
Computer Graphics 
Professor. Doctor. Samit Bhattacharya

Department of Computer Science and Engineering 
Indian Institute of Technology, Guwahati

Lecture No. 07
NPTEL-MOOCS L7

Hello and welcome to lecture number 7 in the course Computer Graphics so far we have covered

6 lectures and we are discussing the graphics pipeline. Before we go into today's topic, let us

recap the pipeline quickly. 

(Refer Slide Time: 0:49) 

So,  as  we  have  already  mentioned,  there  are  5  stages  in  the  pipeline,  first  stage  is  object

representation,  second stage is  modelling transformation,  third stage is lighting or colouring.

Fourth stage is a composition of sub stages and sub pipelines. This is called viewing pipeline,

which consists of a sub pipeline which has 3 stages and 2 operations, viewing transformation,

clipping,  hidden  surface  removal,  projection  transformation.  And  window  to  viewport

transformation. And the final stage of the pipeline is scan conversion or rendering. 

And  these  stages  take  place  in  different  coordinate  systems,  starting  from  local  or  object

coordinate system transitioning through world coordinate, view coordinate, device coordinate to

finally the screen coordinate system. 
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Now,  among  these  stages,  we  are  currently  discussing  the  first  stage  object  representation

techniques. 
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As  we  have  already  discussed  in  the  object  representation  techniques  there  are  broadly  5

categories, one is point sample rendering. The second one is boundary representation, then space

partitioning, then sweep representation, and finally some other specific representation techniques

which are application specific or referred to some advanced techniques such as scene graphs,



skeletal  model  and  other  advanced  modelling  techniques  such  as  fractal  representation  and

particle systems. 

In the boundary representation, their 3 broad group of techniques. One is mesh representation,

one  is  parametric  representation,  and  one  is  implicit  representation.  Similarly,  in  space

partitioning  representation,  there  are  3  broad techniques  octree  based  representation  BSP or

binary space partitioning trees and CSG techniques.  Now, among all  these,  we are currently

discussing the boundary representation techniques and we will continue our discussion on this

technique. 

In the boundary representation techniques. In the last lecture, last couple of lectures, we have

covered  mesh  representation  and  introduced  the  idea  of  parametric  as  well  as  implicit

representation.
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These are some of the boundary representation techniques that we have introduced in the last

lecture. 
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Today we will continue our discussion on boundary representation today we will focus on one

specific and popular boundary representation technique, which is called spline representation.

(Refer Slide Time: 4:14)

So, in order to understand the spline representation technique, we need to understand how we

represent curve. Curve is very common, primitive shape which is required at many places to

represent objects, particularly in the context of complex shapes we cannot avoid representing



curves only with lines or points, it may not be possible to represent complex shapes, and we have

to take into account curves. 

To simplify our discussion will focus here only on parametric representation of curves, although

earlier  we  have  introduced  both  the  types,  namely  parametric  representation  and  implicit

representation. 
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How  we  can  representation  curves  in  general  using  parametric  form,  we  can  use  a  single

parameter  u  will  denoted  by  u  to  represent  curves  or  its  Cartesian  coordinates  using  these

equations. This one is for representing the X coordinate. The other one is for representing the Y

coordinate where X is a function of u and Y is another function of u. Let us try to understand the

intuition behind this representation. 
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We can assume that u is denoting time. We can think of it in this way, we are drawing the curve

on a 2D Cartesian space over a period of time now at an instant of time, we place a Cartesian

point. Then we can say that at that point of time the Cartesian point is that, in other words the

Cartesian point is  characterized by the instant of time,  which is  u. So,  essentially  u denotes

specific instant of time, at which point we can determine the corresponding coordinate values

using the equation. This is the simple intuition behind the idea of parametric representation of a

curve. 
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So, that is about understanding how to representation curve parametrically. Now, our objective is

to represent the curve easily and efficiently. Let us elaborate on this a little bit more. 
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As we all know, we can approximate a curve in terms of a set of small line segments, of course

here the segments have to be very small to make the curve look smooth, otherwise the curve



make it a jagged appearance. Now, clearly this is very easy, intuitive but may not be efficient.

