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Hello and welcome to lecture number 22 in the course Computer Graphics. We are currently 

discussing the 3D graphics pipeline. And the pipeline has got 5 stages. We have already 

discussed object representation that is the first stage. Then modelling transformations - second 

stage. Lighting or assigning colour - third stage. Currently, we are in the fourth stage that is 

viewing pipeline. As you can see, it consists of 5 sub-stages. We have already discussed few of 

those and continuing our discussion on the remaining ones.  
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So, among those sub-stages we have already discussed earlier. View transformation, projection 

transformation and viewport transformation.  
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Two more operations are there, as we have seen in the pipeline; clipping and hidden surface 

removal. Among them currently we are discussing clipping.  
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So, in the last lecture, we introduced the basic idea of clipping and also discussed 2D line 

clipping. So, will continue our discussion on clipping. Today, we are going to discuss fill area 

clipping as well as 3D clipping.  
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So, what is this fill area clipping? So, as we mentioned, when we talk of clipping, there is a 

clipping window and earlier we have discussed how to clip points and lines against this window.  

However, when we project objects the projection maybe in the form of a fill area such as a 

polygon where there is a boundary.  

Now clipping a filled area is different than flipping a point or a line, as we shall see in todays 

lecture. In fact, such situations are quite frequent in practice where we have to clip polygons 

against the clipping window. So, it requires some mechanism to do that.  
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Now, what can be a very obvious and straightforward approach, let us try to understand the 

situation. Suppose this is our clipping window and we are given a polygon, something like this 

after projection say this triangle. So we have to keep this part which is inside the clipping 

window, which I am showing with shade and we have to clip out the, outside part. How we can 

do that? 

One way can be to use the line clippers that we discussed in earlier lecture for each of the edge, 

like here is one edge, one edge, one edge of the field area. And then perform clipping on the 

edges and decide on the clipped region. However, as you can see from this example, that is not 

necessarily easy, efficient and going to give us a good approach. Sometimes it is even difficult to 

understand how it works 
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Instead, we require better approaches. There are in fact, many efficient algorithms proposed for 

the purpose.  In this lecture we are going to discuss two of those approaches. One is Sutherland-

Hodgeman algorithm and the other one is Weiler-Atherton algorithm. Let us try to understand 

these algorithms.  
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We will start with the Sutherland-Hodgeman algorithm, what this algorithm does? Here in this 

algorithm we start with 4 clippers. Now, these clippers are essentially the lines that define the 

window boundary. For example, if this is my window boundary, then each of these lines defining 

the boundary is a clipper.  

So, there are 4 clippers in 2D clipping that is right, left, above and below. Now, each clipper 

takes as input a list of ordered pair of vertices which essentially indicate the edges, each pair of 

vertex indicate the edge. And from that input list it produces another list of output vertices that is 

the basic idea. So, there are 4 clippers, each clipper takes as input a list of ordered pair of vertices 

where each pair of vertices represent an edge. And then it performs some operations to produce 

an output list of vertices. 



(Refer Slide Time: 06:55) 

 

Now, when we perform these operations, we impose some order of checking against each clipper 

that can be any order. Here in this discussion will assume the order left clipper first, then right 

clipper, then bottom clipper, and at the end the top or above clipper.  
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Now, as we said we start with the left clipper. So, its input set is the original polygon vertices or 

in other words, the original polygon edges represented by the pair of vertices that is the input set 

to the first or the left clipper.  
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Now, to create a vertex list as output or also to provide the input vertex list, we need to follow a 

naming convention, whether to name the vertices in a clockwise manner or anticlockwise 

manner. Here again, we will assume that we will follow an anticlockwise naming of vertices. 

