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Hello and welcome to lecture number 26 in the course Computer Graphics, we will continue our 

discussion on the graphics pipeline. For a quick recap, let us just go through the stages. 
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So, we have already discussed the first stage that is object representation, second stage modeling 

transformation, third stage lighting, fourth stage viewing pipeline, and the only stage that is 

remaining is the fifth stage scan conversion. We are currently discussing the fifth stage. 
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In the last lecture, we talked about rendering of lines, which is part of the fifth stage. And there 

we talked about a very intuitive approach as well as a slightly improved approach that is the 

DDA methods. Today, we will continue our discussion on line rendering, where we will talk 

about even better approach. And also we will discuss rendering of circles. 

Now, before we go into the discussion on a better line rendering approach, let us quickly recap 

what we have seen in the previous lecture on line rendering. 
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So the idea was to map a description from viewport to a pixel grid. That is, of course, the 

objective of the fifth stage. 

(Refer Slide Time: 02:20) 

 

In order to do that, simplest approach is just to round off the real coordinates to the nearest 

integers, which are pixels, for example, from (2.3, 2.6) to (2, 3). Now, this is good for points but 

for mapping lines or circles or other primitive shapes, this may not be good. 
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And for line what we did? So we first assume that a line segment is defined by the endpoints. 

And our objective is to map all the points that are on the line to the appropriate pixels. 
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The straightforward approach that we discussed is that first we map the end points to pixels, then 

we start with one endpoint which is having the lower x and y coordinate values, then we work 

out y-coordinate values for successive x-coordinates, where the x-coordinates differ by 1 because 

we are talking pixel grids. And then, this y values that we computed are mapped to the nearest 

integer thereby getting the pixels. 
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Now, this approach has two problems. First, we require multiplication which is a floating-point 

operation. And secondly, we require rounding off which is also a floating-point operation. Now, 

these floating-point operations are computationally expensive and may result in slower rendering 

of lines. 
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To improve, we discussed one incremental approach. There we did not go for multiplication, 

instead we used addition. So to compute y, we simply added this m value to the current value, or 

to compute x, new x, we simply added this 1 by m value to the current x value. Now when to 



choose whether to compute x or y, that depends on the slope. So if the m value is within this 

range, then we compute y given x, otherwise, we compute x given y using the line equation.  
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Now, the DDA can reduce some floating-point operations as we have discussed, particularly 

multiplications. However, it still requires other floating-point operations, namely additions and 

rounding off. So it is still not completely efficient so to speak, and we require a better approach. 

One such approach is given by Bresenham’s algorithm. 
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Now, this is an efficient way to scan convert line segments and we will discuss the algorithm 

assuming m to be within these ranges. That means we will concentrate on computing y value 

given the x value. 
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Now, let us try to understand the situation. Suppose, this is the actual point on the line and we are 

moving along the x-direction, the current position is given by this point (xk, yk). Now, the actual 

point on the line is a floating-point number real number, so we need to map it to the nearest pixel 

grid point. 

Now, there are two potential candidates for that, one is this pixel or the upper candidate pixel 

that is (xk+1, yk+1), and the other one is the lower candidate pixel that is (xk+1, yk), and we have 

to choose 1 of those. How to choose that? 
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Our objective is to choose a pixel that is closer with respect to the other pixel to the original line. 

So between these two pixels, we have to decide which one is closer to the original line and 

choose that pixel. 
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Let us denote by dupper, the distance of the pixel (xk+1), (yk+1) from the line that is the upper 

candidate pixel from the line as shown here. Similarly, d lower indicates the distance of the 

lower candidate pixel from the line. 
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Now, at (xk+1), that is at these points y is given by this expression using the line equation, where 

m is the slope. Then we can say that d upper can be given by ((yk+1) – y), that is this value minus 

this y value, which is given here or this expression. 

Similarly, dlower can also be given as y minus yk. As you can see here, this is the y value and this 

is the yk value. So replacing the y from this equation, you can get this expression. Now, let us do 

some mathematical trick on these expressions. 
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But before that, we should note that if the difference is less than 0 then the lower pixel is closer 

and we choose it, otherwise, we choose the upper pixel. Distance between the y values here, 

here, and here; the two distances that we have used in expressing dupper and dlower. If the 

difference is less than 0, then we choose the lower pixel because that point is closer to the line, 

otherwise, we choose the upper pixel. 
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Now, let us substitute m with this ratio, Δy/Δx, where Δy is the y coordinate difference between 

the endpoints and Δx is the x coordinate difference between the endpoints. And then we 

rearrange and replace this expression with c, which is a constant term. As you can see here, all 

are constants. 

