
Computer Graphics

Professor Dr. Samit Bhattacharya

Department of Computer Science and Engineering

Indian Institute of Technology, Guwahati

Lecture 22

2D Fill-area Clipping and 3D Clipping

(Refer Slide Time: 00:46)

Hello and welcome to lecture number 22 in the course Computer Graphics. We are currently

discussing the 3D graphics pipeline. And the pipeline has got 5 stages. We have already

discussed object representation that is the first stage. Then modelling transformations - second

stage. Lighting or assigning colour - third stage. Currently, we are in the fourth stage that is

viewing pipeline. As you can see, it consists of 5 sub-stages. We have already discussed few of

those and continuing our discussion on the remaining ones.

(Refer Slide Time: 01:20)

So, among those sub-stages we have already discussed earlier. View transformation, projection

transformation and viewport transformation.

(Refer Slide Time: 01:34)

Two more operations are there, as we have seen in the pipeline; clipping and hidden surface

removal. Among them currently we are discussing clipping.

(Refer Slide Time: 01:48)

So, in the last lecture, we introduced the basic idea of clipping and also discussed 2D line

clipping. So, will continue our discussion on clipping. Today, we are going to discuss fill area

clipping as well as 3D clipping.

(Refer Slide Time: 02:12)

So, what is this fill area clipping? So, as we mentioned, when we talk of clipping, there is a

clipping window and earlier we have discussed how to clip points and lines against this window.

However, when we project objects the projection maybe in the form of a fill area such as a

polygon where there is a boundary.

Now clipping a filled area is different than flipping a point or a line, as we shall see in todays

lecture. In fact, such situations are quite frequent in practice where we have to clip polygons

against the clipping window. So, it requires some mechanism to do that.

(Refer Slide Time: 03:12)

Now, what can be a very obvious and straightforward approach, let us try to understand the

situation. Suppose this is our clipping window and we are given a polygon, something like this

after projection say this triangle. So we have to keep this part which is inside the clipping

window, which I am showing with shade and we have to clip out the, outside part. How we can

do that?

One way can be to use the line clippers that we discussed in earlier lecture for each of the edge,

like here is one edge, one edge, one edge of the field area. And then perform clipping on the

edges and decide on the clipped region. However, as you can see from this example, that is not

necessarily easy, efficient and going to give us a good approach. Sometimes it is even difficult to

understand how it works

(Refer Slide Time: 04:45)

Instead, we require better approaches. There are in fact, many efficient algorithms proposed for

the purpose. In this lecture we are going to discuss two of those approaches. One is Sutherland-

Hodgeman algorithm and the other one is Weiler-Atherton algorithm. Let us try to understand

these algorithms.

(Refer Slide Time: 05:13)

We will start with the Sutherland-Hodgeman algorithm, what this algorithm does? Here in this

algorithm we start with 4 clippers. Now, these clippers are essentially the lines that define the

window boundary. For example, if this is my window boundary, then each of these lines defining

the boundary is a clipper.

So, there are 4 clippers in 2D clipping that is right, left, above and below. Now, each clipper

takes as input a list of ordered pair of vertices which essentially indicate the edges, each pair of

vertex indicate the edge. And from that input list it produces another list of output vertices that is

the basic idea. So, there are 4 clippers, each clipper takes as input a list of ordered pair of vertices

where each pair of vertices represent an edge. And then it performs some operations to produce

an output list of vertices.

(Refer Slide Time: 06:55)

Now, when we perform these operations, we impose some order of checking against each clipper

that can be any order. Here in this discussion will assume the order left clipper first, then right

clipper, then bottom clipper, and at the end the top or above clipper.

(Refer Slide Time: 07:20)

Now, as we said we start with the left clipper. So, its input set is the original polygon vertices or

in other words, the original polygon edges represented by the pair of vertices that is the input set

to the first or the left clipper.

(Refer Slide Time: 07:44)

Now, to create a vertex list as output or also to provide the input vertex list, we need to follow a

naming convention, whether to name the vertices in a clockwise manner or anticlockwise

manner. Here again, we will assume that we will follow an anticlockwise naming of vertices.

