So, this problem can be formulated again as a ILP formulation. So, I will talk about this

ILP formulation briefly. So, it says, it is basically similar to this port assignment problem

ok. So, the idea here is you basically have these variables right. So, these are the

variables that has to be make transfer right. So, these are the variable, these are the input

to the FU so, I am just talking about the input FUs so, similar thing will come for input to

the registers right.

So, for input to FUs, these are the transfer you have to make, and you have to make sure

that this transfer is possible for a fixed set of say buses right. So, what I can do either

formula formulation is that I can actually identify a variable b i if a particular variable bi

actually map to buses, then it will be 1 other it will be 0 right. So, I can actually assume a

Boolean variable bi if variable bi is actually mapped to bus ok otherwise it will be 0 ok.

And then, what is your objective? So, what I want to do? It is similar to the port binding

problem that I want to identify; I want to identify maximum number of such variables

mapped to a fixed number of bus right. So, I have given a fixed number of bus a, I want

to maximize this value of bi such that maximum of such variable can be already mapped

by to the fixed number of buses ok.

So, I want to maximize my score that bi so, if(bi = 1) that means, that variable is already

minded to this buses so, that means, if this ∑bi is maximum that means, I want to

maximize the mapping of this variable to this fixed number of buses, but there should be

some constraint right.

So, as I mentioned that if you in a particular state only in a time step, one bus can

transfer only one data right. So, the total data transfer requirement of every state must be

less than equal to of this particular fixed number of buses right (bi+bj<=a). So, how can I

find out? So, this Xil say which operation is mapped to which time step.

See if I multiply this {bi *X il =1} if this bus transfer is happening in time step l or not

right.

So, for every time step, the number of variables that get mapped and their transfers

should be less than equal to the total bus requirement right. So, that is what is given by

this constraint right, this is for each time step ok. So, this actually formulates the

problems. So, what it will do? If you give this to the ILP solver, what it will do?

It will give you the total number of variables that can be mapped to this, the fixed set of a

right so, it will just tell that and then, you can actually if you just put that a = 1 so that

what you have to do? It will try to find out all the variable transfers needed that can be

mapped to one bus right.

So, this is how if you just run it for say k iterations, you identify the minimum number of

bus required also right. So, you have you identify the bus 1 for which you identify what

are the variable can be mapped to this bus and then, you remove those transfers, then

again you try to solve the problem for bus 2, you again identify the maximum number of

variable transfer that we can be mapped to those bus 2 and so on right.

If you just keep doing this so, you will identify the k which is the minimum number of

buses needed right. So, that is something you can actually identify the solution to the

problem 1 and for problem 2, what is already the problem ah it shows here ok. So, let me

take the example here.

So, here the variable is z1, z2, z3, z4, z5, z6 and I am actually discussing the mapping of

this to the FU input ok. So, there are and the buses at the FU input right. So, what is

here? So, this z1 and z2 need to transfer to this FU input in time step 2. In time step 2, the

z3 and z4 need to be transferred to this to the FUs, some FU s and this z5 and z6 is needed

in time step 4 ok.

So, that means, if the total number of buses is a, the transfer of this z1 and z2 must be <=

a, transfer of z3 and z4 <= a and transfer of z5 and z6 <= a in time step 4, this is in time

step 3, this is in time step 2. So, for every time step, we will have such constant right.

(Refer Slide Time: 33:27)

And now, if we know this value say 1 right so, a = 1; then we can actually transfer

maximum so, we have only one bus right. So, every time step you can actually transfer

only one data so, then maximum of 3 variable can be transferred. If there are two buses

so, I can actually transfer all of them because you can maximum transfer 6 data and there

are 6 transfers so, I can transfer all 6 variables right. So, this is what this ILP formulation

gives.

So, I can utilize this ILP formulation to identify the minimum number of buses and also

mapping of this transfer from this variable to the buses as well. So, this is one part. So,

which is basically the input or the FUs, the similar problem you have to solve it for the

input of the registers as well because there the problem is that this see whenever you are

writing this z1 at the time step 1, this value z1 need to be transferred to the register z1

right.