We may have to provide a large number of points to draw small lines judgments. 
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There may be another alternative. We can work out the curve equation and apply the equation to

find out any point on the curve. So, this clearly is better than specifying manually large number

of points to approximate the curve in the form of a set of line segments. So, clearly this is easy

and may turn out to be efficient also. But the problem here is that for many curves we may not be

able to find the equation itself. It is very difficult for any arbitrarily set curve to find out the

curve question.
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So, let us try to understand these problems from that point of view of a user, what the user thinks.

And what  are  the problems that  are user  faces.  Now user wants to generate  a  curve of any

arbitrary shape. If we are trying to represent the curve in the form of a large number of small line

segments, then user has to input a very large number of those points through which the line

segments can be generated. Clearly, no user would be interested to input a very large number of

such points. 

On the other hand, for a user. It may be difficult or even impossible to find out a precise equation

of the curve. So, therefore in both the approaches user is not going to be benefited. 
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Ideally, what a user should do or what a user wants to do, user wants to provide a limited set of

points. Now, these points define the curve. So, essentially user is not providing all possible line

segments to approximate the curve or providing a precise equation to find out points on the

curve. Instead, user is providing a small or limited set of points which defines the curve. In other

words, these points a chosen such that the curve passes through or nearby those points, these

points are also known as control points. 

So, the alternative to the user is to provide a small set of control points instead of providing large

set of points through which line segments can be drawn or give a precise curve equation. So, user

has provided set of control points. 
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And the user expects the system to draw the curve by interpolation by interpolating those control

points.  So, let  us try to briefly understand what is the idea of interpolation,  many of you or

maybe all of you may already know what is interpolation, but there is no harm in refreshing our

knowledge.
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So  essentially,  when  we  talk  of  interpolation,  what  we  mean,  we  essentially  mean  by

interpolation fitting of a curve that passes through or nearby the set of points provided or the

control points. 
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One form of interpolation is polynomial interpolation. In this interpolation what we do, we try to

fit a polynomial curve through the given set of control points. Now, polynomial interpolation is

very popular because it is generally considered that such interpolations are simple, efficient and

easy to manipulate. So, we will focus here on polynomial interpolation. 
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Now, depending on the number of control points, the degree of the interpolating polynomial is

decided. So, when we talk a polynomial interpolation, one concern is what should be the degree

of the polynomial now that can be decided based on the number of control points provided. 
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Let us take an example, suppose we are given 2 control points in such a situation, it is advisable

to go for linear interpolation rather than any other higher form of interpolation because we have



only two control points. Similarly, if there are 3 control points, then we can go for quadratic

polynomials. There are 4 control points which use the degree accordingly and so on. 
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Therefore, we can say that in general for n+1 control points, we may try to fit polynomial of

degree  n which is  pictorially  depicted  here in  this  figure,  we are given these control  points

through which we are trying to fit a curve. And if the number of control points is n+1, then the

curve that we should work with or the polynomial that we should work with should have degree

n ideally. Note at the system of equations that we have mentioned here.

This is for X coordinate, similarly for Y coordinate, we can have a similar set of systems. Now

since they are n control points given we have n x coordinate values for each of these coordinates.

We have 1 equation of the curve in terms of the parameter and so for the n number of control

points, we have n number of equations. 
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Now, in those are equations there are constant terms, those are the coefficients like a0, a1 to an-1.

If we decide these coordinates, then we can define the polynomial. So, to get the values of this

coordinate these coefficients what we need to do, we need to solve the set of equations. The n

plus one equations that we have seen earlier. If we solve this, then we will get these values of the

coefficients which defines the polynomial. 
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But there is one problem, if we have a very large n if we have many control points, a large

number of n. Then we need to solve a very large number of equations, which is not easy. On top

of it we need to keep in mind that there are two separate sets of equations, one for X and one for

Y. So, we need to solve actually two sets of equations rather than one and for large and, this

becomes very cumbersome to do. 
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Along with that, there is one more problem, which is called local controllability issue. Suppose

you or the user wants to change the shape slightly. So, with the polynomial equation will get a

curve which represents a shape. 

Now, I want to change it slightly. Then ideally, what should I do? A change of one or few of the

control points to denote the small change. But if we go for polynomial interpolation, then to get

the new curve, we may have to recalculate the entire thing again. So, entire curve may have to be

recalculated. Which is, of course not a good thing because we have changed a few points and

ideally we should be able to restrict  our pre calculations effort to those few points only, but

instead we have to solve the entire set of equations again, which is not an efficient approach. 

