
C-Based VLSI Design
Dr. Chandan Karfa

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Module - 05
C-Based VLSI Design: Allocation, Binding, Data-path and

Controller Generation
Lecture - 16

Resource Allocation and Binding

Welcome back to my class. So, in today’s class, we are going to learn

about Resource Allocation and Binding.

(Refer Slide Time: 00:59)

So, if you look back to this high-level synthesis, we have learned that

high-level synthesis consists of several surfaces. Initially, we do pre-

processing, followed by scheduling, allocation binding, data-path

generation, controller generation, and then finally, we will get the RTL

right and we have in the last previous few classes, we have learned

about scheduling.

So, once the scheduling is over, we are going to do the allocation and

binding right. So, scheduling assigns the timestamp. So, we know how

many clock cycles, we need to execute the complete behavior and we

know in every clock which operation is going to execute right.

So, what is our next task? The next task is to make sure that in the

hardware these operations are going to map into FUs and the variables

are going to map into registers. So, that is what I have to allocate the

sufficient number of registers and function units so that I can map this

variable to the registers and operation to the function unit and which

satisfies the scheduling requirement. I am not going to change the

requirement of what we have done in scheduling right.

(Refer Slide Time: 02:05)

So, if you look into this allocation and the binding problem I am going

to map the operations to the function units and variables to the storage

as I mentioned here what is our objective? Objective obviously in the

hardware, I want to use a minimum number of resources right. So,

what does it mean? I want to use as less as possible function units to

execute all the operations in the behavior.

Similarly, I want to use a minimum number of storage which is register

or RAM, or ROM to store all the variables and arrays of the program

such that the overall use of these registers and functionalities is

minimum how we can achieve that? Obviously, you have to share that

right. So, unless you share, if you have each function unit allocated for

each operation, you will not get any savings right.

If I can do that, that two operations can be executed by a single FU or

say two variables can be stored into a single register, then I am having

a saving. So, I want to maximize this resource sharing right and hence,

minimize the resource usage. So, that is our objective right.

So, I want to maximize the resource sharing and hence, minimize the

resource usage this allocation and binding phase has two subtasks if it

is clearly understood because the operation has to be mapped to

function units and variable has to mapped to the storage. So, it has two

completely separated sub-tasks; one is FU allocation and binding and

register allocation and binding.

Here by register, I want to mean the memory which consists of both

register and as well as memories like RAM and ROM ok. So, we are

going to discuss first this FU allocation and binding, and then, in

subsequent classes, I am going to discuss about the register allocation

and binding ok.

(Refer Slide Time: 03:55)

So, as I already mentioned that this allocation is something you

identify the minimum resource required, and sometimes, if it is a

resource constant scheduling, then we already know the resource

available for me right. So, you already have seen that for scheduling

that if you have only two multipliers available or two-one ALU

available right. So, once that is given or you identify what is the

minimum requirement right, that is what you allocate.

You allocate a sufficient number of FUs and then, binding has mapped

this operation to FUs and map the variable to registers right and our

objective is to share. We want to share one FU for multiple operations

and similarly, I want to share one register for storing multiple variables

ok. So, that is our objective.

(Refer Slide Time: 04:45)

So, now let us only concentrate on the function unit allocation and

binding problem. So, if you look into a scheduling graph you have

taken the example that we consider for our scheduling discussion. So,

this is the scheduled behavior that in time 1, I am going to execute

these behaviors, this operation. In time 2, I am going to execute these

three operations. In time 3, I am going to execute these three

operations and in time 4, I am going to execute 5 and 9 right.

And here, you see there are two multipliers and one addition operation

scheduled in time 1 right and similarly, two multipliers and one less

than operation are scheduled in timestamp 2 and so on. So, once I am

going to identify the total function unit requirement, I can consider this

multiplier separately from other operations because once, I try to find

out the minimum requirement of the multiplier, I do not have to

consider how many adders are needed; how many other type of

function units is needed right.

