
C-Based VLSI Design
Dr. Chandan Karfa

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Module - 06
C-Based VLSI Design: Allocation, Binding, Data-path and Controller Generation

Lecture - 21
Multi-port Memory Binding

Welcome everyone to this class. In today’s class, we are going to discuss the problem of

Multi-port Memory Binding.

(Refer Slide Time: 00:57)

Just to recap the high-level synthesis steps, so we have already discussed that high-level

synthesis is a process of converting the high-level way we have written n C into RTL,

right. And it consists of several substages like pre-processing, scheduling, allocation

binding, and then data path control generation. So, we are now actually discussing this

allocation and binding, right.

(Refer Slide Time: 01:14)

And in the allocation and binding, we have already seen that there are two problems; one

problem is binding the operation to the function units and binding the variable to the

registers or the storage. And we are actually discussing this problem of mapping this

variable to the storage, ok. And in the previous class, we have seen that mapping this

variable to the register is a problem, which can be solved either by graph coloring

problem of conflict graph or clique partitioning problem of compatibility graph, right.

(Refer Slide Time: 01:43)

So, basically what we have seen is that the objective is if there are variables which we

identify the lifetimes and if two variables whose lifetime is nonoverlapping; they can

share the same register, they can be stored in the same register, right. So, this is what we

have seen. But in today’s class, we try to see this particular problem from a different

angle, right. So, earlier we have seen that the registers are an individual entity in the

hardware; so, they are actually spread over the hardware.

And I am going to map the variables to the register with an objective to use a minimum

number of registers, right. And what we have seen that, if two variable which has non

overlapping access say, do not have any lifetime overlapping, we can put them into same

register. Because, after the last use of the first variable, there is no requirement of the

particular variable in the hardware. So, let us remove that and store the new value into

that, right. So, that is the overall idea.

So, now I have we are going to see that same problem, the register binding problem on a

different angle, right. So, the angle is something where instead of the register spread over

the hardware, usually in a system like these processors, where we have a register bank,

ok. So, bank means basically a sequence of registers stored together, ok.

So, we have register banks, instead of individual registers. And the second problem is

there that, we have a set of registers and they are not going to be accessed individually,

ok. So, what we are going to have? We are going to access through them some port, ok.

(Refer Slide Time: 03:32)

So, if you look into the idea is like this say; so we have a set of register banks. So, this is

my register bank 1, say I have it say 5, 6 registers. There is another bank which is say has

4 registers and I am not going to access this register individually ok, rather I will have a

port here, right. So, this is the read combination port. So, if I just put an address here and

then if I give a data here and I give a right enable here, then the corresponding address

where. suppose this is I have given say register i and this is my register i; so this data

whatever d value and will be stored in this particular location, ok. And similarly, if this

enable signal is 0; that means, I am going to read it. So, this data does not matter here.

So, I am going to access this register and that particular output will come here, right. So,

this is what is the port and similarly, this is the port combination. So, port combination 2,

right. So, now, we what is the problem in the hardware, we have a set of such register

bank ok, and I want to map.

So, the number of ports may be flexible, but usually, it is one or two in the hardware,

right. So, this is my register bank 1, this is my register bank 2, and so on. So, there are

such combinations, so there may be say 10 register banks, each consisting of 10;

registers there say 100 registers available, but it is not that I am going to have them

available individually.

Here the problem is, that I have a set of variables, and I have to map them to registers,

but here their access is restricted by the register bank and their port. So, we have to map

this variable to the register banks, ok. So, that is the problem.

(Refer Slide Time: 05:28)

So, that is what is the memory binding problem, right. So, basically it has multiple port

and it is a memory, right. So, say (Refer Time: 5:34) sequence of register is memory

(Refer Time: 5:36), sorry basically a memory. So, now, we are mapping this registers

sorry this variable, so this is actually a variable.

So, I am mapping these variables to the memory, which has multiple ports right, the

number of ports is also limited. But, what is the problem here? Why the solution that we

have discussed in the previous class that you do a graph coloring or clique covering; why

that particular type of solution would not work here, ok? Let us try to understand.

