
Computer Graphics

Professor Dr. Samit Bhattacharya

Department of Computer Science and Engineering

Indian Institute of Technology, Guwahati

Lecture - 26

Scan Conversion of Basic Shapes - 2

Hello and welcome to lecture number 26 in the course Computer Graphics, we will continue our

discussion on the graphics pipeline. For a quick recap, let us just go through the stages.

(Refer Slide Time: 00:47)

So, we have already discussed the first stage that is object representation, second stage modeling

transformation, third stage lighting, fourth stage viewing pipeline, and the only stage that is

remaining is the fifth stage scan conversion. We are currently discussing the fifth stage.

(Refer Slide Time: 01:14)

In the last lecture, we talked about rendering of lines, which is part of the fifth stage. And there

we talked about a very intuitive approach as well as a slightly improved approach that is the

DDA methods. Today, we will continue our discussion on line rendering, where we will talk

about even better approach. And also we will discuss rendering of circles.

Now, before we go into the discussion on a better line rendering approach, let us quickly recap

what we have seen in the previous lecture on line rendering.

(Refer Slide Time: 02:02)

So the idea was to map a description from viewport to a pixel grid. That is, of course, the

objective of the fifth stage.

(Refer Slide Time: 02:20)

In order to do that, simplest approach is just to round off the real coordinates to the nearest

integers, which are pixels, for example, from (2.3, 2.6) to (2, 3). Now, this is good for points but

for mapping lines or circles or other primitive shapes, this may not be good.

(Refer Slide Time: 02:49)

And for line what we did? So we first assume that a line segment is defined by the endpoints.

And our objective is to map all the points that are on the line to the appropriate pixels.

(Refer Slide Time: 03:08)

The straightforward approach that we discussed is that first we map the end points to pixels, then

we start with one endpoint which is having the lower x and y coordinate values, then we work

out y-coordinate values for successive x-coordinates, where the x-coordinates differ by 1 because

we are talking pixel grids. And then, this y values that we computed are mapped to the nearest

integer thereby getting the pixels.

(Refer Slide Time: 03:55)

Now, this approach has two problems. First, we require multiplication which is a floating-point

operation. And secondly, we require rounding off which is also a floating-point operation. Now,

these floating-point operations are computationally expensive and may result in slower rendering

of lines.

(Refer Slide Time: 04:20)

To improve, we discussed one incremental approach. There we did not go for multiplication,

instead we used addition. So to compute y, we simply added this m value to the current value, or

to compute x, new x, we simply added this 1 by m value to the current x value. Now when to

choose whether to compute x or y, that depends on the slope. So if the m value is within this

range, then we compute y given x, otherwise, we compute x given y using the line equation.

(Refer Slide Time: 05:18)

Now, the DDA can reduce some floating-point operations as we have discussed, particularly

multiplications. However, it still requires other floating-point operations, namely additions and

rounding off. So it is still not completely efficient so to speak, and we require a better approach.

One such approach is given by Bresenham’s algorithm.

(Refer Slide Time: 06:03)

Now, this is an efficient way to scan convert line segments and we will discuss the algorithm

assuming m to be within these ranges. That means we will concentrate on computing y value

given the x value.

(Refer Slide Time: 06:26)

Now, let us try to understand the situation. Suppose, this is the actual point on the line and we are

moving along the x-direction, the current position is given by this point (xk, yk). Now, the actual

point on the line is a floating-point number real number, so we need to map it to the nearest pixel

grid point.

Now, there are two potential candidates for that, one is this pixel or the upper candidate pixel

that is (xk+1, yk+1), and the other one is the lower candidate pixel that is (xk+1, yk), and we have

to choose 1 of those. How to choose that?

(Refer Slide Time: 07:24)

Our objective is to choose a pixel that is closer with respect to the other pixel to the original line.

So between these two pixels, we have to decide which one is closer to the original line and

choose that pixel.

