
Computer Graphics

Professor Dr Samit Bhattacharya

Department of Computer Science and Engineering

Indian Institute of Technology, Guwahati

Lecture No 15

Shading Models

Hello, and welcome to lecture number 15 in the course Computer Graphics. As usual, we will

start with a quick recap of the pipeline stages that we are currently discussing.

(Refer Slide Time: 00:43)

So, as you may recollect, there are five stages in the graphics pipeline. The first stage is Object

Representation; the second stage is Modeling Transformation. The third stage is Lighting or

assigning color to the surface points. The fourth stage is the Viewing pipeline which itself

consists of five sub-stages namely Viewing transformation, Clipping, Hidden surface removal,

Projection transformation and Window to Viewport transformation.

The fifth and final stage of the graphics pipeline is Scan comparison. I would like to emphasize

here again the fact that although in this lecture or in this course, I will be following this sequence

of stages, but in practice, it is not necessary to follow this exact sequence. So, when a graphics

package is implemented, you may find that some stages are coming after other stages although in

the sequence that I have discussed. They are actually before those other stages like Hidden

surface removal may come after Scan conversion although we are discussing it as before Scan

conversion. So, this sequence is not a strict requirement. The basic concepts are what matters the

most.

So, far we have completed our discussion on the first two stages namely Object representation

and Geometric or Modeling transformers. Currently, we are discussing the third stage that is

Lighting or assigning color to the surface points. In the Lighting stage, we have introduced the

basic issues that are addressed in this stage. And in the previous lecture, we have gone through a

simple Lighting model. If you may recollect, in the simple lighting model, we assume that the

color is essentially a composition of three constituent colors or intensities.

Intensity due to ambient light, intensity due to diffuse reflection, and intensity due to specular

reflection. And we have learned models for each of these components and how to combine those

models in the form of a summation of these three individual components.

(Refer Slide Time: 03:23)

Today, we are going to discuss Shading models which is related to assigning colors to the

surface points, but in a slightly different way. Now, as we have seen during the simple lighting

model discussion, the model itself is computation intensive.

(Refer Slide Time: 03:57)

So, the calculation of color at a surface point in a 3D scene involves lots of operations. As a

result generation of the image which includes assigning colors to the image is complex and

expensive in terms of computing resources, what are those resources? Processor memory and so

on. Also, it takes time. So, both are important resources and time. So, when we are talking of

assigning colors or computing the colors, which is the job of the third stage.

What we are referring to is essentially the utilization of underlying computing resources. And in

the Lighting model, we have seen that the utilization is likely to be very high because the

computation involves lots of mathematical operations involving real numbers. Also, it is likely to

take time.

(Refer Slide Time: 05:26)

In practice, whenever we use some graphics applications, we may have noticed that the screen

images change frequently. For example, if we are dealing with computer animation or computer

games, or any other interactive application, so, screen content changes at a very fast rate. So, the

requirement is that we should be able to generate newer and newer content and render it on the

screen very quickly.

But if we are getting bogged down with this lots of complex computations for assigning colors or

as we shall see in subsequent stages for doing other pipeline stages, pipeline operations, then that

requirement may not be fulfilled, we will not be able to generate images quickly.

(Refer Slide Time: 06:32)

So, that may result in visible flickers, distortions which in turn may lead to irritation and

annoyance to the user. And we certainly do not want such a situation to occur. In order to avoid

such situations by reducing the number of computations involved or the amount of computations

involved in assigning colors to surface points, we make use of Shading models.

So, the idea of Shading models is that we have Lighting models, we can make use of it to find

out or determine the color at a given point. However, if we do that for each and every point, then

that is likely to be computation-intensive and time-consuming. To reduce computation we use

some tricks in the form of Shading models.

(Refer Slide Time: 07:41)

So, what do we do with a Shading model? First, we use the Lighting model to find out or

compute colors of only a few of all the points that are there on the surface. Now, using those

computed points, we perform interpolation and through interpolation, we assign color at other

surface points which are mapped to the screen pixels. So, here Shading models are used when the

surface points are already mapped to screen pixel. So, already rendering took place.

(Refer Slide Time: 08:38)

Now, between the Lighting model and Shading model, there are broadly two differences.

(Refer Slide Time: 08:50)

We have already mentioned that the Lighting model is very expensive because it involves large

number of floating-point operations. In contrast, Shading models are interpolation-based. That

means, we can come up with efficient incremental procedures to perform the computations rather

than going for complex floating-point operations as we shall see in our subsequent discussions.