So, the important point to be noted here is that once I am going to

consider about this function allocation and binding, I can consider the

operations independently ok. So, it means I will consider only

multiplier allocation binding. Once I am done, I will take this ALU

allocation and binding because we have seen that ALU is a kind of

operation I mean a function unit that can do addition, subtraction,

greater than, less than operations right.

So, once I am going to do multiplier, I am going to do it independent of

these other operations. One I am going to do ALU allocation and

binding, I am going to do that independent of the multiplication or

other operations right. So, this is something is the decomposing the

problem into each type of operator and then, you do this analysis to

find out the minimum requirement and then, you bind the operations

and then, go for the next type of operation ok.

(Refer Slide Time: 06:31)

So, now, we will be going to discuss how we can solve this problem

and we are going to show in the next few slides that this particular FU

allocation and the binding problem can be mapped to either graph

coloring problem or clique partitioning problem right. So, let us

understand that. So, let us understand what is compatibility ok.

You consider a simple schedule behavior like this, where I am because

I am taking all only one type of operator at a time. Here, all I am

considering is only the operations that are of the plus right. So, all

operations are having plus operation right and assume that in time step

1, this operation 1 and 2; this is operation 1 and this is operation 2, this

is operation 3 and this is 4 and this is 5 right.

So, in operation time 1, operation 1 and 2 is scheduled; in time step 2,

operation 3 and 4 is scheduled, and in timestamp 3, operation 5 is

scheduled ok. So, what is the compatibility? Let us understand that. So,

since this operation 1 and 2 is scheduled in timestamp 1, you have to

have two different FU right to execute these two. So, they are not

compatible with each other. So, they are conflicting with each other

rights.

So, they have to be allocated to different FUs right; whereas, this 1 and

3, since they have to execute different timestamps, so I can execute

both the behavior, both the operations using the same type of using the

same FU right. It is the same ALU because in time ALU will perform

this operation 1 in timestamp 1. In the next clock in time step 2, it can

do operation 3. So, that means, that once these two operations are

scheduled into a different timestamp and they are of the same type,

then they are compatible with each other. Understood?

So, from that, I can construct a graph called compatibility graph ok.

So, if you take this behavior, then what will be the compatibility

graph? In the graph, you know we have to find out the nodes and the

nodes are the operations. Since there are five operations here, I have

five nodes ok, and what are the edges here? Edge defines

compatibility. If two operations are compatible just as we have

discussed, we will have an edge right.

So, when they are compatible? When the operations are of the same

type, all are addition operations, addition or subtraction operation, and

ALU operations, and they are scheduled in the different timestamps.

So, I have so for with 1, I have 3, 4, and 5 scheduled because they

have not scheduled in timestamp 1. So, from 1, I have an edge to 3, 4,

and 5; but I do not have an edge from 1 to 2 because they are running

in parallel right.

Similarly, from 2, I have I should have an edge over 3, 4, and 5

because they are compatible with 2. So, I have an edge over 3, 4, and

5, and for this operation 3, I have already so 1, 2, and 5 is compatible.

So, I have an edge from 3 to 5, and 3; 5 to 1, and 5 to 2 are already

there right. So, similarly from 4, I have edges to 1, 2, and 5; 1, and 2

are already there, so I have the edge here. So, that is complete the

compatibility graph right.

So, this is how I can construct a compatibility graph from a given

schedule ok. So, similarly, I can define the concept of a conflict graph.

It is just the complement graph of the compatibility graph because

here, I am going to define the conflict. If two operations are scheduled

at the same timestamp; that means, they are conflicting with each other

rights. So, that means, I cannot schedule them into the same stamp. So,

what I am going to do? In the conflict graph, I will have the same,

again it consists of a set of nodes and the edges; the nodes represent the

operations.