(Refer Slide Time: 07:51)

Let us denote by dupper, the distance of the pixel (xk+1), (yk+1) from the line that is the upper

candidate pixel from the line as shown here. Similarly, d lower indicates the distance of the

lower candidate pixel from the line.

(Refer Slide Time: 08:28)

Now, at (xk+1), that is at these points y is given by this expression using the line equation, where

m is the slope. Then we can say that d upper can be given by ((yk+1) – y), that is this value minus

this y value, which is given here or this expression.

Similarly, dlower can also be given as y minus yk. As you can see here, this is the y value and this

is the yk value. So replacing the y from this equation, you can get this expression. Now, let us do

some mathematical trick on these expressions.

(Refer Slide Time: 09:49)

But before that, we should note that if the difference is less than 0 then the lower pixel is closer

and we choose it, otherwise, we choose the upper pixel. Distance between the y values here,

here, and here; the two distances that we have used in expressing dupper and dlower. If the

difference is less than 0, then we choose the lower pixel because that point is closer to the line,

otherwise, we choose the upper pixel.

(Refer Slide Time: 10:41)

Now, let us substitute m with this ratio, Δy/Δx, where Δy is the y coordinate difference between

the endpoints and Δx is the x coordinate difference between the endpoints. And then we

rearrange and replace this expression with c, which is a constant term. As you can see here, all

are constants.

Then what do we get? This term to be equal to this term, both sides we have multiplied by Δx and

replace m with these expressions. Rearranging and expanding, we get this, then we replace this

constant term here with c to get this expression. This is a simple manipulation of the terms.

(Refer Slide Time: 11:55)

Now, let us denote the left-hand side by pk, we call it a decision parameter for the kth step. Now,

this parameter is used to decide the closeness of a pixel to the line. Now, its sign will be same as

that of the sign of the difference dlower - dupper.

(Refer Slide Time: 12:28)

Thus, if pk˂0, then this lower pixel is closer to the line and we choose it, otherwise, we choose

the upper pixel.

(Refer Slide Time: 12:47)

So that is at step k. Now, at step k+1 that is the next step, we get pk+1. Now, that is essentially

given by this expression where we replaced xk with xk+1 and yk with yk+1. These two terms we

replaced with the next term. Then we take a difference between the two, pk+1 - pk, which gives us

this expression.

(Refer Slide Time: 13:26)

Now, we know because we are dealing with a pixel grid that xk+1 is essentially xk + 1. So we can

rearrange and rewrite the expression as pk+1 = pk + 2Δy – {this term}. That means the decision

variable at k+1th step is given by the decision variable at kth step plus a term; this and that term.

Now, if pk<0, that is the lower pixel is closer, then we set ykp+1=yk, otherwise, we set yk+1=yk+1.

Thus based on the sign of pk, this term becomes either 0 or 1. So you can see the physical

significance from this figure. So if pk<0 that means in the current stage, lower pixel is closer.

That means, we have chosen this one.

Then in the next stage, we have to choose yk+1 = yk that is the lower pixel. If that is not the case,

then we have to choose yk+1 = yk +1 that is the upper pixel. So depending on the sign of pk, this

term yk+1 - yk turns out to be either 0 or 1. If pk<0 then this is 0; if pk≮0 then it is 1.

(Refer Slide Time: 15:50)

So, where we start, then we have to decide on the first decision parameter and that we call p0,

which is given by twice delta y minus delta x. This value we calculate and then we continue.

(Refer Slide Time: 16:13)

So the overall algorithm is given here. We first compute these differences between the endpoints

and the first decision parameter. Then we go inside a loop till we reach the end point. We start

with one end point and till we reach the other end point, we continue in the loop.

Now, if p<0, we set that difference to be 0 and then update p as p+2Δy. If p≥0, then we update p

as given in this expression and then add the corresponding x-y value into the set of pixels that is

the output of the algorithm. So, depending on the decision value, we choose a pixel and add it to

the set of pixels.