With these conventions, let us denote input vertex list to a clipper by the set V having these

vertices.

(Refer Slide Time: 08:31)

Now, for each edge or the pair of vertices in the list denoted by vi, vj. We perform some checks

and based on the check results, we take some action. So, what are those checks?

(Refer Slide Time: 08:52)

If vi is inside and vj is outside of the clipper then we return the intersection point of the clipper

with the edge represented by the vertex pair vi, vj. If both vertices are inside the clipper, then we

return vj.

(Refer Slide Time: 09:25)

If vi is outside and vj is inside of the clipper, then we return two things. One is the intersection

point of the clipper with the edge represented by the pair vi, vj and also vj. Both the things we

return intersection point and vj. And finally, if both vertices are outside the clipper then we do

not return anything, we return null.

(Refer Slide Time: 10:05)

Now here we have use the terms inside and outside. So, how they are defined? In fact these terms

are to be interpreted differently for different clipper. So, there is not a single meaning to these

terms based on the clipper we define these terms.

(Refer Slide Time: 10:27)

And let us now go through this definition for each of the 4 clippers. So, for the left clipper, when

you talk of insight we mean that the vertex is on the right side of the clipper and when we talk of

outside we mean that it is on the left side of the clipper. For right clipper it is just the opposite.

When the vertex is on the left side, we call it inside. Otherwise it is outside. For top clipper if a

vertex is below the clipper that means it is inside.

Otherwise it is outside. And for a bottom clipper, it is again just the opposite of top clipper that

means inside vertex means it is above the clipper, whereas outside means it is below. And how

do we determine whether a vertex is on the right side or left side or above or below, just by

considering the coordinates values, by comparing the coordinated values of the vertex with

respect to the particular clipper.

For example, suppose this is the top clipper, suppose it is equation is given by x = y = 4. Now

suppose a point is denoted by (3, 5). Now we check here the y-value of the point that is 5, clearly

5 is greater than 4 which is the y-value of the boundary, top boundary. Then we can say that this

point is outside because it is above the clipper. Similarly, we can determine the inside and

outside based on comparing the x or y coordinate value of the vertex with respect to the clipper

values.

(Refer Slide Time: 12:55)

If the vertex is on the clipper then it is considered inside in all the cases. So, for a left clipper

inside means either it is on the right side or on the clipper, otherwise it is outside. And same is

true for all other clippers.

(Refer Slide Time: 13:21)

Now, let us try to understand this algorithm in terms of an illustrative example. Let us consider

this situation here we have defined one clipping window and we have a fill area. Now this fill

area is defined by the vertices {1, 2, 3} as you can see here, we followed a counter clockwise or

anticlockwise naming convention to list the vertices.

Our objective is to determine the clipped polygon. That is this polygon denoted by the vertices

{2’, 3’, 3’’, 1’ and 2}. And we use to do that by following the Sutherland-Hodgeman algorithm.

(Refer Slide Time: 14:44)

So, at the beginning we start with the left clipper. Then we check against right clipper, then top

clipper and then bottom clipper.

(Refer Slide Time: 15:06)

Let us see what happens after checking against the left clipper. So here the input vertex list is the

original vertices that is {1, 2, 3} which indicates the three edges represented by the vertex pair;

{1, 2}; {2, 3} and {3, 1}. So, for each pair we perform the check. For pair {1, 2} we can see that

both the vertices are on the right side of the left clipper that means both are inside. So, Vout is 2

as per the algorithm.

Similarly, after checking for {2, 3} against the left clipper, we can see that the final Vout becomes

{2, 3} taking into account 2. And after checking {3, 1} the final list becomes {2, 3, 1}. In all the

cases against the left clipper all the vertices are inside.

(Refer Slide Time: 16:29)

Now, let us check against right clipper. So, now the input vertex list is {1, 2, 3} same and

initially Vout is NULL. So, pair of vertices has to be checked {1, 2; 2, 3} and {3, 1}, all the three

edges we need to check. For 1, 2 both are inside the right clipper. We can check by comparing

their coordinative values because both of them are on the left side of the right clipper. So, Vout is

now 2. Then we check the pair {2, 3} here we can see that 2 is inside whereas 3 is outside. So, in

that case we compute the intersection point 2’ this point and then set Vout to be {2, 2’}.