So, there are five operations. So, I have 5 nodes and if two operations

are scheduled in the same timestamp and of the same type, then I have

an edge between them. So, here, I have an edge between only 1 to 2

and 3 to 4 right. So, I have an edge from 1 to 2 and 3 to 4 and if you

just take this graph and you do a compliment, you know what is

complement graph is, I will have the same nodes, and whatever the

edge is missing here, I will add them right. So, here if you see in this

node of 5, only 1 to 2 and 3 to 4 are missing. So, that two is will be the

in the conflict graph.

So, I can either can construct this conflict graph directly from the

scheduling behavior or if I have given the compatibility graph, I can

take the complement of that graph and which will be the conflict graph

ok. So, this is how from the given schedule, I can construct the

compatibility graph or conflict graph. But what is the use of that? We

do not know right.

So, our objective is to identify the minimum number of resources and

the binding and which is something we have not discussed yet right.

So, we only just argued that given a schedule, I can construct a

compatibility graph and conflict graph ok.

(Refer Slide Time: 11:55)

So, here I give a formal definition of the compatibility graph that its

graph consists of a G plus consisting of V and E, where V is the set of

nodes that represents the operations and which has a one-to-one

correspondence to the operations and the edges are representing from

vi to vj denotes the compatibility operation pair. So, if the operations

are compatible, I am going to add an edge to the graph which we have

already discussed in the previous slide.

(Refer to Slide Time: 12:27)

So, what I am going to argue now is that this resource allocation and

binding or the resource optimization problem can be modeled as a

clique cover problem in the compatibility graph. So, let us just

understand how I am telling that right. So, what I have discussed so

far? In the compatible, if two operations, they are indifferent

timestamp; that means, they are compatible to each other. What does it

mean? So, these two operations can be mapped to the same FU.

So, what about three operations? If there are three operations and they

have an edge between all of them; that means, they are all compatible

with each other right. So, once they are all compatible with each other;

that means, I can assign all these three operations into a single FU.

Similarly, for 4, if there are 4 nodes are there, only when they have all

edges right, so they are all compatible with each other; then, I can

assign all these four operations into a single FU and I have already

discussed for 3. So, similarly, I can talk about 4, 5 and 6, and so on

right.

So, what I understood here is if these 4 nodes are from a complete

graph, so this is a complete graph right; then, that particular subset of

the graph is compatible with each other and then, can be mapped to a

single FU. So, but in the whole graph, there are say n nodes and this is

only 4 nodes.

So, this is a complete subgraph and what does it call? That is called

maximal clique right. So, this is a clique. Clique is a complete

subgraph in a complete in a bigger graph right because I have a graph

of n nodes say 20 nodes and out of that, I found that there is a big 4

nodes which can form a conflict graph. So, this is a complete subgraph

or clique.

So, as I argued that once I found a complete subgraph or a clique we

can be mapped to a single FU right. So, in the compatible graph, if I

identify all such subgraphs because each of them is this is a FU 1, this

is said FU 2 and say this is an only two nodes I found. So, this is FU 3

right. So, what does it mean? I identify the maximal possible subgraphs

complete subgraph in the compatible graph and each of them can be

mapped to a single FU. So, what I am doing here? I want to cover all

the nodes of the graph using this clique right. So, what does it mean?

This is a clique cover problem right.

So, it is a clique cover problem. That means I want to cover all the

nodes of this compatibility graph using such maximal clique such that

all the nodes are subsets of one of them and there be no overlap right.

So, one node if occurs in one clique, it should not occur in other

cliques. So, it’s an independent right. So, each subgraph is

independent. So, if I identify such subgraphs and then, that each of the

subgraphs is 1 FU. So, that means, identifying, so the allocation and

the binding problem of FU map to the clique cover problem right. So,

what is that?

We will construct a compatibility graph and then, I try to find out

iteratively the maximum possible subgraph which is complete, which

is a clique and each of them will be mapped to a single FU and all the

nodes inside that subgraph will be mapped to that same FU. So, I will

identify the number of FU needed because each clique represents 1 FU.