(Refer Slide Time: 17:31)

Now, here we assume that m is within this range. When m is outside this range, we have to

modify this algorithm but that is a minor modification. So you may try it yourself.

(Refer Slide Time: 17:50)

So what is the advantage of this algorithm? Here if you note, we are choosing the pixels at each

step depending on the sign of decision parameter, and the decision parameter is computed

entirely with integer operations so there is no floating-point operation.

Thus we have eliminated all floating-point operations; additions, rounding off, as well as

multiplications which is a huge improvement because, in reality, we need to render a large

number of lines in a short span of time, a very short span of time. So there this saving is

substantial. There are even better approaches but we will not discuss those any further.

(Refer Slide Time: 18:48)

Now, let us try to understand the algorithm in terms of one example.

(Refer Slide Time: 18:54)

We will continue with our example that we have introduced in the previous lecture. So this is the

line segment given, these are the endpoints already mapped and our job is to find out the

intermediate pixels that correspond to the points on the line.

(Refer Slide Time: 19:17)

So we will start with computing Δx, Δy, and initial p. Then we start with one endpoint and add it

to the list of pixels, the endpoint.

(Refer Slide Time: 19:38)

Now, we have computed p to be 1, which is ≥0. So here, the upper pixel is closer that means we

choose this one. We add this and update p with the expression to be -3, and (3, 3) is added to the

grid. Now, this is not the end point, we have not yet reached the end point so we will continue.

(Refer Slide Time: 20:13)

In the second execution, we check that p is -3, which ≤0. So in the second case, the lower pixel is

chosen and we update p again, to be 3, add this lower pixel to the output list and check whether

we have reached the end point. Since we have not yet reached we continue the loop. And in this

way, we continue to get other points.

(Refer Slide Time: 20:43)

So in the next stage, p=3 > 0. So we choose the upper pixel, add this one to the output pixel list,

continue the loop since we are yet to reach the end point.

(Refer Slide Time: 21:05)

Then we find p to be -1, less than 0. So we choose the lower pixel, add the pixel to the output

list, and now, we see that we have reached the other end point. So we stopped the loop and add

the other endpoint into the list. That is our last step.

 (Refer Slide Time: 21:46)

So finally, what are the points that we get? These are the pixels that we get following the steps of

the Bresenham’s algorithm. Now, you can compare it with the previous methods that we used.

However, while comparing, you should keep in mind the number of floating-point operations

that we avoided because that is the advantage. So if you find that both the sets or all the sets that

we have found earlier are same that is not a problem because we saved in terms of computation.

So, with that, we end our discussion on lines scan conversion. So we learned three things; first,

we started with a simple approach, found its problems, then we discussed one improved

approach that is the DDA approach. And then, we finally discussed even better approach, the

Bresenham’s line drawing algorithm, which eliminates all the floating-point operations. Now we

will move to scan conversion of another primitive shape that is circle.

(Refer Slide Time: 23:19)

Initially, we will assume that the circle is centered at origin with radius r and its equation is given

by x2 + y2 = r2. We all know this equation. Now, in the simple approach, the most intuitive and

straightforward approach what we do? We solve for y after every unit increment of x in the pixel

grid by using the equation.

(Refer Slide Time: 23:54)

Clearly, here we have lots of computations, floating-point computations, which involve square

root and multiplications because r need not be integer. So this is inefficient. We may also need to

round off the computed values, which is addition of other floating-point operations and the pixels

that we obtain may not generate smooth circle because there may be gap between actual points

and the chosen pixels after rounding off.

(Refer Slide Time: 24:44)

So it suffers from many problems and we require a better solution.

(Refer Slide Time: 24:52)

Let us try to go through one such solution, which is called the Midpoint algorithm.

(Refer Slide Time: 25:05)

Now, this algorithm exploits an interesting property of circle that is called eight-way symmetry.