So, this problem is known as local controllability, where we are unable to control local changes

locally.  We have to control local changes through global recalculation of the curve. Now, in

order to address these issues, there is another solution which we will discuss. 
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Now, what is this alternative approach? Suppose we are given again n plus one control points

irrespective of the value of n, we may partition the entire set into subsets with fewer points.

Typically, these fewer points at 3. So, given a set of n plus one points, we may like to have

subsets where each subset contains three control points. 
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Now for each of these subsets we may fit lower degree polynomials. In this case, the degree 2

polynomials for each of the subsets. 
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And then these individual polynomials of lower degree, which are also called polynomial pieces,

when they join together, they give the overall curved. So, the idea is very simple. You are given

a large number of control points, but it is not necessary to fit a single polynomial curve using the

entire set of control points. Instead, what we do, we divide the entire set of control points into

subsets of smaller numbers. Each subset contains very few control points.

Typical value used is three and for each of these subsets we fit or interpolate a smaller degree

polynomial. And these polynomials, when they join together, they give the overall curved. So,

this individual polynomials are also known as polynomial pieces. So, the entire curve we are

representing in terms of polynomial pieces. 
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Let us take an example, consider this figure here. There are 5 control points p0 to p4 as you can

see, p0, p1, p2, p4 p3 and p4. Now, these 5 points need not be used to draw a single polynomial.

Which in this case would be of degree 4 instead what we can do, we can subdivide the curves or

the set of control points into subsets. Like the two subsets shown here in one subset, we have

three control points p0, p1, p2 another subset we have another 3 control points p2, p3, p4

For each of these subsets, we draw a quadratic or degree 2 polynomial and then when they join

together, we get the overall interpolated curve. That is the basic idea. 
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Now this idea of fitting a set of control points with several polynomials of lower degree than a

single higher degree polynomial is known as spline representation. So, when we talk of spline

representation, we are essentially referring to the fact that there is a set of control points, but we

are not interpolating the entire set with a single polynomial curve. Instead, we are representing it

in terms of several polynomial pieces. Now the entire carve is called spine curve simply spline.

This is a very popular curve representation technique used in computer graphics. 
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In graphics, it is very common to use splines made of third degree or n = 3 polynomials, also

known as cubic polynomials. In our subsequent discussion, we concentrate. We will concentrate

on these polynomials only and corresponding splines only. There is one important thing in spline

representation that we have to keep in mind that is called continuity condition. 
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Now splines as we have discussed,  refers to joining of several polynomials.  So, clearly it is

important to ensure that they joint smoothly. To make the resulting curve look smooth.
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Now, how to ensure that? In order to ensure that to happen, splines must conform to what is

known as continuity condition. 
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There are several such conditions broadly, they are of two types, one is parametric continuity

condition and the other one is geometric continuity conditions. 
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So, in general, the nth order parametric continuity condition denoted by Cn states that adjoining

curves meet and first to the nth order parametric derivatives of the adjoining curve functions are

equal at their common boundary that is the general definition. Now, let us see what they refer to

in simple terms. 
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So, the first  parametric  continuity  condition is  C0, the zeroth order condition,  which simply

states that the adjoining curve meet. It is just that the simple condition. 
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Now, the first order parametric condition C1 indicates that the first order derivatives of adjoining

curves at common boundary are equal. So, essentially it tells that at the common boundary, we

have to ensure that the first order parametric derivative. That means the derivative with respect to

the parameter u of the curve should be equal.
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In a similar way C2 indicates that both the first and the second order derivatives are equal at the

common boundary. And in this way, we can go on. But since in graphics we mostly focus on

third degree polynomials so, we are mostly concerned with these continuity conditions up to C2. 
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Now, this parametric continuity conditions are sufficient, but not necessary to ensure geometric

smoothness of the spline. For that, what we need is to conform to the other set of continuity

conditions called geometric continuity conditions. Now what are those? 
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The 0 order condition is denoted by G0. This is the zeroth order condition which is similar to C0,