Then we check {3, 1} here vertex 3 is outside because it is on the right side of the clipper,

whereas 1 is inside because it is on the left side. So, here we calculate the intersection point 3’

and then finalize the output vertex list as {2, 2’, 3’ (and) 1}; because in this case we return 1 also.

So, then after checking against the right clipper, we get this output list; {2, 2’, 3’ (that means this

point and), 1}.

(Refer Slide Time: 18:40)

Then we check against the top clipper. Now in this case, the Vin or the input vertex list is the

output vertex list after checking against the right clipper. So that is 2, 2’, 3’, 1. So, initially Vout is

NULL. And the pair of vertices we need to check are 4; {2, 2’, 2’, 3’, 3’ 1} and {1, 2}.

So, first we check {2, 2’} against the top clipper and we find that both 2 and 2 dash are inside

because both of them are below the clipper. So, output list becomes 2’. Then we check the next

vertex pair {2’, 3’} again {2’, 3’} both are below, so inside then Vout becomes 2’ and 3’.

Then we check 3’, 1 in this case, we see that 3’ is inside, whereas 1 is outside. Then we calculate

the intersection point 3’’ here and modify our output list to be {2’, 3’, (and) 3’’}. Finally, we check

{1, 2}. Here we see that 1 is outside whereas 2 is inside. Then again we calculate the intersection

point 1’ and modify Vout to be {2’, 3’, 3’’, 1’ (and) 2}. So, this is our output list after checking

against top clipper, and this serves as the input list to the remaining clipper to be checked that is

bottom clipper.

(Refer Slide Time: 20:43)

This is the input list for the bottom clipper and output list is initially null and as we can see all

these vertices 2, 2’, 3’, 3’’ and 1’ are inside because they are above the bottom clipper. So, the

output list becomes the same that is {2’, 3’, 3’’, 1’, 2}. This is also the output of the algorithm,

because here no more clippers are there to check against and the algorithm stops. So, at the end

of the algorithm, we get this vertex list which represents the clipped region. That is how the

algorithm works.

(Refer Slide Time: 21:43)

Now let us move to our next algorithm that is Weiler-Atherton algorithm. Now, the Sutherland-

Hodgeman algorithm that we just discussed works well when the fill area is a convex polygon

and it is to be clipped against a rectangular clipping window. So, if this condition satisfy then

Sutherland-Hodgeman algorithm works well.

(Refer Slide Time: 22:16)

However that need not be the case always and that Weiler-Atherton algorithm provides a more

general solution. This algorithm can be used for any polygon, either concave or convex against

any polygonal clipping window. Need not be only a rectangle. Let us see how it works.

(Refer Slide Time: 22:44)

So, we will try to understand the algorithm in terms of an example rather than formal steps. Let

us consider this scenario here we have a rectangular clipping window and a fill area. So, we will

try to understand how the algorithm helps us identify the parts to be discarded that is this region

and the parts to be kept after clipping that is these two regions this one and this one. So, here we

start with processing the fill area edges in a particular order, which is typically anticlockwise

order. So, here we start with processing the fill area edges in a particular order which typically is

anticlockwise order.

(Refer Slide Time: 24:00)

So, what we do in the processing, we check the edges one by one, continue along the edges till

we encounter an edge that crosses to the outside of the clip window boundary. Let us start with

this edge (1, 2) this edge. So, we check it whether it crosses the window boundary or not, that is

our processing. It does not cross so we continue to the next stage, that is {2, 3} represented by

the vertex pair {2, 3}.

Now this edge crosses to the outside of the window boundary. Note that here we are following

anticlockwise order. If the edge does not cross to the outside instead if the edge is crossing into

inside of the window then we just record by intersection point, whereas if the edge is crossing to

the outside boundary, then we stop and perform some different action, what we do in that case.

(Refer Slide Time: 25:24)

At the intersection point, we make a detour. So, here the intersection point is 2’ this point. So,

then we make a detour. We no longer continue along this direction. Instead what we do we now

follow the edge of the clip window along the same direction, maintaining the traversal order.

