Computer Graphics
Professor Dr. Samit Bhattacharya
Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati
Lecture - 24
Hidden Surface Removal - 2

Hello and welcome to lecture number 24 in the course Computer Graphics. We are in the

process of learning about the 3D graphics pipeline, which has five stages.

(Refer Slide Time: 00:46)

|
Owd vyov i \/ | [ETE
Fostwap |
| .
Mk g protrvubn \/ | e |
FRoxed gl I

WA e I
. i \
e .
Mt trn) !
= \ —ﬂi;;'7
| wrth
Vemy 1y
retmiy |
|
. Yowcaring
Tkeno |
1
1
|

|
[T
Pupewn | el
b ||
]
(N}
1 —r -y
Moek-tenxd | “::::‘
o
1
e e i
St emabn, | Twca B N
| Pren e

What are those stages, let us recap. Object representation, modeling transformation, lighting,
viewing pipeline, and scan conversion. So we are currently in this fourth stage of discussion

that is the viewing pipeline.

(Refer Slide Time: 01:12)

There we covered three transformations that are sub stages of the fourth stage namely, view
transformation, projection transformation, viewport transformation.

(Refer Slide Time: 01:28)

Then there are two more operations. These are also sub stages of this fourth stage, clipping
and hidden surface removal.

(Refer Slide Time: 01:40)

Recap

In the previous lectures, we discussed clipping
| &Started discussion on HSR

* Today, we'll continue on 1ISR .

Among them, we have already discussed clipping and we started our discussion on HSR or
hidden surface removal. So we will continue our discussion on HSR and conclude that

discussion today.

(Refer Slide Time: 01:54)

Depth Sorting Algorithm

So in the last lecture, we talked about two hidden surface removal method namely, back face
elimination and depth buffer algorithm. Today, we are going to talk about few more hidden
surface removal methods. We will start our discussion with another method that is called

depth sorting algorithm.

(Refer Slide Time: 02:21)

DeLth Sortmg (I’@er S)A

* Works at both image and object spaces

* Often called painter’s algorithm - tries to
simulate the way painter draws a scene

Now, this depth sorting algorithm is also known as the painter’s algorithm, another popular
name and it works at both image and object space. So it works both at the pixel level as well

as the surface level. And why it is called painter’s algorithm? Because it tries to simulate the

way painter draws a scene.

(Refer Slide Time: 02:56)
Depth Sorting (Painter’s) Algo

74T :
‘@‘_&@ basic steps

Now this algorithm consists of two basic steps.

(Refer Slide Time: 03:06)

Depth Sorting (Painter’s) Algo

' RN . -)
* Fist - @)gysgtaces on their depth (from view
| plane)

* Determine max and min depths of each surface

¢ Sorud xurfm hst crcau,d based on max depth

“’Y 151,82, * = = in} where 7 = ith surface and

depthi) <+ 1)

What is the first step? In the first step, it sorts the surfaces based on their depth with respect
to the view position. To do that, we need to determine the max and min depth of each surface.
That means the maximum and minimum depth of each surface and then we create a sorted

surface list based on the maximum depth.

So we can denote this list in terms of notation si, and we can arrange them in ascending order
of depth. So in this notation, depth of si is less than depth of si+1 that is the first stage of the
algorithm.

(Refer Slide Time: 04:21)

Depth Sorting (Painter’s) Algo

* Next - render surfaqc on the screen one at 4

time

. S’tartigg with surface having maximum depth
(L, fn)in 5) to surface with the lowest depth

In the next stage, we render the surface on the screen one at a time, starting with surface
having maximum depth that is the nth surface in the list to surface with the least depth or the

lowest depth.

(Refer Slide Time: 04:45)

Depth Sorting (Painter’s) Algo

* During rendering surfacc@ we
’ compatc it with all other
surfaces of § to check depth
overlap -
* Min depth of one surface > max
depth of other surface

Now, during rendering, during the second stage, we perform some comparisons. So when we
are rendering a surface si, we compare it with all other surfaces in the list S to check for depth
overlap. That means the minimum depth of one surface is greater than maximum depth of
another surface as the situation is illustrated here. Because that these two surfaces here, there
is no depth overlap because the minimum is greater than maximum. However, here the

minimum is not greater than maximum, so there is a depth overlap.