So, from the FU output, see if this is say FU1, this is FU2 so, from FU1 to z1, you need to

make connections. So, you have to identify how which bus you will connect the output

of FU1 right. So, this FU1 go to so, this at the register say ok. So, this will go here and

there is fix set of buses. So, you have to make sure that from FU1, you have to make a

connection either to this register or this register, say this bus or this bus. So, that you

have to decide.

Similarly, for z2 because this is say z1, this is say z2 now, so, this is your FU2 ok so, this

FU2, this output also need to go to this z2. So, you have to probably make a switch here

and these two switches here so that this connection can be made right. So, you have to

identify how many buses here are needed to make sure this writing to these registers ok

and similarly, how and how to make the this connects transfer from FU to those buses.

Here, the connections have to make from a FU output to those buses. At the input of FU,

the connection has to be made from the registers to the buses and from the buses to the

FUs ok. I hope you understand the all problem of this bus-based interconnection

synthesis and what is the optimization objective and how we can solve that problem ok.

(Refer Slide Time: 35:53)

So, now, I will move on to the controller synthesis part. In the controller synthesis part

so, basically, by this way, you identify the say let’s say this is a mux-based connection,

you identify the muxes and the exact connections right. So, these are all identified and

the registers everything is identified, the muxes needed at the input of registers,

everything is identified right.

So, what are the control signals is needed? We need a control signal for the enable of the

registers because it is not that all register will be updated in all cycles so, you have to

stop updating the registers by a enable signal. If the enable signal is 1, then in that

particular control step that register will be updated otherwise, it will not be updated right.

So, you need this control signal for this muxes so, you need control signal mux control,

you need some control signal for the ALU because this ALU can do +, - , > all

operations so, you have to tell this ALU which operation to be executed and you need

this, and you need also control signal for this muxes right. So, these are the control

signals you need to do.

And then, if this ALU is doing so, greater than, less than that greater than, less than

value, 1 or 0 has to transfer to this controller right. So, based on this value, the controller

test state transition will happen ok. So, if(c) it will come here, else it will come here

right something like this. So, basically, once this data path is finalized, this is a very

trivial task to identify the number of signals is needed and what is the value of those

signals at each time step ok.

(Refer Slide Time: 37:32)

So, let me try to explain with this example. So, here is the mux-based connection we

have obtained. So, let me understand how many signals is needed. So, first is needed the

FU. So, here, I have only one ALU so, I need 1 bit right so, I need 1 bit so, this is to say

suppose doing plus and minus. So, these are all doing multiplication right so, I do not

need any control signals.

So, I need 1 bit for FU and then, for this I need 1 bit, for this I need 1 bit, for this also I

need 1 bit, for this I need 2 bits, 2 bits, for this also I need 1 bit, 1 bit right. So, what is a

total bit? 1, 2, 3, 4, 5, 9; 9 bits right. So, I need 7 bits here and I just put this is as

different things so, register MUX in 2 bits. So, these are the 2 bits and there are 7 bits

here ok.

If there are 11 registers, for each register I need 11 signals so, I need 11 such bits right.

So, the total number of control signals is needed is 1 +7+11 + 2=21 bits so, total control

signal bits is 21 bits is needed. So, I can just analyze the circuit and I can identify the

total number of control signals needed to make the control the data flow in the data path

ok.

So, then, each time step, you have to identify what is the value of the control signals. Let

say I want to do it for say time step 1 so, in this time step 1, these are the operations

happening right. So, the first bit is a FU so, here say suppose this is say + is happening

here so, I have just put 1 so, plus say 1 means say + ok.

So, I am just putting 1 here and for this, these are the control bit corresponding to this

MUX_in. So, since this is the first operation, all will take the left one right so, all will

take the leftmost bit so, it will be all 0, 0, 0, 0 right so, this is corresponding to 0, 0, 0, 0.

And then, the next eleven bits are basically corresponding to the register enable. So, in

time step 1, what are the operation is getting updating? R1, R2, R3, R4.

So, you have to put enable this four is 1 and rest will be 0, 0, 0, 0 right so, that is what I

am done. So, R1, R2, R3, R4 is 1 and rest of the register enable is 0. So, that mean in the

first control step only R1, R2, R3 and R4 data will be updated, and rest of the register

would not be updated here ok.