So, the number of cliques needed to cover all the nodes defines the

number of resources needed and how the binding will happen; inside

one subgraph whatever node is present there, they will be mapped to

the same FU.

So, what we understand from this slide is that this allocation and the

binding problem is nothing but constructing a comparative graph and

identifying the cliques which will cover all the nodes, which is a clique

cover problem. So, that means, I have reduced that allocation binding

problem into clique cover problem ok.

(Refer Slide Time: 16:55)

So, similarly, let us understand the conflict graph. So, this is I know

this graph is the complement of this compatibility graph; that means if

there is an edge between two nodes. That means, they are not

compatible with each other; they cannot be mapped to a single FU

right. And this is and so, they are not compatible when they are conflict

right. So, formal definitions here.

So, it’s a G_(V, E) graph, where each node again represents the

operations and edges denotes the conflicting opt pair right. So, if the

two operations are conflicting with each other, I will have an edge

there ok. This is understood.

(Refer to Slide Time: 17:29)

Now, I am arguing that this resource allocation problem, this resource

sharing problem is nothing but a graph coloring problem for this

conflict graph. So, let us understand why. So, in this particular conflict

graph, if there is an edge; that means, they cannot be mapped to the

same FU. But what about the other thing? If there are 2 nodes, that

have no there is no edge between them, I can assign them to the same

FU because there is no edge between them.

So, what about 3 nodes, that have no edges between them? So, this is

one part. Similarly, what about say 4 nodes, where there is no edge

between them, or say 2 nodes, where there is no edge between them.

So, what is this call? This is called an independent set right because

these nodes are independent of each other, there is no conflict among

them and this particular set of nodes can be mapped to the same FU.

So, similar to the previous problem, if earlier I try to find a complete

graph, here I am trying to find out the independent set; that means, the

nodes that do not have any edge. Because this is a conflict graph and if

there is no edge; that means, they are compatible with each other. So, I

can assign them to different FU. So, this can be FU 2, this can be FU 3

right.

So, you know what is coloring, graph coloring problem right. So, the

graph coloring problem is what? I have given a graph, I want to assign

the color to the nodes such that if there are two nodes which have

adjacent to each other, have a different color. Two nodes, that are

adjacent to each other cannot have the same color, they should be

assigned to the same different color and my objective is to use the

minimum number of colors to color all the nodes of the graph right.

So, what will happen to these independent nodes? Since they do not

have an edge between them, I can put the same color for them. So, I

have to assign blue to them. Since this set, they do not have an edge

between them, I can put another color same color on them. So, I put

say red to this and since these nodes, they have do not have any edge, I

can assign the same color which will not violate my coloring problem.

So, I say I assign a green here ok. So, what does it mean? And now,

my objective is what? My objective is to use a minimum number of

colors.

So, what is my objective? I try to find out the maximal independent set

right. I try to find the bigger independent set so that I can put the same

color to all the nodes right. So, this problem is now reduced to

identifying the minimum color needed. So, identifying such an

independent set and you put a color to them and each color now

represents a resource right; 1 unit of FU and the nodes that have the

same color, can be mapped to the same FU.

So, now, you understand that once I construct the conflict graph, the

conflict problem is now reduced to coloring the nodes of the graph

such that no two adjacent nodes have the same color and then, the

number of colors needed represents the number of FU needed for me

and each color represents each FU and the nodes that have the same

color can be mapped to the same FU. So, what do I understand from

here? I understood that this resource sharing or allocation and the

binding problem can be mapped as a graph coloring problem ok.

Interesting right?

(Refer Slide Time: 21:07)

So, let’s take an example. So, say I took the same example again and

this is my conflict graph that we have already drawn earlier and this is

the coloring right. So, what I am doing here is say these three nodes; 1,

3, and 5 forms an independent set; maximally independent set because

there is no edge between 1, 3, and 5 and I can put them the same color

say blue and this 2 and 4 is another independent set, where there is no

between them and I put the same color to them.