(Refer Slide Time: 05:52)

Depth Sorting (Pamnter’s) Algo

* No overlap - tender surface b\
T - m.'"\ “'/ = II
| and remove from § P TR
e o I i
A0 SRES S 4 _.._._.-\.
\.\t | ,"\
z it
| X X
T Y
St

If there is no overlap then render the surface and remove it from the list S.

(Refer Slide Time: 06:03)

Depth Sotting (Painter’s) Algo

* Otherwise, perform checks -

I v Bounding rectangles of the two surfaccs@/o not ow@ I
\ Sutfaceifks completel(behind prerlapping surface relafive to viewing
position == .

v Overapping surface comnlelgl&'n front of i relative to viewing

posItion

v Boundary edge projections of the two surfaces onto the view plane do
nof overlap ' -

In case there is overlap, we perform more checks. First check is bounding rectangles of the
two surfaces do not overlap, we check for it. Then we check whether surface si is completely
behind the overlapping surface relative to the viewing position. That is the second check, this
is the first check. In the third check, overlapping surface completely in front of si relative to

the viewing position that is the third check.

And finally, the boundary edge projections of the two surfaces on to the view plane do not
overlap, this is the fourth check. So there are series of checks that we perform in case there is

depth overlap.

(Refer Slide Time: 07:06)

Depth Sorting (Painter’s) Algo

* Bounding rectangles of the two 2
| surfaces do not ovetlap

* TRUE if there ssno overlap in the x 2, |
and y coordinate extents of the wo =

X
- - »
2

7
o\
A N
X

* If esther of these coordmates overlap, = &\L
e o
condition fails K

. \

Let us try to understand these checks. First check is bounding rectangles; do not overlap.
Now, how do we check for it? So the rectangles do not overlap if there is no overlap in the x

and y coordinate extents of the two surfaces.

Consider the situation here. This is one surface, this is another surface. So here, Xmin is less
than Xmax, SO there is overlap. If there is no overlap then Xmin would be higher than Xmax of
the other surface. So if either of these coordinates overlap then the condition fails that means
bounding rectangles overlap. So we check for X and Y coordinate extents and then decide

whether bounding rectangles overlap or not.

(Refer Slide Time: 08:22)

Depth Sorting (Pamnter’s) Algo

* Surface i completely behind overlapping +?
xlll’f‘ltt‘ rt’htl\e (0] Vlf\\l& ()&m(1 Ly
| * Determine plane equarion of o erlam]ue \smm I
\urtm nunml pmnr Fowards viewer) s
ST \
* Next, check ; lll\rrn(¢s of i with t‘qluhnn 20 ,/ N
,/' Surtace 1

* If for all vertices of & cquation returns 2, -
v dud.* 07 377s behind overlapping surfice

* Otherwise, condition fails \)y

Next check is surface si completely behind overlapping surface relative to the viewing
position. Now how do we determine it? We determine the plane equation of the overlapping

surface where the normal point towards the viewer.

Next we check all vertices of si with the plane equation of that overlapping surface. If for all
vertices of si the plane equation of the overlapping surface returns value less than 0, then si is
behind the overlapping surface, otherwise, it is not behind and this condition fails. Situation
is depicted in this diagram.

(Refer Slide Time: 09:22)

Depth Sotting (Painter’s) Algo

* Overlapping surface completely in
front of f_\}re]atwc to viewing e == I
position sumz

- - . . Lm
* Can be checked similarly with plane
- Z
Sudace 1

~

equation of @'md vertices of
overlapping surface (for all vertices, ~ m
equation should return positive vahue)

- <

X

The third condition that we check is whether the overlapping surface is completely in front of
the surface of interest si, again relative to the viewing position. Now, this we can check

similarly with the plane equations that we have done earlier.