(Refer Slide Time: 09:28)

The other major differences, Lighting models are applied on the scene description that means, in

a 3D world coordinate system whereas, as we have just mentioned, typically Shading models

work at the pixel level after the scene is mapped to the screen or after the rendering is done. That

is the fifth stage of the pipeline is performed.

So, as I said at the beginning, it is not necessary that everything should work as per the sequence

we have outlined. In practice things work with a slightly modified sequence, what is important is

to know about the basic concepts rather than sticking to the exact sequence of pipeline stages.

(Refer Slide Time: 10:23)

So, that is the idea of the Shading model and there are two major differences between Lighting

and Shading models. Now, let us try to have a look and try to understand some Shading models

briefly we will start with the simplest of the Shading models that is Flat Shading.

(Refer Slide Time: 10:51)

So, it involves the least amount of computation and what it does?

(Refer Slide Time: 11:00)

So, first in this Flat shading model, what we do first is, find out the color of any one point on a

surface using the Lighting model. So, we apply the Lighting model and compute the color of any

one point, a single point on a surface and then this color is assigned to all other surface points

that are mapped to the screen pixels. So, suppose this is a surface and this is mapped. This is the

pixel grid that I am drawing here.

So, consider this scan line here. So, the pixels that are part of the surface are these three. Now,

what we do in this Flat Shading model is that we choose any arbitrary point to apply the Lighting

model and compute its color, color of that particular point in the 3D world coordinate system

because we required to compute the vectors also, and then we use that to assign colors to all

other pixels that are part of the surface. So, suppose we have computed color at this point say the

color is C at this point, then we use this color to set color values of all other surface pixel points.

For example, these three we set as C.

(Refer Slide Time: 13:03)

Clearly, this is a very simple scheme and it is likely to lead to unrealistic images unless we

choose the application scenario properly. So, we must say that Flat Shading works in certain

situations, but not in general good to color any surface. So, in general, we will not be able to use

this particular Shading technique, because it may result in unrealistic images. So, when Flat

Shading will be useful, there are a few conditions. What are those conditions? Let us see.

(Refer Slide Time: 13:46)

So, in order to make the particular Shading method work, we have to assume three things. First,

the surface should be polygonal. Second, all light sources should be sufficiently far from the

surface. So, the Shading effects sets of different intensities or colors are not applicable. And the

third Viewing position is also sufficiently far from the surface. It may be obvious that if we are

assuming that the light source is very far away and the viewer is also looking at the scene from a

very far distance.

Then the minute differences between colors at neighboring regions may not be perceivable to the

viewer, and accordingly whatever color we assign will look like uniform. So, in that case, Flat

Shading may work and these three conditions restrict the use of the Flat Shading algorithm.

I repeat again in order to make the Flat Shading work there should be three conditions satisfied,

first the surface must be polygonal in nature. All light sources should be sufficiently far from the

surface and the viewing position should be sufficiently far from the surface. If these three

conditions are not met, then the resulting colored surface may look unrealistic.

(Refer Slide Time: 15:56)

To avoid the problems that are associated with Flat Shading, an improved Shading model is there

that is called Gouraud Shading. Let us try to understand Gouraud Shading.

(Refer Slide Time: 16:18)

It gives us a more realistic coloring effect than Flat Shading. But, at the same time, it is having

more computation. So, the improvement is at the expense of increased computation.

(Refer Slide Time: 16:37)

What happens in this Shading method, first, we determine the average unit normal vector at each

vertex of a polygonal surface. We will soon see what we mean by the average unit normal

vector. Then using that vector we compute color by applying a Lighting model at each vertex of

the surface. Then we Linearly interpolate the vertex intensities over the projected area of the

polygon.

So, three stages are there or three steps are there in the first step, we compute average unit

normal vector, in the second step, we compute color at the vertex positions by considering the

average unit normal vector and in the third stage, we Linearly interpolate the color that we have

computed at the vertices of the surface. To assign color to other pixels that are part of the

surface.

(Refer Slide Time: 17:56)

Now, let us try to understand the stages in detail. So, in the First step what we do, we compute

the average unit normal vector. It essentially implies that a vertex of a surface may be shared by

more than one surfaces. For example, consider this vertex here. Now, this vertex is shared by all

the four surfaces in this figure. So, in that case, when we are trying to compute color at this

vertex, which surface normal I should use?

