
User-Centric Computing for Human-Computer Interaction
Prof. Samit Bhattacharya

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture - 10
The UCC Framework with Illustrative Case Study

Hello and welcome to the course User-Centric computing for Human Computer

Interaction. Today, it will be the 10th lecture, before we go into the content of today’s

lecture. As usual we will first recap what we have learned in the previous lectures,

particularly in the last week.

(Refer Slide Time: 00:55)

So, in the last week we started with a description of the interactive system development

lifecycle. So, essentially that is a software development lifecycle tailored for the

development of interactive system. We required to know this lifecycle in order to have a

structured view of the different stages or different processes involved in the development

of an overall interactive system software.

Now, along with that we briefly introduced the concept of computation in the context of

interactive system design. So, essentially that is another way of understanding at a more

deeper level the development process.

So, when we are talking of the design of an interactive system we mostly rely on

intuition and experience of the designer which is somewhat informal. But, instead if we

try to understand the computation involved in the software that is the end product of the

design then we may be able to have a better understanding of how to design that

software. In that context, we discussed the relationship between a software execution and

a computation in a traditional sense.

So, just to recap the computation is essentially change of state which we have discussed

and software execution also can be mapped to the change of state in a discrete state

machine and can be considered equivalent to the traditional notion of computation.

Now, when we are talking of software execution as a computation. So, what we want to

achieve is basically a structured way of understanding this computation and for that one

way to do that is basically to view a software as a collection of layers. Now, these

layered view helps developers have a better understanding of the overall software and,

this layered view can aid the designer of the final interactive software product as we will

see after today’s discussion.

We started with a very simple three layered view of software where at the top is the

application layer, in between is the operating system layer and at the end is the hardware

layer. And we discussed that it is not necessary for an application program developer to

know in details about the operating system or the hardware or how they interface, all

these minute details. Instead, the designer of an application program can concentrate on

the design of the program itself and rely on some well defined standardized APIs or

system calls to interact with the hardware resources through the operating system.

(Refer Slide Time: 04:03)

From there we learned about a slightly modified view of the application layer where we

talked of two sub layers. As you can see here in this figure in the sub layer one we have

three programs; the collector program, the input provider program and the renderer

program, and in sub layer to you have one program that is interface state predictor.

So, the purpose of these programs or the way to view this application software layer as a

composition of two sub layers with the individual components in it, is basically to

represent the way a software developer or the developer of an interactive system

software is likely to view an interactive system software.

So, as per that view there are four components four programs that are part of the

software. The first program is one input provider through this program the user can

interact with the software and user can provide input, the job of this software or this

program is also to capture that input. So, that other stages can make use of the inputs that

are coming from the user.

Once this input is there, there is likely to be another program which basically captures

the state of the interface and then based on this state information and the input provided

by the user a state change happens. And, this state change is captured by a third program

interface state predictor which predicts the next state of the system of the interface.

And from there this next state information is passed on to another program which

actually renders the state on the interface, for the user two perceive to see to hear

essentially to perceive the change. So, that is a simplified view of the software organized

into two sub layers with one layer having three components and other layer having a

single component.

(Refer Slide Time: 06:41)

But, the problem in this view as we have discussed in the last lecture is that it does not

consider anything user centric explicitly. In other words, whatever programs we are

talking of whatever components we are talking off do not explicitly deal with the user

characteristics, the user behavior, the user centric considerations. So, what we need is

essentially a modified view of the layered architecture.

(Refer Slide Time: 07:08)

So, that is what we are calling a framework to understand the user centric computation in

the interactive system software.

(Refer Slide Time: 07:17)

So, let us have a look at this modified layered view which we are calling us a framework

for understanding how user centric software ideally should work. So, here as you can see

instead of two there are now three sub layers 1 2 and 3; earlier there were two sub layers,

now we have three sub layers. Sub layer 1 remains the same it consists of an input

provider component, renderer component and a collector component. The input provider

component again the meaning the semantics remains the same, it is essentially a program

that allows interaction that allows the user to provide input to the system and captures

that input.

The collector it is meaning also remains the same with respect to our earlier layered view

where the job of the collector is basically to store the current state of the interface. And,

the job of the render is to render a new state of the interface which will be predicted by

the interface state predictor.

So, essentially layer one with its components remains the same as in our previous

discussion. Sub layer 3 now contains interface that predicted, earlier it was part of sub

layer 2 and the meaning of the interface that predictor is the same; essentially, takes as

input the current state and predicts the next state.