Then what do we get? This term to be equal to this term, both sides we have multiplied by Δx and 

replace m with these expressions. Rearranging and expanding, we get this, then we replace this 

constant term here with c to get this expression. This is a simple manipulation of the terms. 
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Now, let us denote the left-hand side by pk, we call it a decision parameter for the kth step. Now, 

this parameter is used to decide the closeness of a pixel to the line. Now, its sign will be same as 

that of the sign of the difference dlower - dupper. 
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Thus, if pk˂0, then this lower pixel is closer to the line and we choose it, otherwise, we choose 

the upper pixel. 
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So that is at step k. Now, at step k+1 that is the next step, we get pk+1. Now, that is essentially 

given by this expression where we replaced xk with xk+1 and yk with yk+1. These two terms we 

replaced with the next term. Then we take a difference between the two, pk+1 - pk, which gives us 

this expression. 
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Now, we know because we are dealing with a pixel grid that xk+1 is essentially xk + 1. So we can 

rearrange and rewrite the expression as pk+1 = pk + 2Δy – {this term}. That means the decision 

variable at k+1th step is given by the decision variable at kth step plus a term; this and that term. 



Now, if pk<0, that is the lower pixel is closer, then we set ykp+1=yk, otherwise, we set yk+1=yk+1. 

Thus based on the sign of pk, this term becomes either 0 or 1. So you can see the physical 

significance from this figure. So if pk<0 that means in the current stage, lower pixel is closer. 

That means, we have chosen this one. 

Then in the next stage, we have to choose yk+1 = yk that is the lower pixel. If that is not the case, 

then we have to choose yk+1 = yk +1 that is the upper pixel. So depending on the sign of pk, this 

term yk+1 - yk turns out to be either 0 or 1. If pk<0 then this is 0; if pk≮0 then it is 1. 
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So, where we start, then we have to decide on the first decision parameter and that we call p0, 

which is given by twice delta y minus delta x. This value we calculate and then we continue. 
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So the overall algorithm is given here. We first compute these differences between the endpoints 

and the first decision parameter. Then we go inside a loop till we reach the end point. We start 

with one end point and till we reach the other end point, we continue in the loop. 

Now, if p<0, we set that difference to be 0 and then update p as p+2Δy. If p≥0, then we update p 

as given in this expression and then add the corresponding x-y value into the set of pixels that is 

the output of the algorithm. So, depending on the decision value, we choose a pixel and add it to 

the set of pixels. 
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Now, here we assume that m is within this range. When m is outside this range, we have to 

modify this algorithm but that is a minor modification. So you may try it yourself. 

(Refer Slide Time: 17:50) 

 

So what is the advantage of this algorithm? Here if you note, we are choosing the pixels at each 

step depending on the sign of decision parameter, and the decision parameter is computed 

entirely with integer operations so there is no floating-point operation. 



Thus we have eliminated all floating-point operations; additions, rounding off, as well as 

multiplications which is a huge improvement because, in reality, we need to render a large 

number of lines in a short span of time, a very short span of time. So there this saving is 

substantial. There are even better approaches but we will not discuss those any further. 
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Now, let us try to understand the algorithm in terms of one example. 
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We will continue with our example that we have introduced in the previous lecture. So this is the 

line segment given, these are the endpoints already mapped and our job is to find out the 

intermediate pixels that correspond to the points on the line. 
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So we will start with computing Δx, Δy, and initial p. Then we start with one endpoint and add it 

to the list of pixels, the endpoint. 
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Now, we have computed p to be 1, which is ≥0. So here, the upper pixel is closer that means we 

choose this one. We add this and update p with the expression to be -3, and (3, 3) is added to the 

grid. Now, this is not the end point, we have not yet reached the end point so we will continue. 
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In the second execution, we check that p is -3, which ≤0. So in the second case, the lower pixel is 

chosen and we update p again, to be 3, add this lower pixel to the output list and check whether 

we have reached the end point. Since we have not yet reached we continue the loop. And in this 

way, we continue to get other points. 
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So in the next stage, p=3 > 0. So we choose the upper pixel, add this one to the output pixel list, 

continue the loop since we are yet to reach the end point. 
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Then we find p to be -1, less than 0. So we choose the lower pixel, add the pixel to the output 

list, and now, we see that we have reached the other end point. So we stopped the loop and add 

the other endpoint into the list. That is our last step. 
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So finally, what are the points that we get? These are the pixels that we get following the steps of 

the Bresenham’s algorithm. Now, you can compare it with the previous methods that we used. 