So, what does it mean? This is one FU, this is one FU. So, this is ALU

1, where operations 1, 3, and 5 going to execute and this is FU 2 in

which operations 2 and 4 are going to execute. So, this is a graph

coloring problem. Similarly, if you consider the compatibility graph,

what I have told you? I have to find out the clique. So, you see here

this is a clique right.

So, this is a clique of three nodes right 1, 3, and 5. This is a complete

subgraph and this is a maximal possible clique, I cannot have a clique

or a complete subgraph using four nodes in this graph. So, I can

actually put the same color or I can actually put this clique into FU 1

right, and similarly, this is another clique of two nodes and I can assign

them into a different FU right. So, this is my FU 2. So, both give the

same solution.

So, either you take the compatible graph and identify the cliques or you

take the conflict graph and you try to color them and you have the

same solution. So, this is clique 1, this is clique 2 and one clique

represents 1 FU, and allocation and binding are done ok.

(Refer Slide Time: 22:51)

So, what we understood summarized in the discussion so far is that lets

the problem of either doing this allocation and binding is nothing but

identifying the compatibility graph and doing the clique cover problem

or you would construct the conflict graph and you identify the graph

coloring. What is the chromatic number? It is the minimum number of

colors needed right. So, identifying the minimum color needed to color

the graph is nothing but this chromatic number and this minimum

number of such color is the FU and similarly, the minimum number of

cliques is the number of FU needed.

So, this is how I map this allocation and binding problem to either the

clique cover problem of finding the chromatic number of a graph ok.

But the problem of these two is well-known to be NP-complete

problem ok; both the problem clique cover problem or chromatic

number finding of graph coloring problem is known to be NP-complete

problem.

What does it mean? For a generic graph, now, it means I do not have a

polynomial-time algorithm to solve this problem. So, that means, I do

not have an efficient algorithm to solve this problem. If I have to go for

an optimal solution, I have to run for an exponential algorithm either 2

to the power n and alright. So, it should be an exponential algorithm to

solve this problem.

So, usually, for such an NP-complete problem, what do we do?

Usually, apply heuristic algorithms right. So, a heuristic algorithm is

something that is working in logic that most of the time, gives an

optimal solution, and most of the time, it gives a good solution; it may

not be optimal, but it is a good enough right, but it’s very fast right. So,

we will learn in these subsequent classes, how to apply to solve either

this graph coloring problem or clique cover problem heuristically. But

in today’s discussion, we try to figure out a subset of the graph for

which this problem is polynomial-time solvable.

So, what I conclude here is that in general, this problem is an NP-

complete problem; but if the graph satisfies a certain property, then this

particular problem is polynomial-time solvable. So, we will discuss in

the rest of the class, what is the subset for which this problem is

polynomial-time solvable. In the subsequent classes, we will discuss

the generic solution ok.

(Refer Slide Time: 25:17)

So, let us understand some basic terminology in the graph theory and

we will try to define what is perfect graph ok. So, we first try to define

a terminology called clique number. So, I told you that a clique is

nothing but a complete subgraph. So, this is a complete subgraph of 3

nodes and its clique number defines the number of nodes present on

this right.

So, the clique number ω(G) of this graph is 3. So, this is a graph with a

complete graph with four nodes right. So, the ω(G) is 4 on this graph.

So, the clique number ω(G) says the number of nodes present in that

particular maximal clique. Similarly, I told you the independent set, the

set of nodes that have no edge between them that is called an

independent set and I define a term called α(G), the number of nodes

present here ok.

So, again for this independent set α(G) is 3; for this set, α(G) is 4 ok.

Now, let us try to understand what is the relation between this α(G)

and the clique cover number which is k(G+) of the graph, and the what

is the relation between ω(G) and the chromatic number x(G-). You try

to understand one point here.