Now, this time we use the plane equation of si rather than this overlapping surface and we use
the vertices of the overlapping surface. So we use those vertices in the plane equation and for
all vertices, if the equation returns positive value then it is completely in front, otherwise, the

condition fails. Situation is shown in this figure.

(Refer Slide Time: 10:19)

Depth Sotting (Painter’s) Algo

* Boundary edge projections of
| the two surfaces onto the view Sutis 1 Bounding box I
planc do not overlap

-

e /

[

J /
e — 4 f
: TR ,"/

* To check, need set of projected
pixels for each surface and then
check if there are any common

pixels in the two sets
e = W/

8 -~ Surface 2

v

And finally, the boundary edge projections of the two surfaces onto the view plane do not the
overlap, this is the final check. Now, in order to check for these we need set of projected
pixels for each surface and then check if there are any common pixels in the two sets. The
idea is illustrated here. If there are common pixels in the two sets then definitely, there is an

overlap, otherwise, there is no overlap.

(Refer Slide Time: 11:00)

Depth Sorting (Painter’s) Algo

* Incotporates elements of both object space and
image space methods I
st and last checks performed at pixel level (image

spacc)

\}{)thcr two checks are performed at object level

Now, as you can see here that this algorithm incorporates elements of both object space and
image space methods. The first and the last checks were performed at the pixel level so that is
image space, whereas the other two, second and third, were have performed at the object

level. So here, the element of object space method is present.

(Refer Slide Time: 11:39)

Depth Sorting (Painter’s) Algo

* Tests performed following the order

’ * As soon as one of the checks is true, we move to

check for overlap with the next surface of the list

Now, when we perform the tests, we perform the tests following this ascending order
maintained in s and also, the order of the checks that we have mentioned. Now, as soon as
any one of the checks is true, we move to the check for overlap with the next surface of the

list.

So essentially, what we are doing? Initially, we are checking for Z overlap for one surface,
with all other surfaces, if it succeeds then we simply render the surface, otherwise, we
perform the checks in that particular order, and during the checks if any check is true then we

move to the next step rather than continuing with the other checks.

(Refer Slide Time: 12:43)

Depth Sorting (Panter’s) Algo

* If all tests fail, we swap the order of the sutfaces

I T e s
I in the list (called .@ori_m@ and stop

*Then, we rest: hole process agat
Ihen, we restart the whole process again |

Now if all the test fail, what happens in that case? We swap the order of the surfaces in the
list. This is called reordering and then we stop. Then we restart the whole process again from
the beginning. So if all checks fail, then we need to reorder the surface list and then we start

from the beginning.

(Refer Slide Time: 13:12)

Depth Sorting (Painter’s) Algo

* Sometimes, there are suefaces ,,

Sufac‘e 1

that intersect | s I
- _ Intersection line

 — -

* One part of surface | ata depth / :}\

larger than surface 2, other part ™ Sutn 2

has lesser depth \l/

Now, sometimes there are issues. Sometimes we may get surfaces that intersect with each

other. For example, see this surfaces. This is one surface, this is another surface, and they

intersect each other. So in this example, one part of surface 1 is at a depth which is larger

than surface 2, whereas the other part is at a depth which is lesser than surface 2, as you can

see in this figure.

(Refer Slide Time: 13:48)

Depth Sorting (Painter’s) Algo

* We may initially keep surface 1

I after surface 2 in the sorted list

~

Surface 1

- Interseclion line I

™ sutace 2

X

Now, in such situations we may face problem, we may initially keep surface 1 and surface 2

in a particular way that is surface 1 after surface 2 in the sorted list.

(Refer Slide Time: 14:10)

Depth Sorting (Pamnter’s) Algo

* All conditions wil fail - have to
| reorder Sy an, S

* Conditions shall fail again - have

to reorder again 3, 0L

«jﬂ]ﬁnitc loop

_ htersection line I

However, if you perform the algorithm you will see that for these surfaces, all conditions will
fail so we have to reorder. But that will not solve our purpose. Even if we reorder, the

conditions will fail again and we have to reorder again.