So, let us take the same example that I have taken earlier. So, this is my schedule graph

right, and I am actually bothered or trying to map this variable z1, z2, z3, z4, z5 and z6

right, these are the six registers I try to map. So, earlier when my registers were actually

spread over the hardware; what we have seen that we actually identify the lifetime, right.

So, while we identify the z1 lifetime is this, z2 lifetime is this, z3 lifetime is this, z4

lifetime is this, and this is the z5 and z6 lifetime, right.

And then what we have seen is that, since this z1 and z2 are overlapping, z3 and z4 are

overlapping, and z5 and z6 is overlapping, this is the conflict graph, right. And the

conflict graph if we try to put the colour; so I can put colour 1 to this combination and I

can put the colour 2 to this combination. So, this is my register 1 or colour 1, this is

colour 2 or register 2 and this is perfect; because this z1, z3 and z5 they are actually

having a non overlapping lifetime. So, the single register can store this, ok.

Now, come back to this multi-bank register bank, right. So, let us just say I have one

register bank, which has said five registers right and it has two ports, ok. Let us have two

port. So, what we have seen that, this z1 and z2 cannot share a single register right; that is

what we have seen, because they are actually accessing the same time step, right. But

now if you think about the register bank; since it has two ports, I can put both z1 and z2

into the same register bank, not into the same register, but in the same register bank,

right.

Why? Because it has two port and in say one this in the time step 2; since I have to

access this z1 and z2 and it has two ports, I will read z1 through this port and z2 through

this port. So, where, so obviously they are not mapped to the same register; you try to

keep in mind that, they are not mapping to the same register, but register bank. And bank

is set of registers, so they will be placed into the different register; but these two

variables can be mapped to the same register bank.

Now, if you assume that I have already mapped this z1 and z2; z3 cannot be mapped to

this. Why? Because in this time step what operation I am doing, z3 = z1 + z2. In this time

step what operation I am doing? I am doing z5 = z3 – in2 is happening say, so forget

about that part. So, then z6 = z4 * in1 something, some input say, right. So, this is input 2;

because input I am not mapping to register, we are only bothered about the temporary.

And here it is happening say out = z5 – z6; this is what is happening in this operation. So,

now what is happening here, z3, z1 and z2 these are the three variables I have going to

access in time step 2.

And since I am assuming that I have a memory bank that has two access ports; so only

two of them can be mapped to the same bank, ok. So, once we say these two registers are

mapped to the same bank; they will store somewhere, that is automatically decided,

right. So, there are a series of registers, we you mean you can just put in some places,

right.

But what is stopping me here is that, here z1 and z3 were mapping to the same register,

because their lifetime was non-overlapping; but here since I have already decided that z1

and z2 go to this register bank, I cannot put z3 here, because then I have to access three

values, right. So, there are two reads and one right, but you have to access that location.

So, at the same time since it has two ports, I cannot access three values; hence I cannot

map both z3, z1 and z2 into the same bank. So, I have to put z3 in this bank. So, let us say

as I have another bank of two ports, right. So, this is how I solved the first step. In the

second step what I am doing is, I have actually z; I am accessing z5, z3, z6 and z4 right,

because there are four access happening.

So, I would let us say I assume that in 1, in 2 is inputs; I am not considering them now.

So, there are four access, right. So, I cannot map all these four values to same registers

right; because then I cannot access them at the same time, ok. So, what I have to do? I

have to take any two and put into one’s bank; say I am just putting say. So, here actually

z 3 and z4, so z3 is already here. So, I cannot just move it to there; because z3 already

decided to be put here and z4 and say let ill let us say I have decided to put z6 here.

So, since z3 and z6 is already put into this memory bank 2, I cannot put z5 or z4 right;

because in this time I have to access all four registers, four values and only two-port are

available. So z3 and z6 here and I can put z5 and z4 here, right. z5 and z4, which is

perfectly fine, because if this bank store z1, z2, z5, z4; but I am only accessing z5 and z4, so

two port will sufficient.