So, if I told you that if there are four now nodes in the independent set

in a graph, what does it mean? They cannot form any clique. So, they

must go into different cliques because you cannot have a clique

considering them. So, you need at least have a maximal independent

set that has say 4; that means, you need at least four numbers of the

clique to cover them because you cannot have a clique that will cover

two of the nodes from here because there is no connection between

them.

So, they will all go to a different clique. So, what does it mean? So, if I

have found a maximum independent set, then the number of cliques

must be at least this number right. So, you have you can have more, but

you cannot have less than this right. So, this α(G); so that means, this

k(G+) >= α(G) right and similarly, for chromatic numbers x(G-), so if I

found a maximal clique of size 4, what does it mean? They are all

connected and I must assign different colors for all these nodes because

they have all edges between this right.

So, there is my color 1, 2, 3, and 4. So, if I found a maximal clique of

size 4; that means, I need at least 4 colors. I might need more than 4

because of the other part of the graph, but at least 4. So, what I can say

is that x(G-)>=ω(G) ok.

(Refer Slide Time: 28:09)

So, that is what I told her that this ω(G)<=x(G-) and α(G)<=k(G+).

But in a perfect graph, this relation becomes equal ok. So, in the

perfect graph, the number of colors needed to color the graph should be

equal to this clique number ω(G)==x(G-). So, the maximum number

of nodes here.

So, this will be equal and similarly, so the maximum size of the

independent set this α(G) should be equal to this number ok

so,α(G)==k(G+). So, then, I will say this is a perfect graph ok. So, this

is the definition of a perfect graph.

(Refer Slide Time: 28:55)

Now, I will come to another kind of graph which is called a chordal

graph and this is a subset of a perfect graph. So, the chordal graph is

something is a graph, where if you consider a cycle of size 4; that

means, you have at least four edges in them, then you should have a

chord ok. So, this is a chordal graph because it has only one cycle and

the cycle have a chord ok.

So, this graph is chord is not a chordal graph. So, this is; so, this is also

a chordal graph because you have whenever you have a cycle of size 5,

you have a chord there, but this is not a chordal graph because this has

a cycle 4, but it has no chord here right. So, then, so, I will say this is a

chordal graph if, for any such cycle of size 4, we have a chord right.

So, this is also a chordal graph because there is no cycle right.

So, this is also a chordal graph because there is no cycle of size 4, then

still and although there is no chord because there is no cycle of size 4,

this is also a chordal graph ok. So, what do I understand? So, the

chordal graph is something subset of a perfect graph right. So, the

chordal graph is a subset of the perfect graph CG ⊆ PG and the

perfect graph is a subset of the generic graph PG ⊆G right.

(Refer to Slide Time: 30:15)

And then, I will define another class of graph which is called interval

graph. Again, this is a subclass of the chordal graph and this particular

graph is very interesting in our context because what does this graph

says? So, I have a graph and I can map this node to some interval say

suppose I have this graph, I have this say graph and then, I can define

some intervals.

So, these are the intervals. So, this is my node 1, 2, and 3. So, one is

saying interval is this and so, 2 is overlapping with say this is my say 2,

this is my 1, this is 2 and this is my 3 right. So, I can map these nodes

to some interval such that if these two-node has an edge their interval

will overlap. So, I have an edge between 1 and 2, so the 1 and 2

intervals is overlapping right.

So, this is what you can think about this is the time right and 1 and 3

also have an edge. So, there is they are overlapping 1 and 3 is

overlapping right. But there is no edge between 2 and 3, so these 2 and

3 must not overlap. If they overlap, then they do not hold. So, given a

chordal graph, if I can map this node to such intervals such that

whenever there is an edge, the corresponding interval will overlap. So,

then I will say this particular chordal graph is an interval graph right.

So, I found this interval graph which is a subset of a chordal graph ok.