So initially, we have S; followed by S, next we will have S; followed by Si. Then we will
have to reorder again S; followed by S, and this will go on, and we may end up in an
indefinite loop because the surfaces intersect and the relative distance between the two are

difficult to determine.

(Refer Slide Time: 15:05)

Depth Sorting (Painter’s) Algo

* To avoud, we can use an extra flag (a Boolean

variable) for each surface

* If a surface 15 reordered, corresponding flag will

be sct_@

In order to avoid such situations what we can do is we can use an extra flag, a Boolean flag
for each surface. If a surface is reordered then the corresponding flag will be set ON, which

indicates that the surface is already reordered once.

(Refer Slide Time: 15:29)

Depth Sotting (Patnter’s) Algo

* If the surface needs to be reordered next time, we

| shall do the following -

\/Divide surface along intersection line)

\ /(dd two new surfaces in the sorted list, at |

appropriate positions)

Now, if the surface needs to be reordered again next time we shall do the following. We
divide the surface along the intersection line and then add two new surfaces in the sorted list
at appropriate positions. So when the surface needs to reordered again, we know that there is
intersection. Then we divide the surface along the intersection lines and then add two new

surfaces instead of one in the list in a sorted order.

Of course, these two steps are very easy to do and requires lots of computations, however, we
will not go into the details we just give you some idea rather than the details of how to do

that. So that is the basic idea of painter’s algorithm.

(Refer Slide Time: 16:15)

Warnock’s Algorithm

We will discuss one more algorithm Warnock’s algorithm.

(Refer Slide Time: 16:29)

This is actually part of a group of methods for hidden surface removal, which are collectively

known as area subdivision methods and they work on same general idea. And what is that
idea?

(Refer Slide Time: 16:56)

So we first consider an area of the projected image.

(Refer Slide Time: 17:05)

Area Subdivision

* If we can determine which (polygonal) surfaces
are visible in the area

* We :1ssi&n those surface colors to the area

Then if we can determine which polygonal surfaces are visible in the area then we assign
those surface colors to the area. Of course, if we can determine then our problem is solved.

So that determination is the key issue here.

(Refer Slide Time: 17:28)

Area Subdivision

. cherwi_%e_

* We recursively subdivide area into smaller regions

: ;‘}ppl}’ same decision logic on sub regions -

Now if we cannot determine, we recursively subdivide area into smaller regions and apply

the same decision logic on the sub regions. So it is a recursive process.

(Refer Slide Time: 17:44)

Warnock’s algorithm is one of the earliest subdivision method developed.

(Refer Slide Time: 18:02)

In this algorithm, we subdivide a screen area into four equal squares. As you can see this is
the region which we divide into four equal squares Pi, P2, P3 and P4 then we perform

recursion.

(Refer Slide Time: 18:28)

Warnock’s Algorithm

* Then, we check for visiblity in
o ¢ B P
ach square to determine pixel I
colors in the (square) region

\
\ A

Subragion Fy, avarapped by the sutace

We check for visibility in each square to determine pixel colors in the square region. So we

process each square at a time.

(Refer Slide Time: 18:40)

Warnock’s Algorithm

*T} IBEE Cas_es to check

Py Ay
I * Case 1 - current square region being

checked does not contain any surface

v

SR - P/ /
\//\\L do not subdivide the region any P 1)

p}|) 'P: " I“.’ P‘

further and assign background colot to B
-~ . o Py | Py

the piels contamed in it

|
|
1

Subragian £y, avarapped by the suface

And in this processing, there are three cases to check. Case 1, is current square region being
checked does not contain any surface. In that case, we do not sub divide the region any
further because it does not have any surface so there is no point in further checking and we

simply assign background color to the pixels contained in this sub region.