However, while comparing, you should keep in mind the number of floating-point operations 

that we avoided because that is the advantage. So if you find that both the sets or all the sets that 

we have found earlier are same that is not a problem because we saved in terms of computation. 



So, with that, we end our discussion on lines scan conversion. So we learned three things; first, 

we started with a simple approach, found its problems, then we discussed one improved 

approach that is the DDA approach. And then, we finally discussed even better approach, the 

Bresenham’s line drawing algorithm, which eliminates all the floating-point operations. Now we 

will move to scan conversion of another primitive shape that is circle. 
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Initially, we will assume that the circle is centered at origin with radius r and its equation is given 

by x2 + y2 = r2. We all know this equation. Now, in the simple approach, the most intuitive and 

straightforward approach what we do? We solve for y after every unit increment of x in the pixel 

grid by using the equation. 
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Clearly, here we have lots of computations, floating-point computations, which involve square 

root and multiplications because r need not be integer. So this is inefficient. We may also need to 

round off the computed values, which is addition of other floating-point operations and the pixels 

that we obtain may not generate smooth circle because there may be gap between actual points 

and the chosen pixels after rounding off. 
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So it suffers from many problems and we require a better solution.  
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Let us try to go through one such solution, which is called the Midpoint algorithm.  
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Now, this algorithm exploits an interesting property of circle that is called eight-way symmetry. 

Now, what is this property? 
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If we look at this figure, we will see that this is the origin and the circle is around the origin, we 

can divide the circle into 8 quadrants, these are the quadrants. And if we determine one point on 

any quadrants say this point, then we can determine seven other points on the circle belonging to 

the seven quadrants without much computations. 

So if this point is (x, y), then we can say this point will be (y, x), will be (y, -x). This one will be 

(x, -y), this one will be (-x, -y), this one will be (-y, -x), this one will be (-y, x), and this one will 

be (-x, y). So this we can straight away determined without any further computation. 
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We can exploit this property in circle scan conversion and by computing one point on a quadrant 

and then use that point to derive the other seven points on the circle. That means we determine 

one pixel, and from there we determine the other seven pixels. So instead of determining the 

pixels through computation eight times, we do it once and the other seven time computations we 

save. 
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Now, let us see how to determine a pixel for a given quadrant. Suppose, we have determined a 

pixel (xk, yk); this is one quadrant of the circle given. Now, next pixel should be either this one or 



this one. Again, we can call them upper candidate pixel and lower candidate pixel. And in this 

case, note that we are going down along this direction, down the scan lines, and our objective is 

to choose a pixel that is closer to the circle. Now, how do we decide which of these two 

candidate pixels is closer to the circle? 
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Again, we go for some mathematical trick. 
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Now, the circle equation, we can reorganize in this way, f(x, y) = x2 + y2 – r2, this is the circle 

equation we can restate in this way. 
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Now, this function we can evaluate as shown here. That is if (x, y) < 0, if the point (x, y) is inside 

the circle; it is 0 if it is on the circle, and it will be greater than 0 if the point is outside the circle. 

This we know from geometry. 
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Then, we can evaluate the function at the midpoint of the two candidate pixels. That means at 

(xk+1, yk – ½). Note that this is yk, so midpoint will be this point that is yk – ½ and it will be xk+1 

that will be the new x coordinate. Now, this will be our decision variable pk after k steps. So let 

us try to see what this variable looks like. 
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So essentially, we compute this function at the point (xk+1, yk–½), which is the midpoint 

between the two candidate pixels, and y half because this is the unit distance, so half or the 

midpoint will be half of this unit distance. 
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So, pk will be the function value at this point. Now, if we expand the function with these 

coordinates, then we get this expression which is the expression for pk. 
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Now, if pk<0 that means, the function evaluates to be less than 0. Then we know from the 

geometric properties that midpoint is inside the circle. That means the upper candidate pixel will 

be closer to the circle boundary. So we choose (xk+1, yk). If that is not the case then we choose 

the other candidate pixel that is (xk+1, yk-1). 