which simply states that the curves must meet. 
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Similarly, G1 or the first order geometric continuity condition tells that the tangent directions at

the common boundary should be equal, although they are magnitudes can be different so that

directions must be equal but magnitudes can vary at the boundary that is the G1 or first-order

geometric continuity condition. 
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Second-order condition or G2 indicates that both tangent direction and curvatures at the common

boundary of the adjoining curves should be equal. Again, we can go on like this up to any order,



but since we are mostly concerned with cubic polynomials, up to G2 should be sufficient for our

understanding. So, that is one basic knowledge that we should have about splines that is, if we

want to represent any curve as splines, that means in terms of smaller polynomial pieces, we

should ensure that the curves conforms to the continuity conditions, parametric and geometric

continuity conditions. 
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Now let us try to see what are the different types of Spline representations that we can use. There

are broadly two types. One is interpolating splines. Other one is approximation splines. 
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Now, in case of interpolating splines, what we want? We essentially try to fit the curve such that

it passes through all the control points. So, essentially we are given a set of control points and we

are representing the curve in the form of splines, in a way such that the polynomial pieces of the

spline passes through all the control points as shown in this figure. 

Now, the commonly used interpolating splines in computer graphics are natural cubic splines,

hermite  cubic splines,  and Cardinal cubic splines. So, we will discuss about these splines in

details later. 
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The other type of Spline curves are called approximating splines here. Control points are used to

define a boundary or convex hull, the spline itself does not pass through all the control points.

Instead, it is restricted within the boundary defined by the control points. Take the same example

here we have 4 control points. But here, the curve is not passing through the 4 control points,

unlike earlier in case of interpolating splines, what is happening here is that these control points

are defining a bonding region, a boundary which is popularly called convex hull, and the spline

lies within this boundary. 

In other words, the Spline shape is determined by the convection. Now, there are a few common

and popular splines approximating splines used in applications, namely the Cubic bezier curves

and the Cubic B splines, again will discuss about those later. So, that is the basic idea of spline.

What it is and what makes them good for representing any curve. 

So, what it is it is essentially representing a complex shape in terms of smaller, manageable,

lower degree polynomials or polynomial pieces. And it is able to represent the Curves smoothly

because splines are supposed to conform to continuity conditions. Now, let us try to understand

how we represent  spline.  This  is  same as  knowing how to  represent  the  objects  which  are

represented by splines. 
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How can we represent splines? There are two ways, broadly one is basis or blending function

based  representation.  Other  one  is  basis  metrics  based  representation.  And  these  two  are

equivalent. Of course, that is quite obvious and one can be converted to the other and vice versa.
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Let us take some examples  to understand the representation so will  start  with basic metrics,

representation of splines. And we will start with a simple example. Consider a polynomial of

degree one that is a linear polynomial, which in the parametric form we can represent as a f u



equal to a0 plus ua1. Now a0, a1 are coefficients. And u is the parameter we must keep in mind

here that this is a compact representation. 

ai  like  a0,  a1  actually  represents  vectors  comprising  of  two  components,  one  each  for  the

corresponding coordinates. So, a0 actually has a0x, a0y values separate for x and y coordinates.

Similarly, fu should have corresponding expressions, namely fxu and fyu. However for simplicity

we will work with this compact form rather than the expanded form. 
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Now, this parametric equation we can represent in the form of matrix U.A. So, this is a dot

product of two matrices, U and A. U is the parameter metrics and A is the coefficient metrics.

Where U is denoted in the form of this vector 1, u and the metrics A is denoted in this column

vector form. Having the two coefficients a0, a1 in our example. 



(Refer Slide Time: 34:46) 

Now, since this is a polynomial of degree 1, so we need at least two control points to determine f.