And then here, for this muxes so, this is the MUX_in 2 bits so, for the first register, the

output is coming from mux 1 right. So, this is for register R1, it is coming from mux 1 so,

I have to put 0 here so, I am putting 0 here and for this, for R2, it is coming from M2. So,

I have to put 1 here because 0 means FU M1 and 1 means FU M2. So, I just put it 1. So,

that means, in the control step 1, if I give this signal, it will make sure this data path is

going to execute this behavior ok.

So, similarly, in control state 2, I am giving going to give this signal and corresponding

to set of RTL operation is going to happen, I am to do this same thing for all other states

right. This is how the controller will be synthesized ok. So, the summary of this

controller synthesis is you identify the control signal first, you identify the control signal

needed for FUs, you identify the control signals needed for the muxes, you identify the

control signal needed for the register enables, you identify the control signals needed for

the input muxes for the registers ok.

And based on that, you first identify the total control with data width, the control signal

width, and then every time step, based on the operation to be executed in that time in that

particular clock, you identify the value of this control signal and if you do this, you are

done right, if you do this for all state, your whole circuit is ready now right.

(Refer Slide Time: 41:42)

So, if you just complete, this you have a data path which is already synthesized, you have

a controller which is now already synthesized so, you will get this right so, your data

path is this and this is your controller, you know how many states are there from the

scheduling behavior and every time step, what are the control signals is going to you

have to put it here right.

So, based on that and then, this value, this comparator value will come from this

comparator unit and based on that, this particular behavior is going to execute the input

behavior right. So, this is what is going to happen, and this is what is high-level synthesis

does and it basically finally, you have a data path, you have a controller and then if these

two works together, it will execute the exact behavior that we have taken as an input to

the high-level synthesis tool ok. So, this is what about this controller synthesis and this

data path synthesis.

(Refer Slide Time: 42:34)

So, I am going to cover now a little bit on this mux-based interconnection optimization

which we have not discussed so far. So, in the mux-based interconnections, looks like it

is very fixed right. So, if you think here, I have already identified the multiples so, you

cannot change this thing.

Looks like that based on the interconnection requirement, if there are 4 register input

which is coming to one FU, you have to put a mux size of four right, we cannot do

anything, but this there is an optimization possible here so, let us try to understand this.

Say suppose this is the connection requirement we have identified by you, identify the

operation that is going to execute in time step.

For example, here this 1, 2, this thing mentions the time in the time step. So, that means,

in time step 1, I1 should come to this FU. In time step 2, R2 will come to here and so on.

Similarly, for the right input, similarly for this FU right ok. So, you can understand here

and then also this 1, 3 saying that in which time step this data will come to here. So, if I

try to write the operations so, in time step 1, it is happening R2 = I1 + R3 right, for this FU

and for this FU, it is R3= m2 * R5. So, this is in time step 1 right.

So, similarly, I can write for time step 2. So, in time step 2, it is R 2, here it is R1 and the

output is going to R5 so, R5 = R2 + R1 ok and then similarly, here it is R1 = m4 * R4 right

and also, there is assignment here so, basically, R4 = R5. So, this is in time step 2 ok.

So, this is how I understand, this is a schedule behavior and based on this schedule

behavior, I actually identify this mux connection. So, you will tell me that you need a 2-

bit control signal here, 2-bit control signal here, 2-bit control signal here, and 2-bit

control signal. So, my question here can I optimize this circuit further, ok? To do so, let

us understand what can we do here because this looks like already fixed right, let us try

to look into these inputs right.

So, you can see here R2 is already here right and here it is happening R5* R2. So, if you

do R5 * R2 or you do R2 * R5, both are the same right because it is multiplication, but so,

I can bring this R2 here, I can make this swap this connection, I can commute it right, this

is basically commutative and R5 here, both are the same thing right.

So, I can bring R5 here and I can bring R2 here right because this is the same operation.

Because in the time step 4, R5 into R2 is happening whether it is R5 * R2 or R2 * R5, they

are actually the same right. So, but doing this, what is happening here? I can see that this

both R2 here so, I can reduce the one of the inputs because it is still now it becomes R2

only right.