So, now in this example so we will follow this anticlockwise direction and make a detour from

here now along the window boundary, so here we will follow this order. So, essentially, how you

are traversing, we initially traversed in this way then while traversing in this way found that this

edge is crossing to the outside. So, then we traverse in this way instead of continuing along the

edge.

(Refer Slide Time: 26:25)

Now, this along the boundary traversal, we continue till we encounter another fill area edge that

crosses to the inside of the clip window. So, here as you can see, if we follow a anticlockwise

traversal, then this edge is actually crosses to the inside. So, the edge is 6, 1 denoted by the

vertex pair 6, 1 which crosses to the inside of the window and we encountered it while traversing

along the window boundary. At that point what we do?

(Refer Slide Time: 27:17)

At that point, we resume the polygon edge traversal again along the same direction. So, we stop

here and then again continue along the same direction till we encounter previously processed

intersection point. So, here we continue up to point 1 because point one is already processed. So,

we stop here.

(Refer Slide Time: 27:53)

So, then after this part, we see that we started from here, then traversed up to this point,

determined this intersection point, then traversed along this line up to this intersection point,

traversed back up to the originating point. So, there are two rules of traversal from an

intersection point due to outside to inside fill area edge we should follow the polygon edges from

an intersection point due to inside to outside fill area edge we should follow the window

boundaries.

So, these are the rules we applied while performing the traversal. But this gives us one part of the

clipped area that is this part and apparently here it stopped. So, how to get to the other part?

Actually, here the algorithm does not stop. What happens next?

(Refer Slide Time: 29:00)

Before we go into that, also, you should remember that whenever we are traversing the traversal

direction remains the same, irrespective of whether you are traversing along the edge or along

the windows boundary. So, if you are following an anticlockwise direction, it should be

anticlockwise always.

(Refer Slide Time: 29:21)

And after this traversal ends, the output is the vertex list representing a clipped area, as we have

seen. So, in this case the traversal ended at 1. So, we get the vertex list {1, 2, 2’, (and) 1’} which

gives us this clipped area.

(Refer Slide Time: 29:46)

But clearly here, the whole fill area is not covered. Some of the vertices are still not processed,

so then what do we do? We resume traversal in case all the vertices are not processed. We

resume the traversal along the polygon edges in the same direction from last intersection point of

an inside outside polygon edge. So, our last intersection point of an inside outside polygon edge

is 2’ here. Remember that this 1’ is outside inside edge. So, it is not applicable. So, what is

applicable is 2’. So, from there we resume our traversal till we cover the remaining vertices.

And this traversal is in a similar way that we have done before. So, here what we do, we traverse

along this anticlockwise direction to the vertex here. So, we traverse this edge, then this edge.

But here, as you can see, there is an outside to inside crossing. So, we do not do anything, we

keep on traversing this way, this way. Now at this point we can see that one inside to outside

crossing is there. In the earlier case, it was outside to inside.

Here it is, inside to outside at 6’. So, now we traverse along the edge. Then we encountered this

intersection point again. This is from outside to inside. So, now we resume our traversal along

edge. So, finally what we did, we traversed this direction, this direction, this direction, then this

direction, then this direction, this direction. Now since already we have encountered 4 before so

we stop our traversal here when we encounter 4. Then we get this remaining portion of the

clipped area also just like the way we got it earlier. So, that is how Weiler-Atherton works.

(Refer Slide Time: 32:19)

So, we encountered or we discussed two algorithms; one is Sutherland-Hodgeman, one is

Weiler-Atherton. Sutherland Hodgeman is simpler but it has restrictive use. It is applicable when

we have a convex polygon which is clipped against a rectangular window. Whereas Weiler-

Atherton is more generic it is applicable for any fill area, polygonal fill area, either concave or

convex against any polygonal clipping window.

So, so far we have discussed clipping in 2D. So, we have learned how to clip a point line and fill

area. Now let us try to understand clipping in 3D, because here our main focus is 3D graphic

pipeline. So, we will try to understand clipping in 3D which is essentially extension of the ideas

that we have already discussed that is clipping in 2D. Let us see how these extensions are done.