So, there is confusion. In order to avoid that Gouraud Shading tells us to compute the average

unit normal vector. This is essentially the average of the unit normals of the surfaces sharing the

vertex. So, in this particular example, the vertex here is shared by four surfaces, each will have

its own normal vector. Say for Surface 1 it is N1, Surface 2, Surface 3 N3, Surface 2 N2, Surface

4 N4.

We take the unit normal vectors then compute the average using the simple formula. So, this is a

vector addition divided by a scalar quantity which is the modulus of the four-unit vectors. So, at

that particular shared vertex, we use or we compute the average unit normal.

(Refer Slide Time: 19:43)

Then in the second step with the average normal, we compute the color at this vertex using the

Simple Lighting model. So, if you may recollect from our discussion on the Simple Lighting

model to compute color components for diffuse reflection and specular reflection we had to use

surface normals. So, instead of that regular surface normal, we use average surface normal to

compute color. And this will do for all the vertices of the surface. So, it takes one surface at a

time and compute colors for all vertices that define that particular surface.

(Refer Slide Time: 20:39)

In the third step, which is the final step, we use these vertex colors to linearly interpolate the

colors of the pixels that are part of the projected surface. So, we are assuming here that the

surface is already projected on screen through the final stage of rendering and we already know

the pixels that are part of the surface. Since we have computed the vertex colors in the first two

stages, we use these colors to linearly interpolate and assign colors to other pixels that are part of

the surface.

(Refer Slide Time: 21:24)

Let us try to understand in terms of one example. So, in this figure, we have shown a projected

surface defined by three Vertices, Vertex 1, Vertex 3, Vertex 2. So, if we apply Gouraud Shading

after the second step, we have already computed the colors of these three vertices by using the

Simple Lighting model as well as the average unit normal vector at these vertex locations.

Now, we are interested to assign or find out the colors of the pixels that are part of the surface,

but not vertices. For example, there are Pixels 4, 5, 6, 7 these are all part of the surface, also 8

and many more. 4, 5, 6, 7 belong to the same Scan line, 4 and 8 belong to two consecutive Scan

lines.

(Refer Slide Time: 22:47)

So, what we do, we perform linear interpolation in terms of the colors that are already computed

for the vertices. So, we take one scan line at a time. For example, we have taken the (i+1)
th

 scan

line. So, we compute the color at 4 and 7 which are two edge intersection points on the scan line

which means, they are the intersection points between the edges of the surface and the scan line.

And we apply interpolation where I1 and I2 denote the intensity or the color value that is already

computed at Vertex 1 and Vertex 2. So, for I4 we required these two values for I7 we require I3

and I2 where I3 is the vertex color at 3 here and this y4, y2 these are all y coordinates of those

pixels.

So, we first compute colors for I4 and I7 on the same scan line and then using I4 and I7 we

compute I5 which is here, which is inside the projected surface on the same scan line. So, the

interpolation is shown here I5 is computed in terms of I4 and I7 note that here we are using the x

coordinates of the pixels. In order to compute I4 and I7, we used y coordinates.

But in order to compute I5 we are using x coordinates of the corresponding pixels. That is about

the same scan line what happens when we want to compute the color of subsequent scan lines

say in terms of previous colors, we want to compute the color for 8
th

 pixel, the point 8.

(Refer Slide Time: 25:27)

That is also possible. Actually, the equations or the formula that I have shown in the previous

slide are not what is implemented in practice. There is a more efficient implementation of

Gouraud Shading where we do not necessarily always compute the ratios and multiply it with the

color values as we have seen in the previous slide. Instead, we perform interpolation with only

addition, the multiplication and division are not required.

However, for more details on this incremental approach of interpolation, you may refer to the

reference material mentioned at the end of this lecture. We will quickly have a look at the

corresponding algorithm.

(Refer Slide Time: 26:37)

The incremental approach is encapsulated here. In these two lines, as you can see, color can be

found out by simply considering the color already computed plus some age constants which are

predetermined. Similarly, in this stage also in this stage, we can use simple addition to compute

color where the addition is between previously computed color and some constant which is

already pre-computed as shown in this line 2.

For more explanation on this algorithm, you may refer to the material that will be mentioned at

the end. The basic idea is that this linear interpolation can be computed using simply addition

rather than multiplication and division that is required if we are trying to do it in a classical way.

So, this is a more efficient implementation of the stage three of Gouraud Shading.

(Refer Slide Time: 27:59)

And one more thing we should note here is that this particular Shading technique Gouraud

Shading is implemented along with a later stage of the pipeline, which is part of the fourth stage

it is called hidden surface removal. So, we will discuss about it later. So, Gouraud Shading

assigns colors, but it is typically implemented along with a later stage of the pipeline that is a

sub-stage of the fourth stage hidden surface removal.