However, here the nature of the input to this module is changed. So, it is not only the

current state of the interface, but along with that it takes as input the user state. And, we

have introduced a new sub layer that is the user state predictor; now, that as the name

suggests it is an explicit incorporation of the user centric concerns that we face in the

design of interactive system.

So, what this user state predictor does? It is essentially a computational model of user

behavior which is used to determine the user state from the current interface state and the

input. So, earlier this current interface state was being passed on to the interface state

predictor to produce the next state which was sent to the render for display.

Now, this current state captured by the collector module and the input captured by the

input provider module or program are not sent to this interface that predictor instead

these are sent to the user state predictors. So, based on this current state and the input this

module computes next state of the user of the system, and that next that information is

used as input to the interface state predictor which predicts the likely interface

conforming to the next day and that state is that interface that is now passed to the

renderer. So, there is a significant modification done.

(Refer Slide Time: 10:39)

So, now the application layer has three sub layers as we have seen.

(Refer Slide Time: 10:44)

And the top most top layer remains the same.

(Refer Slide Time: 10:49)

Along with the sub layer 3 which was earlier sub layer 2.

(Refer Slide Time: 10:53)

But sub layer 2 now in the new system which is the user state predictor has been

introduced which explicitly takes into account the user centric concerns that we are likely

to face in the design of an interactive system. Now, let us try to understand this new sub

layer that is the user state predictor.

(Refer Slide Time: 11:19)

So, this is clearly one very important component and this is going to be the most

important component for interactive system design because it explicitly takes into

account the user concerns which ultimately is our objective to have a usable system.

Now, remember that when we were talking of a state in the context of computation, we

referred to a set of variables, we usually define a state as a set of variables. So, when we

assign a set of values to these variables when we instantiate these variables with values

then we get a particular state.

 So, the definition contains variables and realization of the state is nothing, but

assignment of values to these variables. Now, when we are talking of user state again if

you can recollect we talked of user state as a state of mind or state of cognition a current

state of the process of cognition, but how do we define a state, state of mind or state of

cognition.

So, we have already noted before that we still do not have complete knowledge of human

cognition process, we still do not know what defines, what regulates or what controls

human cognition. So, when we are talking of cognition as a change of state from some

initial state to the goal state, it is not possible to capture the state in terms of all possible

variables that actually control cognition because we ourselves do not know. Instead,

what we can do is basically come up with an approximate definition that suits our

purpose.

So, in the context of user centric computing that approximate definition of a user state

can be obtained in terms of performance measures. So, this performance measures are

essentially an indirect representation of the user state, what are these performance

measures?

(Refer Slide Time: 13:28)

Some examples can be task completion rate, error rate, cognitive load and many more

such measures we can define. As you can see here, these measures are not directly

related to what happens in our mind, instead they are measuring some outcome of the

process of cognition, but with this measures we can actually capture the progression of

cognitive process and the change of state.

In other words we can use these measures as an indirect representation of the state of

cognition and these measures provide us the set of variables we need to define a

cognitive state.

(Refer Slide Time: 14:18)

So, what we do with this measures so, at any given time we compute. So, note this term

compute we compute the values for these measures. So, once we computed those values

then the set of computed values represents. The cognitive state of the user at that instant,

it is an approximate representation. I am again emphasizing on the fact that it is not exact

representation of cognition because we ourselves do not know what is exactly the exact

representation.

So, we are dealing with approximate representations and one way of representing

cognition approximately is in terms of set of performance measures. So, we compute

their values at an instant and that the set of those values indicate the state of cognition of

the user at that instant. So, once we computed the state by computing the set of

performance measures what next?

(Refer Slide Time: 15:32)

So, next what we do is basically from this current state we try to predict or determine the

next desirable state of the user. Now, what is a desirable state? Clearly, a desirable state

is the one which improves the performance measures and user satisfaction. Now, both of

these are part of the definition of usability if you may recall from our earlier discussion.

So, when we manage to improve both, then definitely we are going to have a state which

is usable and ultimately it will lead to an usable product.

 So, just to repeat again, once we managed to capture the state in terms of performance

measures in terms of computing the performance measures what we do is basically, we

try to predict or determine the next desirable state by that what we mean is a state that

improves by some means, the performance measure and user satisfaction which are

fundamental concerns in developing a usable product.

