
Computer Graphics

Professor Dr. Samit Bhattacharya

Department of Computer Science and Engineering

Indian Institute of Technology, Guwahati

Lecture 31

Hello and welcome to lecture number 31 in the course Computer Graphics. So, this is going to be

our final lecture on the topic. So, far what we have discussed?

(Refer Slide Time: 00:44)

We discussed pipeline and then currently we are discussing pipeline implementation. In our

earlier lectures we learned about the basic graphics hardware including the graphics input and

output devices, the GPU or Graphics Processing Unit and the GPU programming basic idea.

Today in our, this last topic we are going to learn about programming or how to write graphics

programs that is essentially the software aspect of Computer Graphics.

Now, before we learn to program, we will first start with a basic introduction to graphics

software. If you may recollect during our introductory lectures, we had a preliminary

introduction but today we are going to recap as well as expand those discussions.

(Refer Slide Time: 01:55)

As we have mentioned earlier graphic software are broadly of two types. One is the special

purpose packages and the other one is general programming packages.

(Refer Slide Time: 02:13)

In the special purpose packages, what we have? These are essentially complete software systems

with their own GUIs or user interfaces. For example, painting system here it has its own user

interface through which an artist can select objects, select colour, place the objects at desired

position on the Canvas or the screen, change the size of the object, change the shape, also

orientation and so on.

And all this, the artist can do by interacting with the user interface. So, there the artist need not

know anything about the graphics pipeline or how it is implemented. These are examples of

complete software systems or packages. Another example is the CAD package that we have

learned about in the introductory lectures, CAD or Computer Aided Design packages. These are

primarily used in architecture, medicine, business, engineering and such domains.

(Refer Slide Time: 03:46)

The other type of software is the general programming package. Now, here we have libraries,

libraries of graphics functions that are provided and we can use those libraries with any

programming language such as C, C++, or Java and these functions are mean to perform or

rather mean to help a programmer perform pipeline tasks. So, in other words they help the

program and implement the pipeline.

An example is OpenGL, which stands for Open Source Graphics Library. Also there are VRML

Virtual Reality Modeling Language, Java 3D and so on. So, there are many such libraries

provided to implement graphics functions.

(Refer Slide Time: 04:55)

Now, these functions are also known as computer graphics application programming interface or

CG API. Now, they are essentially a software interface between programming language and the

hardware. For example, when we want to write it an application program in a language say C,

these library functions allow us to construct and display pictures on the output device. So,

without these functions will not be able to do so.

(Refer Slide Time: 05:39)

But one thing we should keep in mind is that the graphics functions are typically defined

independent of the programming language and that is achieved through a concept called

language binding. So, language binding is defined for a particular high-level programming

language.

Now, through such binding we get the particular syntax to be used for accessing various graphic

functions from that language. So, essentially language binding allows us to use these library

functions from inside a program written using a particular language.

(Refer Slide Time: 06:33)

Now, each language binding is designed to make the best use of the capabilities there for a

particular language and they are designed to handle various syntax issues such as data types,

parameter passing and error handling. Now, these specifications or language binding are set by

the ISO or International Standard Organization, so we need to know about these standards. We

will have a brief introduction to different standards used for computer graphics.

(Refer Slide Time: 07:28)

So, what are those standards, software standards that are used in computer graphics?

(Refer Slide Time: 07:32)

Now, why we need standard let us try to understand again. When we are writing a program with

graphic functions, it may be the case that those programs are moved from one hardware platform

to another. Now, how the computer will then understand the program if the platform is changed?

There we require standard, without some standards which is essentially a commonly agreed

syntax, this movement between platforms will not be possible and we need to rewrite the whole

program. So, essentially we need to start from scratch. So, standard helps us avoid in such

situation.

(Refer Slide Time: 08:33)

First graphic standard came in 1984, long ago which was known as the graphics kernel system or

in short GKS. It was adopted by ISO as well as many other national standard bodies.

(Refer Slide Time: 08:57)

Then came a second standard which was developed by extending the GKS, it was called PHIGS,

which stands for programmer’s hierarchical interactive graphics standard. ‘PHIGS’, again it was

then adopted by the standards organizations worldwide.

(Refer Slide Time: 09:36)

Now, around the same time when the other standards were being developed Silicon Graphics Inc

or SGI started to ship their workstations meant for graphics with a set of routines or library

functions together these are called graphics library for GL.