With these conventions, let us denote input vertex list to a clipper by the set V having these 

vertices.  
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Now, for each edge or the pair of vertices in the list denoted by vi, vj. We perform some checks 

and based on the check results, we take some action. So, what are those checks?  
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If vi is inside and vj is outside of the clipper then we return the intersection point of the clipper 

with the edge represented by the vertex pair vi, vj. If both vertices are inside the clipper, then we 

return vj.  
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If vi is outside and vj is inside of the clipper, then we return two things. One is the intersection 

point of the clipper with the edge represented by the pair vi, vj and also vj. Both the things we 

return intersection point and vj. And finally, if both vertices are outside the clipper then we do 

not return anything, we return null.  
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Now here we have use the terms inside and outside. So, how they are defined? In fact these terms 

are to be interpreted differently for different clipper. So, there is not a single meaning to these 

terms based on the clipper we define these terms.  
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And let us now go through this definition for each of the 4 clippers. So, for the left clipper, when 

you talk of insight we mean that the vertex is on the right side of the clipper and when we talk of 

outside we mean that it is on the left side of the clipper.  For right clipper it is just the opposite. 



When the vertex is on the left side, we call it inside. Otherwise it is outside. For top clipper if a 

vertex is below the clipper that means it is inside.  

Otherwise it is outside. And for a bottom clipper, it is again just the opposite of top clipper that 

means inside vertex means it is above the clipper, whereas outside means it is below. And how 

do we determine whether a vertex is on the right side or left side or above or below, just by 

considering the coordinates values, by comparing the coordinated values of the vertex with 

respect to the particular clipper.  

For example, suppose this is the top clipper, suppose it is equation is given by x = y = 4. Now 

suppose a point is denoted by (3, 5). Now we check here the y-value of the point that is 5, clearly 

5 is greater than 4 which is the y-value of the boundary, top boundary. Then we can say that this 

point is outside because it is above the clipper. Similarly, we can determine the inside and 

outside based on comparing the x or y coordinate value of the vertex with respect to the clipper 

values. 
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If the vertex is on the clipper then it is considered inside in all the cases. So, for a left clipper 

inside means either it is on the right side or on the clipper, otherwise it is outside. And same is 

true for all other clippers.  
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Now, let us try to understand this algorithm in terms of an illustrative example. Let us consider 

this situation here we have defined one clipping window and we have a fill area.  Now this fill 

area is defined by the vertices {1, 2, 3} as you can see here, we followed a counter clockwise or 

anticlockwise naming convention to list the vertices.  

Our objective is to determine the clipped polygon. That is this polygon denoted by the vertices 

{2’, 3’, 3’’, 1’ and 2}. And we use to do that by following the Sutherland-Hodgeman algorithm. 
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So, at the beginning we start with the left clipper. Then we check against right clipper, then top 

clipper and then bottom clipper.   
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Let us see what happens after checking against the left clipper. So here the input vertex list is the 

original vertices that is {1, 2, 3} which indicates the three edges represented by the vertex pair; 

{1, 2}; {2, 3} and {3, 1}. So, for each pair we perform the check. For pair {1, 2} we can see that 



both the vertices are on the right side of the left clipper that means both are inside. So, Vout is 2 

as per the algorithm.  

Similarly, after checking for {2, 3} against the left clipper, we can see that the final Vout becomes 

{2, 3} taking into account 2. And after checking {3, 1} the final list becomes {2, 3, 1}. In all the 

cases against the left clipper all the vertices are inside.  

(Refer Slide Time: 16:29) 

 

Now, let us check against right clipper. So, now the input vertex list is {1, 2, 3} same and 

initially Vout is NULL. So, pair of vertices has to be checked {1, 2; 2, 3} and {3, 1}, all the three 

edges we need to check. For 1, 2 both are inside the right clipper. We can check by comparing 

their coordinative values because both of them are on the left side of the right clipper. So, Vout is 

now 2. Then we check the pair {2, 3} here we can see that 2 is inside whereas 3 is outside. So, in 

that case we compute the intersection point 2’ this point and then set Vout to be {2, 2’}.  