(Refer Slide Time: 17:02)

And, once we managed to get the next desirable user state then we pass on this

information to the interface state predictor. So, the next interface state should be such

that it conforms to the desirable state. So, all these at this stage may seem slightly

abstract to you, but soon we will have one example to illustrate these concepts with more

clarity.

(Refer Slide Time: 17:28)

So, then what is the purpose that this framework starts? So, to recollect in our framework

we have three layers. Layer 1 contains three sub components those are the collector

which collects the current state of the interface, information related to that then we have

input provider which allows the user to interact with the system and finally, we have the

renderer which actually responsible for rendering the interface. So, that the users can

perceive it either through vision or other senses including auditory senses.

In the sub layer two, we have a very crucial component which is called user state

predictor, it takes as input the current state information of the interface and the inputs

that the user provides. Based on that it computes where the term computation should be

kept in mind, it computes the next desirable state of the user.

Now, that next desirable state is defined in terms of improvement in the variables that

defines the user state. So, here we are using an approximate state definition where we

represent a user state in terms of a set of performance measures such as task completion

time, error rate, cognitive load and so on.

So, the next desirable state is the one where these measures are improved the

performance is improved. Now, once that state is computed what well do is pass it on to

sub layer three which is the interface state predictor, which based on the computed state

produces specification of an interface that conforms to this improved state or desirable

state, and this specification is passed on to the renderer program which renders that

perception of the user.

(Refer Slide Time: 19:43)

Now, with this understanding of the overall computation in user centric software, what

do we get? We get of course, a more structured and formal view of the system. How it

helps the designer? So, now, the designer can think of the design as consisting of various

components.

For example, the designer may think of the design as consisting of at the very basic level

five components the collector, input provider, renderer, user state predictor and interface

state predictor and concentrate on designing each of these components.

The designer may also think of the final software as a competition of many more

programs than this basic five. For example, the interface that predictor may further be

subdivided into multiple programs, the user state predictor may further be subdivided

into multiple programs, the input collector may have multiple programs. So, each of

these programs we call in more formal terms that modules sub modules.

So, it gives an idea to the programmer to the developer how to think about an interactive

system and that is the main purpose. So, once this idea is there, the designer can come up

with better designs which can actually help in visualizing or understanding the overall

systems.

(Refer Slide Time: 21:28)

So, that is the main motivation for coming up with a framework, basically to help

designer have a more formal approach to the overall design of the system.

(Refer Slide Time: 21:41)

So, once we know how to organize one interactive software in the form of modules and

sub modules, the next question comes is do it all these components in all the systems.

That is a very important question because in reality there are many types of interactive

systems; broadly, we can divide them into two groups adaptive and non-adaptive.

Now, we call some system adaptive when the interface appearance the layout, the

interaction may change during the course of interaction. So, in other words you are

interacting with the system and what is being rendered at this moment may not remain

same in the next instant depending on your interaction it may change; similarly, the way

we interact may also change. So, adaptive means the system adapts to the user behavior

by changing the appearance of the interface or changing the interaction.

In contrast, when we are talking of non adaptive systems, what we refer to is basically

the interface remains static, the interaction mechanism remains static. So, there is no

change. So, what we determine the interface once and it does not change during the

execution of the software. So, the interface is designed during the development time and

does not change during the execution.

In adaptive, it may there may be one designed during the development at the end of the

development cycle and that design may keep on changing during execution. In non

adaptive that is not the case whatever we get at the end of the development cycle,

remains same during the execution of the software. How do we relate our framework to

these two types of systems? In case of adaptive system we use the framework as is.

(Refer Slide Time: 24:23)

So, when we are talking about building an adaptive system, the framework remains

whatever we have discussed, all components will be used and all components are

relevant to understand an adaptive system.

(Refer Slide Time: 24:44)

 In comparison when we are talking of non-adaptive system we may not keep the

framework same. So, here we can ignore this input provider because here nothing

changes based on the input. So, during the development stage whatever is developed

remains the same; so, nothing varies based on input so, nothing changes during

execution. So, input provider have no relevance in understanding and non-adaptive

interactive system.

So far whatever we have discussed may seem somewhat abstract the idea of user state,

the idea of systems adaptive non-adaptive, the idea of these layers of the framework. Let

us try to understand this framework with a case study that will better illustrate the

framework.