(Refer Slide Time: 10:10)

Subsequently these set of functions or GL become very popular and eventually evolved as the

OpenGL in the early 1990s, which had become a de facto graphic standard. Now, this standard is

now maintained by the OpenGL architecture review board which is a consortium of

representatives from many graphics companies and organizations.

(Refer Slide Time: 10:45)

Now, let us try to understand what is there in OpenGL, what functions it provide and how to use

those functions.

(Refer Slide Time: 10:58)

Let us try to understand OpenGL with respect to one example program. So, this program is

shown here, this program is meant to display a straight line on the screen. Now, this has been

written by utilizing OpenGL library functions called from C, the C language. Now, let us try to

understand the syntax of the program.

(Refer Slide Time: 11:30)

So, in order to make use of the library functions, the first thing we should do is to include a

header file. Now, this header file contains the library functions, so here we have included it with

this statement hash include GL slash glut dot h. Now, what this library name means?

(Refer Slide Time: 12:04)

The core library of OpenGL actually does not support input and output operations because those

functions were designed to be device independent, whereas support for I/O is or must be device

dependent. So, we need to do something about it because we have to display the line on the

output which is essentially a device dependent operations.

(Refer Slide Time: 12:40)

So, to display we require auxiliary libraries on top of the code library, this is provided by the

library GLUT or OpenGL utility toolkit library, ‘GLUT’, GLUT library, that is mentioned in this

include statement.

(Refer Slide Time: 13:14)

Now, GLUT provides a library of functions for interacting with any screen windowing system

essentially any display device and it allows us to setup a display window on our screen, in this

window we are going to show the image or whatever we want to display and this display window

is essentially a rectangular area which contains the image, that we can do with the help of

functions provided in the GLUT library.

(Refer Slide Time: 14:01)

Now, whichever library functions we use that are part of GLUT they come with the prefix ‘glut’.

(Refer Slide Time: 14:16)

So, essentially these functions provide interface to other device specific window systems that we

have already mentioned. So, we can write device independent programs using these GLUT

functions and the functions themselves are used to link our program to the particular device.

(Refer Slide Time: 14:45)

Also we should note here is that the library GLUT is suitable for graphics operations only and

for any other operation we may need to include other header files such as stdio.h or stdlib.h as

we do in our regular programs.

(Refer Slide Time: 15:12)

Now, let us start with the main function which is shown here, this function and let us try to

understand the body of the function. As we said GLUT allows us to create and manage a display

window or the screen region on which we want to display the line. So, the first thing that is

required is to initialize GLUT with the statement glutInit as shown here, this is the initialization

function that is required at the beginning.

(Refer Slide Time: 16:00)

After initialization, we can set various options for the display window using the function

glutInitDisplayMode as shown in the second statement. So, what are these options?

(Refer Slide Time: 16:27)

Now, these options are provided by symbolic GLUT constants as arguments as shown here,

GLUT_SINGLE, GLUT_RGB.

(Refer Slide Time: 16:44)

Now, here in this particular function we have used this statement having these two arguments

GLUT_SINGLE and GLUT_RGB, they indicate that we are specifying a single refresh buffer to

be used for the display window and RGB color mode to be used for selecting color values.

GLUT_SINGLE is for the first task single refresh buffer and GLUT_RGB indicates that RGB

color mode to be used.

(Refer Slide Time: 17:23)

Now, here we should look at the syntax, how this glutInitDisplayMode function is used. In the

constant name which provides the options, we have used GLUT as a prefix all caps followed by

a underline symbol and then the constant name again all caps as shown here or here this is the

particular syntax used to provide arguments. Now, to combine multiple options we are using this

logical or operation, to indicate that we want both that is the syntax used to provide the options.

(Refer Slide Time: 18:32)

Then we are using the two functions glutInitwindowPosition and glutInitwindowSize. Now,

these are used to provide some values that are different than the default values for the window

size and position that is already there in the library function. So, if we want to change the values

then we need to use these two functions glutInitwindowPosition where is specify the value and

glutInitwindowSize where we specify again the size value.

(Refer Slide Time: 19:16)

Now, this window position, which position is specifies? It specifies top left corner position of the

window. Assuming integer screen coordinate system and assuming origin at the top left corner.

These are the assumptions when we specify these values.

(Refer Slide Time: 19:45)

Then in case of glutInitwindowSize where we are specifying the size, the first argument specifies

width that means 800, second argument specifies height that is 600 and both these values are in

pixels, so 800 pixels by 600 pixels. So, we have understood these four functions init,

displaymode, windowPosition and windowSize.

(Refer Slide Time: 20:26)

Next we create the window and set a caption which is optional using the function Createwindow

and the caption is provided within parentheses, but this caption is optional.