And what is happening in the last step? It is z5 and z6. And since z5 is here and z6 here, it

is actually satisfying the port in common; I have to access only one value from this

memory bank and one value from this register bank, which is supported by two ports, ok.

So, this is how we solved the problem. So, you can actually understand that my memory

bank 1 will store z 1; you can have multiple solutions, I just talked about one possible

solution z2, z5 and z4. And my memory bank 2 will store z3 and z6, this is the solution I

got.

So, you understand that here the problem is not identifying the lifetime, so lifetime

would not help here. So, the way we solved the problem for, the generic raised to

allocation problem, where the registers are access spread over the hardware, that

particular way of identifying the lifetimes.

And then finding the conflict graph and then trying to put colors into the conflict graph

and finding the minimum colour is equivalent to the minimum number of registers is not

the solution; that is not the approach to be taken for this particular problem, right.

So, here what is more important? Identify the access in a end in each step right; what are

the variables are getting access is in time step and based on their access, you make sure

that you map this variable to the registers in such a way that, your access is not getting

violated, right. So, that is the problem here, right. So, if I just define the problem

statement now.

(Refer Slide Time: 13:54)

So, this variable to the multi-port binding problem can be defined as follows; given a

fixed number of ports, maximize the number of variables to be stored in a multi port

memory, such that the port limitation or is not violated, right. So, I want to map

maximum number of variables to a memory, such that their access is getting satisfied by

the number of port available, ok. So, that is what is the problem.

So, now you have many n number of variables right; I want to map those variables to

ports. So, I want to see how many of them can be mapped to memory bank 1, right. And

then once that is solved, I can remove those access; because that is done and then for the

rest of one, I again have to try to the try to solve same problem, how many of them the

variables can be mapped to the memory bank 2 and so on.

So, this is how I am going to, solve the problem, ok. So, now, the question is, I

understand the problem and how do we want to solve it? So, what I am going to do here

is, I am going to give an ILP-based solution, integer linear programming-based solution

for this problem, ok. And you remember the problem formulation that has given is

solving the max.

It will give you the maximum number of variables that can be mapped to a single register

bank. So, as I mentioned, once you get that; you can remove those accesses and you can

actually reformulate the problem and you can actually solve it the same thing again to

find out what is the set of variables can be mapped to register bank 2 and so on.

So, basically, the whole formulation can be run iteratively to identify the total number of

memory banks needed to store all the variables, ok. So, this is what is the approach I am

going to store, I am going to take, right.

So, let us now try to solve the problem. So, what I have told you is that, my objective is

to identify the maximum number of variables that can be mapped to a single memory

bank, which has a fixed number of ports, say ‘a’ number of ports are there, ok. So, let us

try to solve the, I mean formulate the problem. So, I have the Boolean variables b i, which

is basically for each variable, ok.

So, I have a Boolean variable bi, which is basically designate a variable in ‘n’, ok. So, I

have ‘n’ variables, right. Now, what is my objective? I want to, so b i = 1 if that particular

variable vi maps to the memory bank, right. So, I am actually solving for one bank only,

how many of the variables can be stored to the memory bank. So, I am not solving the

complete problem, I am just trying to find out the number of variables that can be

mapped to a single memory bank, ok.

And if it is 0 otherwise, right. So, I have to find out the maximum number variable for

which bi = 1. So, that is my objective, this is an unknown variable. So, what is my

objective? My obviously, I want to maximize the number of variables mapped to this

particular memory bank, ok. And what is the constant? It is already known to us that, the

number of accesses to this variable should be limited by the number of port available,

right.

So, I assume that I have a memory bank that has a number of ports, right. So, a number

of port and then I want to map a maximum number of variables, such that each time step

the number of variables getting access from this particular memory bank is less than

equal to a, right.

So, how can I write that? So, this b i is basically for the variable, if that variable is

mapped to this memory bank. And this Xil gives those corresponding operations, whether

it is getting access in the time step or not, right. So, if that particular variable is getting

access in the time step or not.