(Refer Slide Time: 25:47)

So, what is our case study? The case in question is composition and sending of an email

using your phone or tab. So, we want to basically create and send an email with your

phone or tab. What you are likely to do, if you are asked to do this. Of course, all of us

do it very frequently and we probably never notice what are the things that we are doing.

(Refer Slide Time: 26:15)

Now, the first thing we should note is that the interface that is there that you get to see

for mail composition on your phone or tab, this email interface contains few text input

fields those are this two field. So, the sender; the address of the receiver, the address of

the sender or the identity of the sender, identity of the receiver in terms of mail IDs. If

there is any Carbon Copied receiver, some hidden receiver or BCC and finally, the body,

body of the mail. Along with that we of course, need to use the send buttons to send the

mail at the end of the composition.

(Refer Slide Time: 27:22)

Now, what all these things imply they imply that the text entry related activities, lots of

such activities are there and they constitute a very important component of the overall

purpose of sending mail. And what we do what we use to perform this entry, we use

virtual keyboards or sometimes called soft keywords. Here there are no physical keys so,

everything appears on the screen you tap on the keys to compose text, and I think all of

you are familiar with composition of email with virtual keyboard.

(Refer Slide Time: 28:11)

This is one example scenario similar things you probably are familiar with you are doing

regularly where we use this virtual qwerty keyboard to input various texts in those fields

and after competition we send the email.

(Refer Slide Time: 28:35)

So, clearly it indicates that this virtual keyboard plays a very important role in the overall

emailing app or emailing system. The design of the virtual keyboard is likely to

determine the usability of the overall app because this particular component of the app is

used heavily most of the time.

(Refer Slide Time: 29:05)

And if it turns out to be very difficult for a user to compose emails with the keyboard

then he or she is not going to like the app which in turn affects usability, acceptability.

So, our objective should be to have a design of the keyboard which is usable. So, that the

user finds it very convenient, very easy to compose emails with the keyboard and overall

usability of the app increases.

(Refer Slide Time: 29:37)

Now, when we talk of design of the keyboard what we actually refer to, it refers to the

design of the layout. The geometric arrangement of the keys on the interface around the

screen. So, our objective is then to basically come up with the layout that makes text

composition very comfortable easy and fast.

(Refer Slide Time: 30:08)

A well designed layout serves many purposes.

(Refer Slide Time: 30:11)

So, to name a few of those purposes first of all you will find it easier and you will spend

less time in email composition. So, if you find it easier to locate and tap the keys then

definitely were going to take less time to compose your text.

(Refer Slide Time: 30:34)

Secondly, it becomes easier to remember the layout. So, it is going to be helpful in again

speeding up your next competition task because you do not need to spend time to look at

keys for each key selection. You will get to know the positions and memorize them, and

can select the keys without even looking at the keyboard, that is typically what we expect

and that is typically once we become expert typist we type without looking at the

keyboard.

We inherently remember the key positions and we can basically take our fingers to those

positions without even looking at the keyboard. And if you design a proper layout of the

virtual keyboard the same purpose can be served and it will speed up the next

composition task.

(Refer Slide Time: 31:39)

Thirdly, a good layout reduces possibilities of typing errors as well because it will

become familiar if the layout is done in a proper way, systematic way then it is easier for

you to become familiar with it and the chances of selecting wrong keys reduces and

reduces the overall possibility of typing errors.

So, it increases familiarity with the layout, if you design the layout in a better way. So,

there are other advantages as well, now our objective then is to come up with designs

that serves these purposes. So let us first have a look at how we can design this virtual

keyboard which is non-adaptive.

(Refer Slide Time: 32:26)

We will try to understand the design in terms of our framework. So, let us have a look at

the framework now, were going for a non-adaptive design. So, here we do not require

input provider we can discard it, as we have discussed before other components may be

useful in understanding the layout, understanding the design of the layout.

(Refer Slide Time: 32:51)

So, how we can design, let us first have a brief schematic description of the design. So,

we start with a random layout. A layout that we generated by randomly placing keys on a

on a fixed screen area. Now, this positions the positions of the keys in that random initial

layout is captured by the collector. So, collector is responsible for generating this initial

random layout.

(Refer Slide Time: 33:21)

Now, once we have that information of the initial layout the collector passes it on to the

user state predictor. Now, what the user state predicted does is as we have discussed

before the state is defined in terms of some measures performance measures.