So, similarly, what I can do? I can bring this R3 here and I1 here right. So, then what is

going to happen? By this way actually, there is a possibility that you might bring so, if

you bring R3 here, there are 2 R3 right. So, now, there are 2 R3, there are two R2 so, you

can actually reduce the size to 2 because you know only you need R3 and R2 and what are

the time step you need R3? You need 1 and; 1 and 3, you need R3 and 2 and 4, you need

R4 and your control signal be now will be 1-bit ok.

So, that is what is the mux optimization that you make the connections and then, you

check the commutativity of the operations and based on the commutativity, you can

actually bring the common inputs of a mux in to the same side and as a result, your size

of the mux might reduce ok.

(Refer Slide Time: 47:05)

So, if you just try to do this here so, what I have done here, I just swap this I1, R3, then

this and also, I just remove this which I have already told you this R 5 and R2 right so, I

have just swapped this R5 and R2. As a result, this particular mux has now only two R3

and R2 as the input. Similar things can be done here. So, if you just do this, you can see

here that I can reduce this mux size from 4*1 to 2*1, I reduce this mux size from this to

this, So, this identifying this to this conversion is a homework for you.

So, as a result, you can see earlier, you are needing the control bit 2-bit, 2-bit, 2-bit here,

2-bit here so, total 8-bits, here I need 1-bit, here still I need 2-bits, here I need 2-bits, 1-

bit right so, I need 6-bits.

So, I reduce the control size, controller size as well as mux size because the mux size is

also getting reduced this is as a 2 * 1 mux is a multiplexer, here it is a 4 * 1 multiplexer.

So, both the size of the controller will reduce and also, the size of the data path will also

reduced. So, this is how you can actually do the interconnection optimization in the mux-

based architecture as well ok.

(Refer Slide Time: 48:26)

So, this is the final structure that I just talked about ok and this is the control signals

which I already talked about ok.

(Refer Slide Time: 48:36)

So, before concluding this discussion, I will also bring one more important aspect here

this high-level synthesis to steps is interdependent right. What does it mean? That you

can understand that the kind of allocation binding is going to happen based on the

schedule. So, if you have a defined schedule, the lifetime of the variable will be different

and hence, the register sharing will be different right.

Similarly, if your schedule is different, then the FU conflict will be different right so, and

then and hence, the FU binding will be different. So, the schedule interferes the

allocation binding result. Similarly, in the allocation and binding, there is a multiple

options of binding. So, if you just choose one, the corresponding interconnection will be

one and similarly if the binding you choose is a different binding, your interconnection

will be different ok and the cost of the interconnection is also changed ok.

So, I have taken a very classic example here just to explain how this FU allocation

binding and register allocation binding impact the interconnection cost ok. So, let us take

this is my schedule behavior ok. So, here, the variables are a, b, c, d, e, f, g and h ok,

these are the eight registers ok and what is a lifetime? So, basically if I just draw it so,

there are two-time step right so, you can actually show this a, b, c, d is here, a, b, c, a is

needed here also it because a is needed here as well and d is also needed here right.

So, this is your d and then, e is basically here, e and f is here and g and h here, this is g

and h, this is e and f. So, this is the time requirement and based on the overlapping, I can

share the register. So, what I can do? I can actually map this b, e and g into one register,

it is possible because b, e and g, I just map into one register and then c, e, c, f and h

which is possible because they have non-overlapping right. So, suppose I put this b, g

into register 2, c, f and h into register 3 ok.

And mapping of this operation you can understand that o 1 and o 2 is happening in 1 and

o 3 and o 4. So, I just put o 1 and o 4 into this FU and o 2 and o 3 into this FU so, this is

the binding. So, if you just do this binding and you are actually performing the operation,

you can understand that in the time step 1 right so, time step 1, what are the operation is

happening? E = a + b and then, f = c + d, this is what is happening time step 1 and time

step 2, what is happening? G = a + e and h = f + d right, this is what is happening.