Note that we are going down the scan lines, so next y coordinate will be yk-1. Because in that 

case, midpoint is outside and this lower candidate pixel is closer to the boundary. 
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Now, let us see the expression for the decision variable at the next step that is pk plus 1. So here, 

our new point will be xk+1+1, increment by 1, and yk+1-½, which after expansion will look like 

this. 
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Now, we may expand it further and then rearrange to get a simplified expression that is pk+1 is 

the current decision value plus this term. 
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Now, yk+1 is yk if pk is less than 0 that we have already seen. So in that case, pk+1 will be pk+2, 

xk+3. Now, if pk greater than 0 then yk+1 will be yk-1 that also we have seen. Then the pk+1 term 

will become something like this.  
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As you can see these are all integer operations and we choose the pixels based on an incremental 

approach that is computing the next decision parameter from the current value and that too by 

avoiding floating-point operations. 
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However, that need not be the case because here, the initial decision parameter or decision 

variable involves floating-point operation. And we have to keep that in mind that unlike 

Bresenham’s algorithm, although, the expression for computing the next decision variable does 

not involve any floating-point operation apparently, but when we start with maybe a floating-

point value and then that will remain. So here we are not completely eliminating floating-point 

operations but we are reducing them significantly. 
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So what is the complete algorithm? We first compute the first decision variable and choose the 

first or the starting point. Now, one point we have chosen, then using symmetry we can add four 

other points or pixels. 

Now, when the decision parameter is less than 0, we update the parameter in this way and get the 

pixel to add to the set of pixels. When the decision parameter is greater than 0, then we update 

the decision parameter in this way and get this point as the new pixel. And then we add the new 

pixel to the list of pixels plus we add the seven symmetric points using the symmetric property 

and we continue it until we reach the end of the quadrant. 

So that is how midpoint algorithm works. As you have noted, if we go for simple approach, we 

require a lot of floating-point operations, multiplications, square root, which we avoided by this 

midpoint algorithm. 
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Now here, of course, it may be noted that the algorithm assumes circle is centered at origin and 

we require some modification when we are assuming circles which has its center at any arbitrary 

location. But that minor modification we will not go into the details, you may try it yourself. 
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Now, let us try to understand this algorithm better in terms of one illustrative example. 
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Let us start with the assumption that we have a circle with radius r to be 2.7 that means a real 

number. Now, let us execute the algorithm to find out the pixels that we should choose to 

represent the circle. 
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First stage is compute p, which is 5/4 - r, which gives us this value. And we start with this point 

by rounding off r to 3 and we get this point as the first point in our list, first pixel. And based on 

this first pixel, we add other four pixels in the output list. Then we enter the main loop.  
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So we have p<0, then we update p as per the expression for p<0 and then, get this new pixel 

value. With that, we add eight pixels to the output list (1, 3), (3, 1) (3, -1) (1, -3), and so on. 

Since we have not yet reached the end of the loop, we continue with the loop. 
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In the second loop run, we have p>0. So we use the expression to update p and we get the new 

value and we decide on this new pixel, based on that we choose the eight pixels as shown here. 

Now, we have arrived at the end of the loop, the termination condition is reached so we stop. So 

then at the end what we get. 
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We get 20 pixels shown here. One thing you may note is that there are some pixels that are 

repeated. For example, (2, 2) occur twice; (-2, -2) occurred twice; (2, -2) occurred twice. So this 

repetition is there at the end of the execution of the algorithm. 
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These duplicate entries, we need to remove. So before rendering, we perform further checks and 

processing on the output list to remove such duplicate entries. So the algorithm may give us a list 

having duplicate entries, we need to perform some checks before we use those pixels to render 

the circle to avoid duplications. So that is what we do to render circle. 



So we have learned how to render line, we have learned how to render circle. In both cases, our 

objective was to map from real number values to pixel grids. And our objective was to do so 

without involving floating-point operations to the extent possible because, in practical 

applications, we need to render these shapes very frequently. And there, if too many floating-

point operations are involved, then the speed at which we can render may slow down giving us 

the perception of a distorted image or flickers which are unwelcome. 

In the next class, we will discuss more on rendering other things. Whatever we have discussed 

today, can be found in this book. 
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You may go through chapter 9, section 9.1.2 and 9.2 to get the details on the topics that we 

covered today. So we will meet in the next lecture. Till then, thank you and goodbye.  