(Refer Slide Time: 20:52)

The next thing that we do is specify that the picture is to be displayed in the window that is the

line. Now, we have to create the line and then we can display it in the window, this creation is

done by a separate function which is user defined which we are calling createLine function.

(Refer Slide Time: 21:23)

Now, this createLine function is passed as an argument to another glut library function that is

glutDisplayFunction which is shown here. This indicates that the line is to be displayed on the

window. So, with this function we indicate that we are creating a line which is our image here

that is using the create line function and this line is to be displayed on the window created

through these statements. But before we do that certain initializations are required.

(Refer Slide Time: 22:05)

And these initializations are performed in the init function shown here. Again this init function is

used to make our code look very clean, otherwise we could have used it in a different way and

will come back to this function later.

(Refer Slide Time: 22:37)

So, in order to keep the code clean and to indicate that we want to display a line on the window

we add these two lines init and glutDisplayFunction as shown here.

(Refer Slide Time: 22:53)

Now, those are all done but the window is still not on the screen, we need to activate it once the

window content is decided, that we do with this function glutMainLoop. Here it activates all

display windows created along with their graphic contents. So, this function glutMainLoop

actually puts the window with its content on the screen.

(Refer Slide Time: 23:29)

This function must be the last one in our program, it puts the program into an infinite loop

because the display we want constantly. In this loop the program waits for inputs from devices

an input device such as mouse, keyboard, even if there is no input the loop ensures that the

picture is displayed till the window is closed. So, since we want the picture to remain on the

screen unless there is some input or the window is closed we use the loop and this loop must be

at the last statement of the code in main after we create the image and put it on the window.

(Refer Slide Time: 24:23)

Now, as we have noted so we explained all these functions that are there in main and all this

started with glut indicating that there glut library function except the two functions init and

create line. Now, in these two functions we used OpenGL library function rather than glut library

functions accordingly their syntax are different.

(Refer Slide Time: 24:57)

Each OpenGL function prefixed with GL as we can see in this function init as well as in this

create line function. So, here each function is starting with this prefix gl, it indicates that this

function is a OpenGL function. Each component word within the function name has first letter

capitalized like here C is capitalized in all the cases as you can see Matrix M is capitalized and

so on. So, that is the syntax of OpenGL library function starts with gl and component word

within this function name has first letter capitalized.

(Refer Slide Time: 25:57)

Sometimes some functions may require one or more arguments which are assigned symbolic

constants. For example, a parameter name, parameter value or a particular mode, these are all

part of the OpenGL library function syntax.

(Refer Slide Time: 26:21)

Now, all these constants begin with capital GL all in capital. Each component of the name is

written in capital letters and separated by underline symbol, as we have seen in the case of glut

constants as well like GL underscore RGB, GL underscore AMBIENT underscore AND

underscore DIFFUSE, where everything is in capital separated by underline.

(Refer Slide Time: 26:57)

Also the OpenGL functions expect some specific data types. For example, 32 bit integer as a

parameter value and these functions use built-in data type names for that.

(Refer Slide Time: 27:19)

Each of these names begins with GL and followed by data type name. For example, GLbyte,

GLdouble, but this data type name is in lowercase.

(Refer Slide Time: 27:42)

So, those are the syntax that are used for using OpenGL library functions. Now, let us try to

understand these two functions that we have defined using the OpenGL library functions, one is

init, one is create line. So, let us start with init. This is essentially mean to initialize and perform

one time parameter settings. In our function we have used three OpenGL library routines or

library functions. What they do?

(Refer Slide Time: 28:25)

Now, one is glClearColor, the first one with some argument, four arguments are used. This is

used to set a background color to our display window and this color is specified with RGB

components.

(Refer Slide Time: 28:48)

Now, these RGB components are specified in the first three arguments in that order that means

this is R, this is G, this is B, with this particular set of values as we all know you will get white as

the background color, we can set any background color. For example, if we set all 0, we will get

black.

(Refer Slide Time: 29:21)

Now, there is also a fourth parameter which we have set as 0.0. Now, this is called alpha value

for the specified color and it is used as a blending parameter. In other words it specifies

transparency of the color. If we are using value 0.0 that means the color is totally transparent and

1.0 means totally opaque objects. So, it indicates transparency.

(Refer Slide Time: 30:08)

Now, here we are displaying a line which is a 2D object. However, OpenGL does not treat 2D

objects separately. Now, it treats the 2D pictures as special case of 3D viewing. So, essentially

the entire 3D pipeline stages are performed.