Then we check {3, 1} here vertex 3 is outside because it is on the right side of the clipper, 

whereas 1 is inside because it is on the left side. So, here we calculate the intersection point 3’ 

and then finalize the output vertex list as {2, 2’, 3’ (and) 1}; because in this case we return 1 also. 

So, then after checking against the right clipper, we get this output list; {2, 2’, 3’ (that means this 

point and), 1}.  
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Then we check against the top clipper. Now in this case, the Vin or the input vertex list is the 

output vertex list after checking against the right clipper. So that is 2, 2’, 3’, 1. So, initially Vout is 

NULL. And the pair of vertices we need to check are 4; {2, 2’, 2’, 3’, 3’ 1} and {1, 2}.  

So, first we check {2, 2’} against the top clipper and we find that both 2 and 2 dash are inside 

because both of them are below the clipper. So, output list becomes 2’. Then we check the next 

vertex pair {2’, 3’} again {2’, 3’} both are below, so inside then Vout becomes 2’ and 3’. 

Then we check 3’, 1 in this case, we see that 3’ is inside, whereas 1 is outside. Then we calculate 

the intersection point 3’’ here and modify our output list to be {2’, 3’, (and) 3’’}. Finally, we check 

{1, 2}. Here we see that 1 is outside whereas 2 is inside. Then again we calculate the intersection 

point 1’ and modify Vout to be {2’, 3’, 3’’, 1’ (and) 2}. So, this is our output list after checking 

against top clipper, and this serves as the input list to the remaining clipper to be checked that is 

bottom clipper.  
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This is the input list for the bottom clipper and output list is initially null and as we can see all 

these vertices 2, 2’, 3’, 3’’ and 1’ are inside because they are above the bottom clipper. So, the 

output list becomes the same that is {2’, 3’, 3’’, 1’, 2}.  This is also the output of the algorithm, 

because here no more clippers are there to check against and the algorithm stops. So, at the end 

of the algorithm, we get this vertex list which represents the clipped region. That is how the 

algorithm works.  
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Now let us move to our next algorithm that is Weiler-Atherton algorithm. Now, the Sutherland-

Hodgeman algorithm that we just discussed works well when the fill area is a convex polygon 

and it is to be clipped against a rectangular clipping window. So, if this condition satisfy then 

Sutherland-Hodgeman algorithm works well.  
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However that need not be the case always and that Weiler-Atherton algorithm provides a more 

general solution. This algorithm can be used for any polygon, either concave or convex against 

any polygonal clipping window. Need not be only a rectangle. Let us see how it works.  

(Refer Slide Time: 22:44) 

 

So, we will try to understand the algorithm in terms of an example rather than formal steps. Let 

us consider this scenario here we have a rectangular clipping window and a fill area. So, we will 

try to understand how the algorithm helps us identify the parts to be discarded that is this region 



and the parts to be kept after clipping that is these two regions this one and this one. So, here we 

start with processing the fill area edges in a particular order, which is typically anticlockwise 

order. So, here we start with processing the fill area edges in a particular order which typically is 

anticlockwise order.  
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So, what we do in the processing, we check the edges one by one, continue along the edges till 

we encounter an edge that crosses to the outside of the clip window boundary. Let us start with 

this edge (1, 2) this edge. So, we check it whether it crosses the window boundary or not, that is 

our processing. It does not cross so we continue to the next stage, that is {2, 3} represented by 

the vertex pair {2, 3}.  

Now this edge crosses to the outside of the window boundary. Note that here we are following 

anticlockwise order. If the edge does not cross to the outside instead if the edge is crossing into 

inside of the window then we just record by intersection point, whereas if the edge is crossing to 

the outside boundary, then we stop and perform some different action, what we do in that case.  
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At the intersection point, we make a detour. So, here the intersection point is 2’ this point. So, 

then we make a detour. We no longer continue along this direction. Instead what we do we now 

follow the edge of the clip window along the same direction, maintaining the traversal order.  