So, to perform these operations, the interconnections will be like this. So, you can

actually do this as homework and identify these interconnections and you can see here

the total mux is needed 6 MUX right, 6 MUX is needed and out of them, this is actually

so, these are all 2-bits mux right so, and the total 6 control signals is needed because all

are single 2 * 1 mux.

So, this is one possible mapping. So, because of this, a register allocation and binding is

not a data path interconnections job, this is during the allocation and binding phase right.

So, if in the allocation and binding phase, the binding happens like this, your

interconnections cost if I just assume by mux and control signal so, you need 6 control

signal, 6 muxes ok.

(Refer Slide Time: 52:41)

And then, say based on this so, this is one; another possible mapping is a, g, b, e, c, f. So,

you can actually do this a with g which is possible, then you do this b and e so, b and e

and then, c and f, this is c this is f which is non-overlapping and then, d and h right so,

this is your d this is your h ok.

So, if you make these connections, these is of valid connections and you can see here if

this mapping of operation is still 1, 4 and 2, 3. So, you do not need the input muxes right

so, you still need the muxes at the input of the FUs. So, how many muxes is needed? 4

mux and 4 control signals. So, your control reduces from 6 to 4 right. So, some

improvement is happening. So, you can understand that same schedule, but different

allocation and binding cost and different interconnection cost ok.

(Refer Slide Time: 53:46)

So, now, let us move on to another form of things. So, suppose you map this a, g here, b

here same whatever you have done in the previous cycle that a, g, b, e, c, f and d, h, the

same mapping I am doing register allocation a, g, b, e, c, f and d, h, but what I am doing

here this o 1 and o 3 I am mapping to one FU and o 2 to o 4 into another FU right. So,

this is the FU allocation binding change now.

And for this, if you can realize this operation here, you do not need any FU so, your

interconnection cost is 0 mux, 0 control signal right. So, basically, one thing is wrong

here so, you have to have a enable. So, this control signal corresponds to the register

enable, I am not considering that is fixed for all things right, there are 4 control signals

for the register, here also you need to have 4 control signals for register which is

something is common. So, I am not considering them right. So, here also, 4 control

signals for rec because you need to enable there.

But, you can understand that from the same schedule because of the different, different

register allocation and binding, my interconnections is actually changing and the cost is

changing. Similarly, if the schedule changes, your allocation on binding will also change

and it can also impact the interconnectional binding.

So, this is something is the interdependence of high-level synthesis, and you cannot

avoid it, this is how the whole thing works ok. So, probably once you do the scheduling,

you try to if you just look ahead that your allocation and how it will impact in the

allocation binding that can be a good future study right. So, you do your scheduling,

make sure that your allocation binding will be smooth right, your complete will be less

something like this, or the way you do the allocation binding, you make sure that your

overall interconnection cost will be less.

So, this can be a good study that you formulate your allocation binding problem to make

sure that overall interconnection cost is minimum right. So, this is how we can actually

formulate the problem, but the way we have discussed it in this course we never thought

about that right. So, that can be a good future direction of research ok.

(Refer Slide Time: 60:00)

So, with this I conclude today’s class. So, in this class, we basically discuss the data path

and controller synthesis, although the conceptually the steps are very simple and it is

kind of very conventional but is a very important step without that, we cannot realize the

actual hardware right and also, we have seen that this interconnection can be bus-based

and mux-based.

For bus-based, your optimization objective is to be using a minimum number of buses as

well as the switch for the interconnections. For mux-based, you try to reduce the mux

size and hence, the controller size ok. And then, once you have this interconnection

ready, your controller will present by a controller FSM. So, in the controller synthesis,

your objective is to identify the minimum number of control signals needed and then,

every time step, what is the value of those control signals right. Once everything is

decided, your RTL is ready and if you just run those things in a using any simulator, it

will exactly simulate the behavior which was given as the c-input ok.

And also, we have also discussed one important point that this high-level synthesis steps

are interdependent, and one decision of the previous step might impact hugely the

synthesis result of the next steps. So, one possibility of high-level synthesis is that you

make a that good allocation ever scheduling or interconnection averaged allocation

binding or this data path ever allocation and binding right. So, that can be a good

research areas. So, with this, I conclude today’s discussion.

Thank you.