(Refer Slide Time: 33:42)

Only thing we have to keep in mind is that here we are talking about clipping against normalized

view volume which is usually a symmetric cute with each coordinate in the range minus 1 to 1 in

the 3 directions. That is a normalized view volume we assume while developing the or

performing the clipping. Now, Cohen-Sutherland we can extend the basic 2D version to 3D with

some modification.

(Refer Slide Time: 34:22)

Point clipping also, we can extend, so let us first talk about point clipping. Here we check for x,

y and z earlier we are checking only for x and y whether these values are within the range of the

canonical volume. If that is so, then the point is to be kept. Otherwise it is to be clipped out.

(Refer Slide Time: 34:53)

In case of Cohen Sutherland line clipping algorithm, it can be easily extended to 3D clipping.

However, with some modifications, core idea remains the same. That is, we divide view

coordinate space into regions. Now, earlier we had 9 regions. Now since we are dealing with 3D

we have 27 regions, 3 times. Now since we have 27 regions. So, each region needs to be

represented with 6 bits. Each bit for the 6 planes that define the canonical view volume. Far,

near, top, bottom, right, left this is in contrast with the 4 bits earlier used to denote the 4 sides of

the window.

Now for each plane, we have this 9 regions defined so there are 9 regions behind the far plane.

There are 9 regions between near and far plane and there are 9 regions in front of the near plane.

Together there are 27 regions and each region is represented with this 6 bit code, where bit 6

represent the far region, bit 5 is the near region, bit 4 is the top region, bit 3 is the bottom region,

bit 2 represents the right region and bit 1 represents the left region. The idea remains the same

with 2D only the size changes because we are now dealing with 3D. The other steps remained

the same.

(Refer Slide Time: 37:21)

Now let us try to understand the extension of the algorithms for fill area clipping. So, here what

we do. We first check if the bounding volume of the polyhedron that is the fill area is outside the

view volume simply by comparing their maximum and minimum coordinate values in each of

the x, y and y directions. If the bounding volume is outside then we clip it out and entirely.

Otherwise we apply 3D extension of the Sutherland Hodgeman algorithm for clipping.

(Refer Slide Time: 38:16)

Here also the core idea of 3D Sutherland Hodgeman algorithm remains the same with 2D version

with two main differences. What are those differences?

(Refer Slide Time: 38:31)

A polyhedron is made up of polygonal surfaces. So, here we take one surface at a time to

perform clipping. Earlier what we were doing, we took one line at a time. Here we are taking one

surface at a time. Now, usually polygons divided into triangular meshes and there are algorithms

to do so which you can refer to in the reference material at the end of this lecture. So, using those

algorithms, we can divide a polygon into a triangular mesh and then each triangle is processed at

a time.

(Refer Slide Time: 39:17)

And the second difference is, instead of the 4 clippers that we had earlier, we now have 6

clippers. Which correspond to the 6 bounding surfaces of the normalized view volume which is a

cube. So, these are the differences between the 2D version of the algorithm and the 3D version

that earlier we are considering line at a time for clipping. Now we are considering a surface at a

time. Now these surfaces are polygonal surfaces and we can convert these surfaces into

triangular meshes.

And then we perform clipping for each triangle at a time that is one difference. Other difference

is earlier we are dealing with 4 clippers, now we have 6 clippers representing the 6 bounding

planes of the view volume which is a cube. So, that is in summary the major differences between

2D clipping and 3D clipping. Core ideas remain the same some minor changes are there. So,

with that we come to the end of our discussion on clipping.

(Refer Slide Time: 40:43)

And our next topic will be hidden surface removal. So, here few things omitted during the

discussion. For example the triangular mesh creation from given polygon. So, for these details

you may refer to the material that will be mentioned in the next slide.

(Refer Slide Time: 41:16)

So, whatever I have covered today can be found in this book. You can go through chapter 7,

section 7.1.3, 7.1.4 and section 7.2. For the topics that I have covered however outside this topics

also there are few interesting things that I did not discuss but you can find that in the book. So,

you may like to go through those material as well. That is all for today. Thank you and goodbye.