Now, what is this property?

(Refer Slide Time: 25:19)

If we look at this figure, we will see that this is the origin and the circle is around the origin, we

can divide the circle into 8 quadrants, these are the quadrants. And if we determine one point on

any quadrants say this point, then we can determine seven other points on the circle belonging to

the seven quadrants without much computations.

So if this point is (x, y), then we can say this point will be (y, x), will be (y, -x). This one will be

(x, -y), this one will be (-x, -y), this one will be (-y, -x), this one will be (-y, x), and this one will

be (-x, y). So this we can straight away determined without any further computation.

(Refer Slide Time: 26:28)

We can exploit this property in circle scan conversion and by computing one point on a quadrant

and then use that point to derive the other seven points on the circle. That means we determine

one pixel, and from there we determine the other seven pixels. So instead of determining the

pixels through computation eight times, we do it once and the other seven time computations we

save.

(Refer Slide Time: 27:07)

Now, let us see how to determine a pixel for a given quadrant. Suppose, we have determined a

pixel (xk, yk); this is one quadrant of the circle given. Now, next pixel should be either this one or

this one. Again, we can call them upper candidate pixel and lower candidate pixel. And in this

case, note that we are going down along this direction, down the scan lines, and our objective is

to choose a pixel that is closer to the circle. Now, how do we decide which of these two

candidate pixels is closer to the circle?

(Refer Slide Time: 28:11)

Again, we go for some mathematical trick.

(Refer Slide Time: 28:18)

Now, the circle equation, we can reorganize in this way, f(x, y) = x2 + y2 – r2, this is the circle

equation we can restate in this way.

(Refer Slide Time: 28:33)

Now, this function we can evaluate as shown here. That is if (x, y) < 0, if the point (x, y) is inside

the circle; it is 0 if it is on the circle, and it will be greater than 0 if the point is outside the circle.

This we know from geometry.

(Refer Slide Time: 29:05)

Then, we can evaluate the function at the midpoint of the two candidate pixels. That means at

(xk+1, yk – ½). Note that this is yk, so midpoint will be this point that is yk – ½ and it will be xk+1

that will be the new x coordinate. Now, this will be our decision variable pk after k steps. So let

us try to see what this variable looks like.

(Refer Slide Time: 29:48)

So essentially, we compute this function at the point (xk+1, yk–½), which is the midpoint

between the two candidate pixels, and y half because this is the unit distance, so half or the

midpoint will be half of this unit distance.

(Refer Slide Time: 30:16)

So, pk will be the function value at this point. Now, if we expand the function with these

coordinates, then we get this expression which is the expression for pk.

(Refer Slide Time: 30:42)

Now, if pk<0 that means, the function evaluates to be less than 0. Then we know from the

geometric properties that midpoint is inside the circle. That means the upper candidate pixel will

be closer to the circle boundary. So we choose (xk+1, yk). If that is not the case then we choose

the other candidate pixel that is (xk+1, yk-1).

Note that we are going down the scan lines, so next y coordinate will be yk-1. Because in that

case, midpoint is outside and this lower candidate pixel is closer to the boundary.

(Refer Slide Time: 31:33)

Now, let us see the expression for the decision variable at the next step that is pk plus 1. So here,

our new point will be xk+1+1, increment by 1, and yk+1-½, which after expansion will look like

this.

(Refer Slide Time: 31:55)

Now, we may expand it further and then rearrange to get a simplified expression that is pk+1 is

the current decision value plus this term.

(Refer Slide Time: 32:14)

Now, yk+1 is yk if pk is less than 0 that we have already seen. So in that case, pk+1 will be pk+2,

xk+3. Now, if pk greater than 0 then yk+1 will be yk-1 that also we have seen. Then the pk+1 term

will become something like this.

(Refer Slide Time: 33:01)

As you can see these are all integer operations and we choose the pixels based on an incremental

approach that is computing the next decision parameter from the current value and that too by

avoiding floating-point operations.