So, why this particular interval graph is so important? Because for this

interval graph this graph coloring problem is polynomial-time solvable.

So, if I know, that if I found that a particular subcase, this graph that

conflict graph that we have obtained is an interval graph, then I will

have an efficient algorithm or I can solve the when I can color the node

using polynomial-time ok. So, this is very interesting.

So, why this problem is important? Because in this case, this particular

graph is polynomial-time solvable, the graph coloring problem is

polynomial-time solvable right. So, the question here is that how do we

identify the graph as an interval of a node? Because this is not so easy

and sometimes for example, if you have in some cases probably, it is

not possible to map them into these intervals right.

So, the question here is how do we identify whether a particular graph

is an interval graph or not? Because if I identify this graph as an

interval graph, then can I solve this problem easily or efficiently ok.

(Refer to Slide Time: 33:11)

So, for that let us try to understand another class of graph which is

called comparability graph. In this graph, so this is what you have a

graph and so far you understand that the conflict graph and

comparability graph are undirected. Now, I want to orient the edges;

that means, I want to add direction to the edges. So, I want to make this

undirected graph into a directed graph in such a way that it holds the

transitivity property. What does it mean? So, I have this graph we

already know is chordal.

So, I mean we have seen that because there is a cycle of 4 and we have

a chord here. Now, I want to give direction to these edges right. So, I

have given say direction like this. For this, I have given a direction like

this and now, see I have an edge 1 -> 4 and 4 -> 3. So, I must have an

edge from 1 -> 3 and which is there. So, I have an edge from 1 -> 2, I

have an edge from 2 -> 3 and I have an edge from 1 -> 3. So, this is

holding the transitivity property. So, that means, this is a comparability

graph.

But if you give the direction like this, so it is not holding the

transitivity because you see here I have an edge from; so I have an

edge from this and this and so, I have an edge here. So, I have an edge

from this yeah. So, I have an edge from this and then, I should have an

I mean this edge not holding the property right because then I have an

edge here, I took, so I must have an edge here which is not there.

So, this is not the correct orientation, but this is a correct orientation.

So, given a chordal graph, I can try to give the direction and if this

particular direction holds the transitive property, then I will say this is a

comparability graph ok.

(Refer Slide Time: 34:59)

And why does it help? This particular theorem tells us why this helps

identify the interval graph ok. So, I will say an undirected graph is an

interval graph if and only if it is chordal; that means, it is a chordal

graph and its complement is a comparability graph. So, this theorem

says that if I identify a graph which is a chordal graph and I take the

complement of the graph and I identify that is a comparable graph; that

means, in that particular graph, I can give this.

When I can make this is a directed graph that holds the transitive

property, then my graph is an interval graph ok. So, this theorem gives

us the solution that if try to identify a chordal graph and then, it takes

the complement and checks whether that graph is a comparability

graph or not. If it is that, then I can ensure that this particular graph is

an interval graph and if I try to solve this problem for this, this graph

coloring problem for this, I can solve it efficiently; that means, in

polynomial time.

(Refer Slide Time: 35:59)

So, now, let us go back to this data flow graph. So, if you remember

for the scheduling, we have seen that we have taken one basic block at

a time and then, we try to schedule the behavior. And but in general,

now if you try to solve this allocation and binding problem for the

particular basic block, we will show that the particular graph is nothing

but an interval graph ok.

But in general, whenever you have a function call and if-else and loops

and all, that problem is not polynomial-time ok, and the conflict graph

that we are going to construct will not satisfy the interval graph

property. But only for a basic block or a single block, the conflict

graph will be is interval graph ok. So, that is where this particular

property holds.

So, if you try to solve this allocation and binding problem for a specific

block or a basic block, I can solve it efficiently. So, let us see how. So,

I can apply this left edge algorithm which is a polynomial-time

algorithm for this, and solve this problem ok.