So, this actually says for each time step l, the variables that are getting access for that.

So, among those registers only, a number of variables can be mapped to this memory

bank, ok. So, this is the constant. So, the ILP formulation is very simple, I want to

maximize this, that are a maximum number of variables for those are mapped to this

memory bank; subject to the access limitation that, every time step the number of

accesses to those variables that are mapped to that memory bank should be limited by a,

should be less than equal to a, ok.

So, this is what is these constant talks about. And if you give this particular to the ILP

server; what it return? It will return you the bi value. So, for the variable for which bi = 1,

those variables can be mapped to this register bank, right. So, I just solve the problem for

one register bank and then I can iteratively solve this thing for register bank 2, memory

bank 3 and so on ok. So, this is what is the approach.

So, let us take an example, say here the lifetime does not matter right; but the schedule is

very much important. Because we need to know what are the operation getting executed

in time step, because from there only I can understand what are the variable is getting

going to access, right.

(Refer Slide Time: 19:04)

So, let us say I have given these particular schedules, right. So, in time step 1, r3 = r1 + r2

is happening and r12 = r 1 is happening. Time step 2, r5 = r3 + r4 is happening; r7 = r3 + r6 is

happening and so on right, this is how these operations are getting scheduled, right. So, I

want to solve this, I want to identify how many of this.

So, there are how many variables are there? r1 to r 15, there are fifteen variables are there,

r1 to r15; I want to identify the variables which can be mapped to this register bank, given

register bank, ok.

So, obviously, I want to maximize this, I want to identify a maximum number of

variables that can be mapped to a particular bank. So, my objective is this and these are

the constraints. So, how many constraints will be there? I will have a constant for each

time step. So, how many constraints will be there? Since there are 5-time steps, I have I

will have five constraints, ok.

So, what are the constraints for time step 1? So, I can see here that r3, r1, r2 and r12 is

getting accessed in time step 1, ok. So, that means the corresponding variable is b3, b1, b2

and b12. So, and since the number of port available is a; so only a number of this four will

be accessed, I mean can be mapped to the same bank. So, that is given by this constraint;

that b1+ b2+ b3 + b12 <= a.

So, suppose a =2, so that means a maximum two of them can be mapped to this

particular memory bank; among r3, r1, r2 and r12, only two of them can be mapped to this

particular register bank, if the number of port is 2, right. So, this is the for constraint time

step 1. So, similarly, I can identify constant on time step 2. So, I will identify the variable

getting access; there are too many, so I can just note for one more time step.

So, r5, r3, r4, r7, r3, r6, and r13; you see here there this r3 is getting access three times, but if

I read it once, I can use it anywhere. So, I do not have to put, I do not have to read it

three times. So, I can consider only r3 equal to 1, one time; because it is something if I

read it from bank, I can use it I mean multiple operations, right. So, that is why I just put

r3 equal to one time. So, the corresponding variable is b5, b3, b4, b7, b6, and b13. So, what

will happen?

So, this summation should be less than a; so that means b3 + b4 + b5 + b6 + b7+ b13<=a.

So, this make sure that, if a = 2, only two of this particular variable among these six

variables can be mapped to this particular, to this memory register bank. So, similarly, I

can identify time step 3, time step 4, and time step 5, ok.

So, these are the constraints. See if I give this to the solver and if I mention this a value;

a constant say, 1 or 2 or 3 4 whatever it is, it will tell me the variables that we are going

to map to this register. You can see and understand that there are actually variables,

which is actually this constant is on; it is not this constant are not independent right, they

are interdependent.

For example, you see here b 1 occurs here as well as here; so that means the way I have

to assign the value of b1, even b2 also true right, such that both the constant gets satisfied.

It is not that I just individually take a constant and satisfy that will solve the problem; but

it is not, because you might put b 1 and b 2 on the bank and then you see and say b1, b2

and say b1, b2.