(Refer Slide Time: 28:41)

There are problems with Gouraud Shading as well, although it generates more realistic images

compared to Flat Shading, but there are two major problems, one is it is still not good to generate

a specular effect that is that shiny surface or the bright spots that we get to see on the surface.

This is primarily because this linear interpolation results in a smooth change of color between

neighboring pixels which is not what happens in the specular reflection where there is a sudden

change between neighboring pixels.

Secondly, what Gouraud Shading suffers from this problem of occurrence of Mach bands is kind

of psychological phenomena in which we see bright bands when two blocks of solid colors meet,

so, if two constitutive surfaces are assigned different colors, then at their joining point we may

get to see some band like things, which is a psychological phenomenon known as Mach banding

effect. And this may result if we apply Gouraud Shading.

(Refer Slide Time: 30:13)

There is a third Shading method, which is quite advanced and it eliminates all problems that we

have discussed so far with Flat Shading and Gouraud Shading.

(Refer Slide Time: 30:26)

But, it is heavily computation-intensive and requires huge resources as well as time. We will just

learn the basic idea and we will not go into the details. So, this Phong Shading is also known as

Normal vector interpolation rendering.

(Refer Slide Time: 30:51)

Now, in this, we actually compute color at each point where we find out the normal vectors in a

different way. So, there is actually no interpolation involved, interpolation only in terms of

finding out vectors, but not computing colors, it takes much more time as expected and it does

not have the advantage of other Shading models in terms of reduction in computations.

So, it gives us a very realistic image because the coloring effect is closer to reality due to the

very sophisticated approach, but for the same reason, it cannot compute colors with reduced

computations, which are the advantages of Shading models. So, it is not having the main

advantage, but it gives us more realistic images. We will not go into the details of it, it is quite

complex. And if you are interested you may refer to the reference material that will be mentioned

at the end of this lecture.

(Refer Slide Time: 32:12)

I will just mention the three steps. In the first stage, we compute the average unit normal vector-

like in Gouraud Shading. In stage two we apply the Lighting model at each vertex to compute

color and in stage three we apply interpolation but in a different way.

(Refer Slide Time: 32:43)

What is that difference? Instead of interpolating colors we now interpolate to determine normal

vectors at each projected pixel position. Remember that normal vectors assume that we are in a

3D world coordinate system, whereas the projected pixel position assumes that we are already in

the device coordinate system which is 2D. So, we need to calculate normal vectors to actually

apply the lighting model which involves the use of normal vectors.

We do that here in Phong Shading. So, the interpolation is not used to compute intensity instead

it is used to determine normal vectors. Once that is done at each projected pixel we know the

normal vectors through interpolation, we compute color using the Lighting model. So, here we

are computing color using the Lighting model, but not through interpolation only difference is

that in order to compute color with the Lighting model, we need a normal vector that we are

finding out through interpolation.

So, essentially in this case, if we summarize the surface is projected we identified a set of pixels

that constitute the surface, at each pixel location we are applying the Lighting model. Before

that, we are using interpolation to find out the normal vector at that pixel location and then we

are using the Lightning model. So, we are using the Lightning model repeatedly, which increases

the computation and time.

For more details, you may refer to the material that will be mentioned at the end. We will just

outline and we will stop here on the discussion on Phong Shading. Now, let us try to understand

the idea of Shading in terms of one illustrative example.

(Refer Slide Time: 35:01)

Let us consider a cubical object with the vertices given A, B, C, D, E, F, G, and H. Now, with

this object we want to create a scene of a room in which the object is treated as a shelf attached

to a wall keeping the relative positions of the corresponding vertices same. So, the relative

position will be the same and there is some specification about the wall also it is parallel to the

XZ plane cutting the positive Y-axis at a distance of 1 unit.

And the length is reduced by half and we also mentioned the corresponding vertices in the shelf

with respect to the original vertices. So, after the specified transformation, this figure shows the

3D scene with the shelf attached to the wall as specified in the problem.

(Refer Slide Time: 36:39)

We also have to know its projection in order to be able to apply Shading. Now, that is mentioned

here the shelf looks something like this as shown here with the vertices specified each of which

corresponds to the corresponding vertex in the original scene. So, F’,’ belongs to F’, E double’

belongs to E’ and so, on. And in the projected scene, we have mentioned one vertex coordinate

so that other coordinates can be derived.