So, now in this example so we will follow this anticlockwise direction and make a detour from 

here now along the window boundary, so here we will follow this order. So, essentially, how you 

are traversing, we initially traversed in this way then while traversing in this way found that this 

edge is crossing to the outside. So, then we traverse in this way instead of continuing along the 

edge.  
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Now, this along the boundary traversal, we continue till we encounter another fill area edge that 

crosses to the inside of the clip window. So, here as you can see, if we follow a anticlockwise 

traversal, then this edge is actually crosses to the inside. So, the edge is 6, 1 denoted by the 

vertex pair 6, 1 which crosses to the inside of the window and we encountered it while traversing 

along the window boundary. At that point what we do?  
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At that point, we resume the polygon edge traversal again along the same direction. So, we stop 

here and then again continue along the same direction till we encounter previously processed 

intersection point.  So, here we continue up to point 1 because point one is already processed. So, 

we stop here.  
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So, then after this part, we see that we started from here, then traversed up to this point, 

determined this intersection point, then traversed along this line up to this intersection point, 



traversed back up to the originating point. So, there are two rules of traversal from an 

intersection point due to outside to inside fill area edge we should follow the polygon edges from 

an intersection point due to inside to outside fill area edge we should follow the window 

boundaries.  

So, these are the rules we applied while performing the traversal. But this gives us one part of the 

clipped area that is this part and apparently here it stopped. So, how to get to the other part? 

Actually, here the algorithm does not stop. What happens next?  
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Before we go into that, also, you should remember that whenever we are traversing the traversal 

direction remains the same, irrespective of whether you are traversing along the edge or along 

the windows boundary. So, if you are following an anticlockwise direction, it should be 

anticlockwise always.  
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And after this traversal ends, the output is the vertex list representing a clipped area, as we have 

seen. So, in this case the traversal ended at 1. So, we get the vertex list {1, 2, 2’, (and) 1’} which 

gives us this clipped area.  
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But clearly here, the whole fill area is not covered. Some of the vertices are still not processed, 

so then what do we do? We resume traversal in case all the vertices are not processed. We 

resume the traversal along the polygon edges in the same direction from last intersection point of 



an inside outside polygon edge. So, our last intersection point of an inside outside polygon edge 

is 2’ here. Remember that this 1’ is outside inside edge. So, it is not applicable. So, what is 

applicable is 2’. So, from there we resume our traversal till we cover the remaining vertices.  

And this traversal is in a similar way that we have done before. So, here what we do, we traverse 

along this anticlockwise direction to the vertex here. So, we traverse this edge, then this edge. 

But here, as you can see, there is an outside to inside crossing. So, we do not do anything, we 

keep on traversing this way, this way. Now at this point we can see that one inside to outside 

crossing is there. In the earlier case, it was outside to inside.  

Here it is, inside to outside at 6’. So, now we traverse along the edge. Then we encountered this 

intersection point again. This is from outside to inside. So, now we resume our traversal along 

edge. So, finally what we did, we traversed this direction, this direction, this direction, then this 

direction, then this direction, this direction. Now since already we have encountered 4 before so 

we stop our traversal here when we encounter 4. Then we get this remaining portion of the 

clipped area also just like the way we got it earlier. So, that is how Weiler-Atherton works.  
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So, we encountered or we discussed two algorithms; one is Sutherland-Hodgeman, one is 

Weiler-Atherton. Sutherland Hodgeman is simpler but it has restrictive use. It is applicable when 

we have a convex polygon which is clipped against a rectangular window. Whereas Weiler-



Atherton is more generic it is applicable for any fill area, polygonal fill area, either concave or 

convex against any polygonal clipping window.  