Let us denote those two by p0 and p1.
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Now, these points we will use to parameterize the polynomial, in other words, we shall assume

that certain parameter values and therefore these control points, for example, we may assume the



control points denote values of the function at the boundary where we can define the boundary as

the points where the parameter values text of value 0 and 1. 
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If that is the case, then we can set up our system of equations as shown here, two equation. One

for p0, one for p1 with the parameter value fixed. Now, by solving these equations we can get

the coefficients. 
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However, if we look closely then we can see that the same system of equation we can represent

in the form of matrices. Now, what is this matrix representation we can represent it as being able

to C.A. Where p is defined as a column vector C is defined as another column vector and A is

defined as yet another column vector. 
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So, how we constructed the C matrix, we took the coefficients of ai. That means from a1 to an in

that order. Those terms in each equation to from the corresponding row of the C matrix. So, first

equation we took for the first row and so on. 
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In other words,  we imposed certain constraints.  Parameterization conditions as constraints  to

obtain C. Accordingly, C is called the constraint matrix. 
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Now we know P equal to C.A so we can say that A equal to C -1.P. Now, this inverse of the

constant matrix is called basis matrix. 
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So, we can represent f as U.A which can be expended, as U.C-1.P or UBP. So, this is the way to

represent f in terms of matrix multiplication. 
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Now, one thing we have to note here is that the basis matrix. For an interpolating polynomial that

satisfies the parameterization conditions is fixed. In other words, the matrix or the basis matrix

uniquely characterizes the polynomial. So, if we use the basis matrix B instead of the polynomial



equation, then this is as good as representing the polynomial because B is fixed for the particular

polynomial. 
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Now, we know that spline is made up of polynomial pieces. Now, if each piece is made of the

same type  of  polynomial,  that  means  the  degree  and the  constraints  are  the  same.  So,  then

overall,  Spline  can  be  uniquely  characterized  by  each  piece.  And  since  already  we  have

mentioned that a polynomial piece can be characterized by the basis matrix, then the basis matrix

can also be used to uniquely characterize the entire spline. So, when we are representing the

spline, we can simply represent it in terms of the basis matrix.

Now that is the basis matrix representation of spline. So, to recap given a polynomial, we can

have a unique basis matrix for that polynomial under certain constraints. So, the basis matrix is

suitable to represent the polynomial. Now the same polynomial pieces are used to represent a

spline. So, for each polynomial piece, we have the same metrics so we can use a single basis

matrix  to  represent  the  overall  Spline,  because  the  basis  matrix  will  tell  us  that  particular

polynomial pieces are used to represent the spline. This is the basis matrix representation of

splines. 
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This explanation we just mentioned, so basis matrix refers to polynomial pieces of this spline, we

are assuming all pieces are made up of same polynomial. So, polynomial basis matrix represents

the whole spline. Now, let us focus attention to the other type of spline representation, namely

the blending function representation. 
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Now, earlier, we have seen that we can representation f in terms of basis matrix, like U.B.P. 
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Now, if we expand right hand side, we get weighted sum of polynomials with the control points

being the weights. So, in our example let us derive it and see what happens. So, in our example

we have a polynomial of degree 1 and we have the matrices in this from u is this one. B, is this

Matrix and C is the control point metrics. Now if we expand, we will get this equation in terms

of the control points. 
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Now, the individual polynomials in the weighted sum, such as the term 1-u and u are the 

blending functions. So, the overall function is represented as a weighted sum of polynomials. 

And these individual polynomials are called the basis function or the blending functions.
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Now, for  a  given polynomial,  the blending functions  are  also fixed so we can use them to

characterize the polynomial. So, for a given polynomial with constraints, the functions that can

be used to represent it are fixed. So, this blending function set can be used to characterize the

polynomial so we can apply the same logic here. Spline made up of several pieces of the same

polynomial type. Therefore can also be represented in terms of the blending functions since they

are uniquely characterizing the constituent polynomial pieces. 
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So, in a compact form we can represent a Spline or the curve f in this way where pi is the i-th

control point and bi is the blending function. So, to recap today we have got introduced to the

basic idea of splines,  which is  essentially  representing a curve in terms of constituent  lower

degree polynomial pieces. Then we discussed the continuity conditions to ensure that splines

give us smooth curves. We also discussed the broad types of splines and the way the splines can

be represented in the form of basis matrices or blending functions. 

In the next lecture will take up detailed discussion on the various types of splines that we have

mentioned, namely the interpolating splines and the approximating splines. We will also learn in

the next lecture about the use of splines to represent surfaces in computer graphics. 
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Whatever  I have discussed today can be found in this book. You are advised to go through

Chapter 2, Section 2.3 to learn about these topics in more detail. See you in the next lecture till

then thank you and goodbye.