(Refer to Slide Time: 37:15)

So, let us take an example. So, I have this schedule which we have

taken in earlier classes as well. So, now, you see here, I am going to

construct this is for multiplier and this is for ALU. So, here is what are

the multiplication operation? 1, 2, 3, 6, 7, 8 right. So, I have these

nodes here, and what is the ALU operation? 10, 11, 4, 5, and 9 right.

So, these are the operations for the ALU. So, these two are different

problems. So, let us consider this one first and I can actually, so this is

my compatibility graph right.

So, you see here. So, 1 will be compatible with 3, 6. So, these are my

multiplication operations right. So, this 1 is compatible with all

operations which are scheduled in the different timestamps. So, 3, 6, 7,

8. So, 1 has edges 2, 3, 6, 7, and 8.

Similarly, 2 have an edge over 2, 3, 6, 7, and 8. You can check it here

and this way, I can construct the compatibility graph for this right and

similarly, for the ALU. This 10 is compatible with 11, 9, 5, and 4 right.

So, 10 is compatible with 9, 4, 11, 5, and so on.

(Refer to Slide Time: 38:29)

So, I will construct this and now, you see the conflict graph right. So,

you can take the complement of this graph. So, I will construct the

conflict graph here. So, it has 1, 6, 8, 2, 3, and 7. So, what is the

conflict graph here? 1 and 2 are conflicting, so 1 with 2; 3 and 6 are

conflicting, and 7 and 8 are conflicting.

So, this is my conflict graph ok. So, this graph is I am telling that this

is interval graph and because its complement graph is this which is

compatibility graph and this is comparable graph because I have given

the orientation of the edges, you can no node say here. So, you

consider any such transit. So, I have a 2 to 6, I have 6 to 8. So, I have

an edge from 2 to 8.

So, I have an edge from 1 to 3, I have an edge from 3 to 7; so, I have

an edge from 1 to 7. So, this you can cross-check. So, for example, I

have an edge from 2 to 3, I have an edge from 3 to 7, and I have an

edge from 2 to 7 as well. So, the transitive poverty hold in this

particular graph ok. So, I will say this is a chordal graph because there

are no 4 cycles and there is no problem with the chord.

So, this is a chordal graph and the implement, where this complement

graph is a comparable graph and hence, this is an interval graph and we

will argue that I can map this node into some interval such that

whenever there is an edge between them, their interval will overlap and

they when there is no edge, their interval will be non-overlapping right.

And how I can do that? That actually can be done easily. So, this is my

schedule and what I am going to do is wherever the operation schedule

is, I will construct the interval for this. So, for the interval of these

nodes is this right. So, I am only considering the multiplier now. So,

these are the intervals. So, if one operation is a multi-cycle, I have an

interval of more than 1 cycle right. So, some operation is 3 cycles, and

the interval will be 3 cycles; but the schedule that I have considered

here is only a single cycle. So, this is how I have constructed the

interval.

And now, see this 1 and 2 are overlapping, so their interval is

overlapping. 1 and 3 is not overlapping, they are in different time step,

so their interval does not overlap. 3 and 6 are overlapping, so their

interval is overlapping. 7 and 8 are overlapping. So, these are the only

three overlaps and there are no other overlaps right. So, these shaded

nodes are for multiplier and the others are for ALU operation.

So, let us keep that because these 4, 5, 9, and 10 are for operation ALU

and I will consider them separately right. So, this is my interval graph

right. So, these are my intervals and which satisfy the edges

requirement of the interval graph right. So, this is how I argued here

that once I considered a graph only for this a single basic block, my

conflict graph is an interval graph, and the corresponding interval I can

construct this way.

Because I can construct the interval easily from the scheduled behavior

and its complement graph is nothing but a comparable graph that I

have already shown. So, I can efficiently solve this graph coloring

problem for this conflict graph in polynomial time and for that, there is

a very well-known algorithm called the left-edge algorithm and I am

going to cover that algorithm in the next class ok.

Thank you.