And then you try to such a that and then in maybe in that same next constant; you try to

map such a way that, if the particular constraint is not getting satisfied, right. For

example, you see here this b3 occurs here, b3 occurs here, b3 occurs here. So, the way I

am going to assign this b3; if b3 is equal to 1, it will actually impact all these constraints.

So, the way I am going to assign the value of this 1 or 0 to this b1 or b15; so others all the

constraints get satisfied right, that is the ILP will do what do it for us, right.

(Refer Slide Time: 23:33)

So, let us say I have one port, ok. So, if I have one port for this what are the variable;

maximum how many variables can be mapped to this, right? So, the solution that you

will give you this v2, v4 and v8 right, so basically b2, b4 and b8, so let us see. So, b2, b4,

and b8; I have to make sure that since is a single port, not any time step this a maximum

one of them will be accessed, right. So, a maximum one of them will access every time

step, let us see.

So, in time step 1, only b1 is getting access; not b4, b8, so then it is fine. Here b4 is getting

access, no b4, b2 or b8; here b8 is getting access, no b2 or b8; here b8 is getting access, there

is no b2 or b4; here b2 is getting access, no b8 or b4, right. So, that mean, this actually this

mapping satisfies all the constraint. And so, if there is a single port, I can map these 3

three variables that r2, r4 and r8 to this register bank.

Similarly, if say number of ports is two; then it says that you can actually map this v2 to

these are the variables. So, let me just so, let me just check, whether that particular

mapping is correct or not.

(Refer Slide Time: 25:15)

So, let me just, so v2, v4, v2, v4, v5, v10, v5, v10 and then v12, v14. So, there are six registers,

six variables can be mapped to the same register bank, ok. And what I have to do? I have

to make sure that each time step, a maximum two of them is getting access; if not, then

this is not satisfying the constant. So, let us see. So, in time step 1, I am getting access b 2

and only b2, right. So, the and b12 right; so that means it is getting satisfied that, this plus

this is greater than equal to 2.

And others are 0, this is 0, this is 1, this is 0, this is 1. So, is getting less than equal to 2,

which is getting satisfied. In time step 2, I have accessed b4. So, this is 0, b3 is 0, this is 1;

I am accessing this one also b5 = 1, b6 is 0, b7 is 0, and b13 is also 0. We can see only b4

and b5, rest are 0.

So, then it is getting satisfied in time step 2. In time step 3,so I have accessing b5, this is

1 b 5; then this is 1, b10 is 1 and this is 0, this is 0, this is 0, this is 0, this is 0, this is 0. So,

I have actually accessed b5 + b10<= 2.

So, I can understand that this mapping, this six-variable mapping to the same register

bank satisfying time step 3 also. And so, on I can, so that it is actually satisfying

constraint 4 and constraint 5, ok. So, this is how the ILP gives me the solution that with

two bank, maximum six such variables can be mapped to the same bank. So, once I have

this is done what I just told you that, I can rewrite this constraint by removing this

variable, right.

So, I can rewrite this expression by just, because this is already mapped, right. So, I can

rewrite this expression by b1 + b3 <= a1, say this is my a1 for the next register bank, right.

So, then b3+ b6 + b7 + b13 <= a1 and this is

b1+ b3 + b7+b8 +b9 + b11<= a1, right. So, this is how I can actually rewrite the expression.

So, just you can see here that, I am removing the variable which is actually 1; because

these are the variable already mapped to memory bank 1.

So, I have to now solve the problem for the rest of the variable. So, this is how I can

actually the value which is 1, I can remove them and the constant will be reduced and

now I want to solve the same problem. So, here I can I will just put it to 9, because 6 of

them is already done; then I am trying to solve the problem for memory bank 2. And

then I will identify the variables, which can be mapped to memory bank 2 subject to the

number of ports, it may be 1, 2 or 3, ok.

So, this is how I am going to solve the problem and then once the mapping I got it from;

then I will remove those variables again from this register constant and I am going to

solve it for register bank 3 and so on. This is how I will identify how many registers bank

is needed and for each bank what are the variables we going to map, ok. I hope you

understand this and with this I conclude this today’s discussion.

Thank you.