(Refer Slide Time: 19:13)

Warnock’s Algorithm

* THRET Cases to check

\ 8, 3
I * Case 2 - nearest surface completely
oveslaps the region under consideration

* Square 1§ not subdivided further

* We assign the surface color to the region

Subregion Py, avarlapped by tha suace

In case 2, the nearest surface completely overlaps the region under consideration. That means
it is completely overlapped by the surface that is closest to the viewer. In this case also, we do
not further sub divide the square, instead we simply assign the surface color to the region
because it is completely covered by the surface. So note that here we need to determine the
nearest surface and then determine the extent of this surface after projection so that we can

check whether it completely cover that sub region.

(Refer Slide Time: 20:05)

Warnock’s Algorithm

* THREE Cases to check
* Case 3 - None of these
/(l recursively divide segion into four sub —
regions and repéat the aforementioned / "7
e = A Pitg 740

checls

S \f 15 Payg

* Recursion stops if cither of the cases i |

A . niye e S AN 3/
met or the region size becomes equal to E G
pixel size

Sunm;mm avarapped by tha surtace

And there is case 3, where none of case 1 and 2 holds. In this case, we perform recursion. We

recursively divide the region into four sub regions and then repeat the checks. Recursion

stops if either of the cases is met or the region size becomes equal to pixel size. For example,
here, as you can see, we subdivided into four more sub regions Pz, 32, 33, and zs. Then 31 we

performed another recursion, again divided into sub regions, four sub regions.

And we continue till either of the conditions 1 or 2 is met or the sub region size becomes
equal to pixel size that is the smallest size possible. So this is the idea of the algorithm, where
we assume that we are having projected image and then, we divide it into four sub regions at

a time and perform recursive steps.

(Refer Slide Time: 21:27)

Summary

So with that, we have come to the conclusion of our discussion on hidden surface removal.

(Refer Slide Time: 21:37)

Recap

\/{SR important operation in 4™ stage
I x}"({omplex tasks

\‘/(’.{)hcrcncc principles exploited to reduce
complexity

Now, before we conclude, few things to be noted here. The hidden surface removal is an
important operation in the fourth stage, but it involves lots of complex operations and we

exploit the coherence principles to reduce such complexities. These are the things that we

should remember.

(Refer Slide Time: 22:05)

Recap

Sfhere ase many methods
\YE{roadly of two types

* Object space

* Image space

Also, we should remember that there are many methods for hidden surface removal and

broadly, they are of two types, object space method and image space method.

(Refer Slide Time: 22:16)

Recap

\'/<(covered FOUR
\ ‘/Igck face climination (object space method)
& buffer algorithm (image space method)

/ﬁlmlLr s algorithm (mmcL & object based method)

/ﬂ(’tmocl\ S algorithm (image space method)

Among these methods, we covered four such methods that is back face elimination, which is

an object space method; Z-buffer algorithm, an image space method; painter’s algorithm, a

mix of image and object based method; and Warnock’s algorithm, which is image space

method. There are other approaches of course.

(Refer Slide Time: 22:42)

Note

* Another object space method - Qctw\ejmethod
* Will not discuss here

* May refer to learning matesial mentioned at the end

One popular approach, which is an object space method is an Octree method, which we will
not discuss in details, you may refer to the learning material. So we covered fourth stage and
all its sub stages namely, the three transformations view transformation, projection
transformation, viewport transformation, and also the two operations namely, clipping and

hidden surface removal.

(Refer Slide Time: 23:19)

Book

* Bhattacharya, 8. (December, 2013). Computer Graphics, Oxford University
Press

* ISBN-13: 978:0-19-809619:1

* ISBN-10: 0-19-809619-4

Ch%:r_& Sec 8.6 & 8.7 (also may check
(8.8 for an Intro toOctree)method)

Whatever we have discussed so far can be found in this book. You may refer to chapter 8,
sections 8.6 and 8.7. Also, if you are interested to learn more about another object space
method that is the Octree method you may check section 8.8 as well.

So that is all for today. In the next lecture, we will start our discussion on the next stage of the

pipeline that is scan conversion. Till then, thank you and good bye.