And, the user state predictors past computes, those measures for the current state of the

interface and based on that it tries to predict a state which actually improves those

measures which is the desirable next state and it passes it on to the sub layer three that is

interface state predictor. Now, in order to predict the next desirable state, what is

required is a model of user behavior; now that is again something new which we are

introducing at this stage.

(Refer Slide Time: 34:23)

So, what we mean by the model is essentially that when a keyboard is presented to the

user how the user is likely to type and based on that we can compute the performance,

and based on that we can compute the current state, and based on that we can compute

the next state. So, this state as we have said is comprising of a set of performance

measures which are indirect indicators of the user state.

(Refer Slide Time: 35:01)

(Refer Slide Time: 35:02)

Now, for a virtual keyboard we can have various performance measures, the common

ones that are typically used. The first one is text entry rate that is the rate at which you

can compose text. So, this is the first and most obvious and most common performance

measure used for measuring the performance of a typist with a keyboard, and the typical

unit of measurement is words per minute or wpm. Sometimes, we have words per second

also, characters per seconds also, but word per minute is the most common measure..

(Refer Slide Time: 35:50)

Second measure can be error rate. So, how much errors the users are making? So, it is

measured in terms of some rate, one such measure can be number of wrong characters

entered per word. So, in order to compose a word how many wrong characters you have

entered, there can be many other similar ways to define this error rate.

(Refer Slide Time: 36:19)

There can be third measure that is the key search time, how much time it takes for a user

to look at a key on the screen, it is also an indirect measure of familiarity.

(Refer Slide Time: 36:31)

Now, when we talked of coming up with the next desirable state which improves

performance what will meant; essentially, what we meant something like this in the

current state we have a random layout based on this layout we have a model of users

typing behavior. We apply that model to come up with values compute the values of the

measures such as entry rate, error rate, search time.

We get a set of values which defines the current state of the user and we try to generate a

layout which improves these values which improves a text entry rate, reduces error rate,

reduces search time. If we get such a state that is clearly a desirable state that improves

the typing performance and we want to we want the user to go to that state or have that

state while typing. So, that is our computed next step.

(Refer Slide Time: 37:37)

So, our overall objective then is to come up with a layout starting from an initial random

layout that optimizes these measures, in other words increases text entry rate and

decreases or reduces error rate and search time, and that optimize layout is likely to be

more usable compared to any random layout.

(Refer Slide Time: 38:07)

So, then we can rephrase the design problem.

(Refer Slide Time: 38:10)

As we are given a layout and on this layout we apply a computational model of user

performance, and obtain values of the measures these values indicate indirectly the

current state of the user.

(Refer Slide Time: 38:30)

And the next desirable state is the one in which we improve or in which we try to

improve the measures which indicates that the performance over all text entry

performance improves that we can do by rearranging the keys on the layout. Clearly, the

initial layout give some measures in order to improve it we need to change the layout.

So, we have to rearrange the keys on the layout which is likely to lead to improved

performance.

(Refer Slide Time: 39:11)

So, this is a iterative process. So, we start with the random layout, compute using the

computational model of typing behavior, compute the measures, get a set of values then

rearrange the layout again compute, compare it with the previous measures.

See whether there is some improvement if yes then we try to see how significant that

improvement is sufficient free significant and there is no scope for further improvement

we stop; otherwise, we again change the layout, again compute the performance

measures and compare it with the previous measures and this process continues. So, it is

a iterative cycle and the cycle continues till we reach an optimum layout.

(Refer Slide Time: 39:55)

 So, the key concern here is computational model of user performance, unless we have it

unless we have a computational model of performance we cannot capture the behavior,

we cannot compute the measures. Now, what this model indicates or represents, it

represents the way we type, make errors, search for objects on the screen, in the presence

of large number of objects..

Clearly, this refers to a keyboard having large number of keys and how we type on a

keyboard, how we make errors, how we search for objects, essentially our typing

behavior. And unless we have such a model we cannot implement the user state

predictor.

(Refer Slide Time: 40:51)

So, this model takes as input. So, earlier we said user state predictor it is essentially and

implementation of a model that takes as input a layout and the produces another layout to

optimize the performance measures. Our objective is to have a model to implement the

state predictor, it takes as input a layout and produces another layout to optimize the

performance measures. From where to get that model? That is one important question.

Fortunately, we have such models and in later lectures we will discuss those models.

(Refer Slide Time: 41:39)

For the time being we ignore the details of the models and we will assume that we do

have such model available to us.