So, so far we have discussed clipping in 2D. So, we have learned how to clip a point line and fill 

area.  Now let us try to understand clipping in 3D, because here our main focus is 3D graphic 

pipeline.  So, we will try to understand clipping in 3D which is essentially extension of the ideas 

that we have already discussed that is clipping in 2D. Let us see how these extensions are done.  
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Only thing we have to keep in mind is that here we are talking about clipping against normalized 

view volume which is usually a symmetric cute with each coordinate in the range minus 1 to 1 in 

the 3 directions. That is a normalized view volume we assume while developing the or 

performing the clipping. Now, Cohen-Sutherland we can extend the basic 2D version to 3D with 

some modification.  
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Point clipping also, we can extend, so let us first talk about point clipping. Here we check for x, 

y and z earlier we are checking only for x and y whether these values are within the range of the 

canonical volume. If that is so, then the point is to be kept. Otherwise it is to be clipped out.  
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In case of Cohen Sutherland line clipping algorithm, it can be easily extended to 3D clipping. 

However, with some modifications, core idea remains the same. That is, we divide view 

coordinate space into regions. Now, earlier we had 9 regions. Now since we are dealing with 3D 



we have 27 regions, 3 times. Now since we have 27 regions. So, each region needs to be 

represented with 6 bits. Each bit for the 6 planes that define the canonical view volume. Far, 

near, top, bottom, right, left this is in contrast with the 4 bits earlier used to denote the 4 sides of 

the window.  

Now for each plane, we have this 9 regions defined so there are 9 regions behind the far plane. 

There are 9 regions between near and far plane and there are 9 regions in front of the near plane. 

Together there are 27 regions and each region is represented with this 6 bit code, where bit 6 

represent the far region, bit 5 is the near region, bit 4 is the top region, bit 3 is the bottom region, 

bit 2 represents the right region and bit 1 represents the left region.  The idea remains the same 

with 2D only the size changes because we are now dealing with 3D. The other steps remained 

the same. 
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Now let us try to understand the extension of the algorithms for fill area clipping. So, here what 

we do. We first check if the bounding volume of the polyhedron that is the fill area is outside the 

view volume simply by comparing their maximum and minimum coordinate values in each of 

the x, y and y directions. If the bounding volume is outside then we clip it out and entirely. 

Otherwise we apply 3D extension of the Sutherland Hodgeman algorithm for clipping.  
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Here also the core idea of 3D Sutherland Hodgeman algorithm remains the same with 2D version 

with two main differences. What are those differences?  
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A polyhedron is made up of polygonal surfaces. So, here we take one surface at a time to 

perform clipping. Earlier what we were doing, we took one line at a time. Here we are taking one 

surface at a time. Now, usually polygons divided into triangular meshes and there are algorithms 

to do so which you can refer to in the reference material at the end of this lecture. So, using those 



algorithms, we can divide a polygon into a triangular mesh and then each triangle is processed at 

a time. 
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And the second difference is, instead of the 4 clippers that we had earlier, we now have 6 

clippers. Which correspond to the 6 bounding surfaces of the normalized view volume which is a 

cube. So, these are the differences between the 2D version of the algorithm and the 3D version 

that earlier we are considering line at a time for clipping. Now we are considering a surface at a 

time. Now these surfaces are polygonal surfaces and we can convert these surfaces into 

triangular meshes. 

And then we perform clipping for each triangle at a time that is one difference. Other difference 

is earlier we are dealing with 4 clippers, now we have 6 clippers representing the 6 bounding 

planes of the view volume which is a cube. So, that is in summary the major differences between 

2D clipping and 3D clipping. Core ideas remain the same some minor changes are there. So, 

with that we come to the end of our discussion on clipping.  
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And our next topic will be hidden surface removal. So, here few things omitted during the 

discussion. For example the triangular mesh creation from given polygon. So, for these details 

you may refer to the material that will be mentioned in the next slide.  
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So, whatever I have covered today can be found in this book. You can go through chapter 7, 

section 7.1.3, 7.1.4 and section 7.2. For the topics that I have covered however outside this topics 



also there are few interesting things that I did not discuss but you can find that in the book. So, 

you may like to go through those material as well. That is all for today. Thank you and goodbye. 