(Refer Slide Time: 33:22)

However, that need not be the case because here, the initial decision parameter or decision

variable involves floating-point operation. And we have to keep that in mind that unlike

Bresenham’s algorithm, although, the expression for computing the next decision variable does

not involve any floating-point operation apparently, but when we start with maybe a floating-

point value and then that will remain. So here we are not completely eliminating floating-point

operations but we are reducing them significantly.

(Refer Slide Time: 34:11)

So what is the complete algorithm? We first compute the first decision variable and choose the

first or the starting point. Now, one point we have chosen, then using symmetry we can add four

other points or pixels.

Now, when the decision parameter is less than 0, we update the parameter in this way and get the

pixel to add to the set of pixels. When the decision parameter is greater than 0, then we update

the decision parameter in this way and get this point as the new pixel. And then we add the new

pixel to the list of pixels plus we add the seven symmetric points using the symmetric property

and we continue it until we reach the end of the quadrant.

So that is how midpoint algorithm works. As you have noted, if we go for simple approach, we

require a lot of floating-point operations, multiplications, square root, which we avoided by this

midpoint algorithm.

(Refer Slide Time: 35:58)

Now here, of course, it may be noted that the algorithm assumes circle is centered at origin and

we require some modification when we are assuming circles which has its center at any arbitrary

location. But that minor modification we will not go into the details, you may try it yourself.

(Refer Slide Time: 36:23)

Now, let us try to understand this algorithm better in terms of one illustrative example.

(Refer Slide Time: 36:34)

Let us start with the assumption that we have a circle with radius r to be 2.7 that means a real

number. Now, let us execute the algorithm to find out the pixels that we should choose to

represent the circle.

(Refer Slide Time: 36:59)

First stage is compute p, which is 5/4 - r, which gives us this value. And we start with this point

by rounding off r to 3 and we get this point as the first point in our list, first pixel. And based on

this first pixel, we add other four pixels in the output list. Then we enter the main loop.

(Refer Slide Time: 37:34)

So we have p<0, then we update p as per the expression for p<0 and then, get this new pixel

value. With that, we add eight pixels to the output list (1, 3), (3, 1) (3, -1) (1, -3), and so on.

Since we have not yet reached the end of the loop, we continue with the loop.

(Refer Slide Time: 38:11)

In the second loop run, we have p>0. So we use the expression to update p and we get the new

value and we decide on this new pixel, based on that we choose the eight pixels as shown here.

Now, we have arrived at the end of the loop, the termination condition is reached so we stop. So

then at the end what we get.

(Refer Slide Time: 38:44)

We get 20 pixels shown here. One thing you may note is that there are some pixels that are

repeated. For example, (2, 2) occur twice; (-2, -2) occurred twice; (2, -2) occurred twice. So this

repetition is there at the end of the execution of the algorithm.

(Refer Slide Time: 39:27)

These duplicate entries, we need to remove. So before rendering, we perform further checks and

processing on the output list to remove such duplicate entries. So the algorithm may give us a list

having duplicate entries, we need to perform some checks before we use those pixels to render

the circle to avoid duplications. So that is what we do to render circle.

So we have learned how to render line, we have learned how to render circle. In both cases, our

objective was to map from real number values to pixel grids. And our objective was to do so

without involving floating-point operations to the extent possible because, in practical

applications, we need to render these shapes very frequently. And there, if too many floating-

point operations are involved, then the speed at which we can render may slow down giving us

the perception of a distorted image or flickers which are unwelcome.

In the next class, we will discuss more on rendering other things. Whatever we have discussed

today, can be found in this book.

(Refer Slide Time: 41:15)

You may go through chapter 9, section 9.1.2 and 9.2 to get the details on the topics that we

covered today. So we will meet in the next lecture. Till then, thank you and goodbye.