(Refer Slide Time: 41:53)

Now, once the model manages to come up with the next desirable state that information

is passed on to the interface state predictor which produces specification of the interface

that conforms to the next desirable state.

(Refer Slide Time: 42:14)

So, in other words it is job is to produce a layout that conforms to the desirable state

requirement. And, this layout specification includes or may include relative position of

the interface elements that is the keys and other buttons with respect to each other, the

color, the font style, text size so on. So, the job of the interface state predictor is

essentially to come up with this specifications.

(Refer Slide Time: 42:53)

And once those specifications are available it is sent to the render which based on the

specification renders the keyboard on the screen, then we have non adaptive design.

Now, let us briefly talk about an adaptive design.

(Refer Slide Time: 43:18)

How we can think of adaptive keyboard with the help of the framework the

computational framework?

(Refer Slide Time: 43:23)

Now, when we are talking of adaptive design. So, what we mean is that the app comes

with a default layout which may or may not be optimized.

(Refer Slide Time: 43:36)

As soon as you start typing the app tries to predict the next character you are likely to

type. So, prediction of next character is important; so, as soon as you start typing that

tries to predict what are the next characters you are likely to type.

(Refer Slide Time: 43:57)

And it then rearranges the layout, changes the layout so, that the task of locating the key

on the screen and typing becomes easier and quicker. So, essentially the keys are placed

in such a way so, that you will find them just beside the currently typed key and it does

not take you time to look at it

(Refer Slide Time: 44:26)

 For example, suppose the last character you have typed is the letter ‘t’ and the app

somehow manages to predict that the next character you are likely to type is ‘h’.

(Refer Slide Time: 44:42)

So, it rearranges the layout and puts h just beside the last letter you have typed that is t,

since that is where your finger currently is and then what is the advantage then you say

both the key search time at the finger movement time. So, both are reduced and which in

turn increases the typing speed you do not need to spend more time on locating the key

and moving your finger to that key.

(Refer Slide Time: 45:15)

So, here let us recollect the framework as you can see here all the components are

required we require input provider which will capture the keys typed, require collector

which will capture the current layout, these will be sent to the user state predictor which

will predict based on the computational model.

The next desirable state and based on that information the interface state predictor will

come up with a layout which conforms to that state and that layout specification will be

sent to the renderer where the render will render it are display it, and this is not one time.

So, this will keep on happening when you are actually using the key. So, it will keep on

happening during your usage of the keyboard or during the execution time.

(Refer Slide Time: 46:11)

So, all the components we need to implement to be able to come up with a adaptive

keyboard layout.

(Refer Slide Time: 46:22)

So, these two examples are meant to give you some idea of how to relate the framework

to the final design. So, what are the key takeaways from this discussion. First of all the

framework provides a language to organize our thought. So, it is a high level concept, it

helps us to organize our thought by providing a language, thought about complex nature

of the interactive application. Any interactive application is very complex and we needed

some way to understand it, someway to represent it and this framework gives such away,

framework provides a language to understand that.

(Refer Slide Time: 47:13)

The language is abstract at a very high level of course, as you can see the micro details of

implementations are not there which is left to the imagination of the designer. So, the

language is very flexible in the sense that the micro details can be worked out by the

designer based on his or her expertise knowledge intuition, but that working out will

proceed along a more systematic path we service if we do not have this framework.

(Refer Slide Time: 47:55)

So, that is the overall idea of the framework that it is meant to allow a top down

development approach. So, essentially you think of the system at a very top or abstract

level and then keep on working out the subsystems starting from that abstract level view

and then try to implement at the code level. So, this top down development approach is

the key purpose and objective of the framework.

Whatever we have discussed today, let me just recollect once. So, we talked about a

framework which is mean to give you, some idea some structured way of thinking about

the complex interactive systems. There are three sub layers in the framework, most

important layer is the user state predictor which comprises of a model computational user

model. And, we tried to understand this framework in terms of two examples they belong

to two broad categories of interactive systems adaptive and non adaptive.

So, we tried to illustrate the idea by explaining one non-adaptive virtual keyboard design

and one adaptive virtual keyboard design by relating the design to the framework with

the overall objective of explaining the idea of the framework.

(Refer Slide Time: 49:33)

So, whatever discussion we had today are based on chapter 3 section 3.2 of this book

Human-Computer Interaction: User-Centric Computing for Design.

Thank you and goodbye.