For example, here we have mentioned the vertex coordinate of 4 7 then we can derive E to be, X

will remain the same Y will be reduced by 1 2 3 4 5, so Y will be 2 and so on for other vertices.

In that way, we can derive the locations.

(Refer Slide Time: 37:57)

Now, assume that the room has a monochromatic point light source at a given location with

intensity of 2 units and also assume there is an ambient light with the intensity of 1 unit and the

reflective coefficients or reflectivities for the 3 components ka for ambient light, kd for diffuse

reflection due to direct light and ks for specular reflection due to direct light are specified. And

the specular exponent is also specified as 10 and the viewer is located at this position.

(Refer Slide Time: 38:48)

Assuming this setting let us try to compute the colors at the pixels P1, P2, and P3 assuming the

simplest of all Flat Shading. So, this is P1, this is P2 and this is P3, how we can do that?

(Refer Slide Time: 39:13)

So, we first determine the coordinates of the projected vertices which should be easy.

(Refer Slide Time: 39:35)

Then, we have to compute the color at any given point on the surface. Note that as per the

problem description light source is above the surface A’, B’, C’, D’, and on the left side of the

plane which contains the surface B’, F’, G’, C’. Thus, it will illuminate this surface, but will not

contribute anything towards the illumination of the other surface. So, this is the first observation

of the problem description.

(Refer Slide Time: 40:17)

Now, in order to compute color, we can calculate color at any point and then use the same value

throughout the surface in Flat Shading. So, let us calculate color at this vertex B’.

(Refer Slide Time: 40:37)

If we see the scene and the object description in the scene, then we know that surface normal at

B’ and the unit surface normal will be this. Now, we know the light source, so the unit vector

towards the light source can be computed in this way and unit vector towards the viewer because

we know viewer location can be computed in this way.

(Refer Slide Time: 41:17)

Then with these values we can get the dot product as something like this and also this second dot

product for the specular component as something like this and with these values and using the

reflectivity coefficients we can get the three components added up to get the overall color value

to be 0.79 unit at B’.

(Refer Slide Time: 42:06)

Now, we know that P1 and P2 both are part of the same surface containing B’. P1 is part of the B’

and P2 is part of the surface containing the B’. Now, if we are using Flat Shadings, so, we have

already computed the color at B’ so, we will simply assign these colors to all the surface points

that mean to P1 and P2. So, the values color values of P1 and P2 will be 0.79 units.

(Refer Slide Time: 42:47)

And we have also noted that the light source does not contribute to the illumination of this other

surface B’, F’, G’, C’. So, in that case, there will be no contribution due to the direct light source.

So, those two components due to diffuse reflection and specular reflection due to direct light

source will be 0 and it will be illuminated only by the ambient light which is computed using this

expression ka into Ia, where ka is the coefficient value and Ia is the intensity and we get this

value.

So, these are the values that we have computed using Flat Shading P1, P2 and P3. Note here that

we did not use color model or the Lighting model to compute values at P1 and P2 instead we

computed the value only at B, B’ and use that to assign color to P1 and P2. And similarly, we

have done for P3.

So, here we have reduced the usage of the Simple Lighting model and by that, we have reduced

the amount of computations required. However, as I said before since we are using Flat Shading

the colors that are computed may not look realistic when they are rendered on the screen if, the

distances of the source, as well as the viewer from the surface, are not sufficiently large.

(Refer Slide Time: 44:34)

Now, here also it may be noted that we have done some informal reasoning to come to the

conclusion of the color values. But if we simply apply the algorithms, then also we will get the

same result. We do not need to actually do any informal reasoning but that you can try on your

own. We will not work that out here.

(Refer Slide Time: 45:00)

And also I would like to request you to use the Gouraud Shading algorithm to perform the same

computations for the three points. I leave it as an exercise for all of you to do. And then you can

compare the amount of computation as well as the end of values that you are getting and from

there, you can get some informal idea of the effect that results in the application of these

different Shading models.

So, we have come to the end of our lecture today. To quickly recap, we learned about the idea of

Shading and its difference with the Lighting model. Then we discussed in detail, Flat Shading

model and Gouraud Shading models, and just outline the idea of Phong Shading models. With

the illustrative example, I hope, you could get some idea of the application of the Shading

models and its advantages over-application of only the Lighting model to compute colors. With

that, I would like to end today's lecture.

(Refer Slide Time: 46:38)

For more details, including the ones that are mentioned at different points of the lecture you may

like to refer to this book. Please have a look at Chapter 4, Section 4.3 for the details on all the

topics that I have covered today. Thank you and goodbye.