(Refer Slide Time: 30:34)

So, we need to specify the projection type and other viewing parameters that is done with these

two functions glMatrixMode, which is GL_PROJECTION and gluOrtho2D with some

arguments.

(Refer Slide Time: 30:58)

Now, this function gluOrtho2D here the function is prefixed to GLU rather than GL. So, it

indicates that this function belongs to GLU or OpenGL utility another auxiliary library. Earlier

we have seen GLUT OpenGL utility toolkit, now we are seeing OpenGL utility another auxiliary

library.

And this library provides routines for complex tasks such as setting up of viewing and projection

matrices, describing complex objects with line and polygon approximations, processing of

surface rendering operations and displaying splines with linear approximations, these are some

examples of the complex tasks that are part of the pipeline which are implemented in this

OpenGL utility auxiliary library.

(Refer Slide Time: 32:00)

Now, together these two functions glMatrixMode and gluOrtho2D specify an orthogonal

projection to be used to map the line from view plane to the screen. Now, view plane window

specified in terms of lower left and top right corners of the window. So, these arguments specify

the lower left and top right corners of the window and during this projection anything outside of

this window is clipped out as we have discussed during our pipeline discussion.

(Refer Slide Time: 32:58)

Now, let us move to our second function create line. Now, this function is actually creates the

line which we want to display. The first line is glClear with some arguments. Now, this function

is used to display the window with specified background color. Now, the arguments as you can

see an OpenGL symbolic constant indicates bit values in color or the refresh buffer that are to be

set to the background color values specified in the function glClearColor function. So, essentially

this function indicates what should be the background color of the display window.

(Refer Slide Time: 34:10)

Now, OpenGL function also allows us to set the object color with the function glColor3f. So,

there are three arguments again they specify the RGB components ‘RGB’, so these two functions

are used to set color values to the background as well as to the object.

(Refer Slide Time: 34:37)

Now, in the second function this 3f indicates that the three components are specified using

floating point values. In other words the values can range between 0.0 to 1.0. So, in this

particular case these three values denote green color.

(Refer Slide Time: 35:09)

Next we have a piece of code between the two functions glBegin and glEnd, so this indicates the

line segment to be drawn between the endpoints provided in the arguments. So, this function

essentially creates the line between these two endpoints specified with these two arguments and

the functions glVertex2i called twice.

(Refer Slide Time: 35:50)

Now, here this 2i in the function as you can guess indicates that the vertices are specified by two

integer values denoting the X and Y coordinates, this is quite straightforward.

(Refer Slide Time: 36:10)

Now, the first and second endpoints are determined depending on their ordering in the code. So,

this will always be treated as the first point because it is appearing before the other one and this

will be the second point. So, in the way the code is written the first and second points are

determined.

(Refer Slide Time: 36:35)

And this function glBegin with this constant GL_LINES as well as the function glEnd indicate

that the vertices are line end points.

(Refer Slide Time: 36:56)

Now, with all these functions our basic line creation program is ready. One point to be noted

here is that these functions may be stored at different locations in the memory depending on the

way OpenGL is implemented.

(Refer Slide Time: 37:19)

And we need to force the system to process all these functions. This we do with the other

function glFlush as shown here. So, this should be again the last line of our picture generation

procedure which indicates that all these functions that we have used must be processed one after

another.

(Refer Slide Time: 37:47)

So, that is how we can create a program using OpenGL. So, in our example we have used

OpenGL library in the setting of C language and we have also seen that only OpenGL library is

not sufficient, we need to some auxiliary libraries, here we have used GLUT as well as GLU

auxiliary libraries, GLUT stands for GL Utility Toolkit which allows us to create the window

which is a display dependent operation and GLU allows us to perform other complex tasks

which are not there in core OpenGL library.

(Refer Slide Time: 38:44)

So, with this we have come to the end of the topic. So, we have learned various things, the

graphics hardware including the input output and GPU, also we started with a generic

architecture of a graphic system and then learned about various IO and GPU and today we

learned about the graphics software, how the softwares are created, different standards and an

example program using OpenGL, OpenGL can be used to write any graphics program. Now,

with this lecture we have come to the end of the course. So, in the next lecture we will

summarize what we have learnt in this course so far.

(Refer Slide Time: 39:44)

Whatever I discussed today can we found in this book, you can go through chapter 10, section

10.4 to learn on Graphic Software including the OpenGL example. So, in the last lecture we will

summarize our learning so far, so we will see you in the concluding lecture, till then thank you

and goodbye.

