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Lecture - 06
MIPS Pipeline for Multi-Cycle Operations

Welcome to lecture number six of advanced computer architecture course. In today's

lecture our focus is on multi-cycle pipelines.

(Refer Slide Time: 00:41)

 So this is the conventional 5-stage, MIPS pipeline that we were seeing over the last

five lectures. We have seen that with one cycle the instruction fetch has to be over and

in one cycle instruction decode and the register fetching should be over and in one

cycle, the execution of calculation of address, memory access and right back. So we

are assuming that all these five stages will take only one cycle each.

So far we did not think much deeper about this question, can everything be over in

one  cycle?  Let  us  ask  one  specific  question.  Can  the  EXE  cycle  or  EXE stage

complete, can the EXE stage complete the operation in one cycle always. That is a

challenge question that we are going to see.

(Refer Slide Time: 01:25)



Now, there are certain operations that requires more than one clock cycle to complete.

For example, whenever you are involved in a floating point or an integer multiply

operation, if you are involved in a division operation or if it is a floating point add or

sub. So generally if it is an integer add or sub, then thing should be all over, the EXE

stage will take only one cycle.

But if you are going to have a floating point adder/subtractor operation then, we know

that  in  order  to  manipulate  two  floating  point  numbers  in  terms  of  adding  or

subtraction, first we have to adjust the exponent and then only we can add or subtract

the  corresponding  mantissa.  Similarly  multiplication  operation  involves  multiple

partial summation and division operation involves multiple subtraction also.

So  when  it  comes  to  floating  point  adding  and  subtraction  and  any  sort  of

multiplication or division whether it is an integer multiplication or a floating point

multiplication  similarly,  whether  it  is  an  integer  or  a  floating  point  division  also

execution stage cannot be completed in one cycle. We know that conventionally an

execution stage means your operands are ready.

You have identified the opcode, the control signals are ready. The operand is ready at

the input of the corresponding functional units. So far we have seen our functional

unit is a ALU wherein it can perform add, subtract, and other logical operations but

not advanced operations like multiplication, division, and floating point adding and

subtracting.



Now our question is how will we deal with operations wherein the operations itself is

taking more than one cycle in its execution stage. So some operations like what we

have seen will  require  more  number  of  clock cycles  to  complete.  So you require

dedicated hardware units. Such kind of dedicated hardware units are available in the

processor for performing these specific operations.

(Refer Slide Time: 03:35)

So consider the case that you have an integer unit which is our conventional EX unit.

And for multiplication, you have a multiplier, you have a floating point adder and you

have a division unit also. So previously, this was my pipeline wherein I have IF, ID,

EX,  MEM  and  writeback  and  now  we  know  that  another  units  are  been  added.

Whenever  there  is  a  multiplication,  then after  the  ID stage  I  am feeling  it  to  the

multiplier.

Similarly, whenever there is a floating point adding or subtraction, it is going to the

floating point adder and then you have a divider unit also. So essentially at the ID

stage, now we are going to have a choice. Depending on what is the operation, one of

these execution unit  are being used.  So accordingly you are going to forward the

output of the decode stage into that.

Looking deeper into this, the EX stage will take only one cycle whereas, if it  is a

multiplier it is going to take 7 cycles exclusively for execution and 4 cycle for adding



and 24 cycle for division operation. So if it is going to be a normal integer operation

that make use of the EX unit in the pipeline, then it will get over in 5 cycles. If it is a

multiplication operation then conventionally we have IF, ID, MEM and writeback,

those 4 stages plus another 7 stage of multiplication that make it total of 11.

If it is floating point add or sub then we know that apart from the normal 4 another 4

more cycles are required and that is making it as 8. And for division operation, we

have 4 + 24.  So it  will  roughly take 28 cycles to complete.  So a  general  integer

operation is going to get over in 5 cycles. If it is a multiplication, it will take 11 and if

it is a division it is going to take 28 cycles and if it is a floating point adder/subtractor

operation, then you require 8 cycles.

This  is  happening because of making use of variable  pipeline execution units.  So

having said this, our initial assumption was all the instruction will be using 5 cycles.

And  now,  depending  upon  the  operation,  when  you  are  going  to  deal  with

multiplication division and floating point operations, then it takes more number of

cycles to complete the execution.

So even though we start in a sequence, the ending of the instructions may not be in

order depending upon how longer it is going to take in the execution stage.

(Refer Slide Time: 06:25)

Now, coming into this multi-cycle operations, you know that there are two things that

you wanted to define. So this is a multi-cycle pipeline. So the ID unit is basically



acting as a splitter depending upon the opcode, either you will be forwarding into this

path  or like this, like this.

(Refer Slide Time: 06:48)

Now, let us try to understand two important concepts, one is called latency associated

with the functional unit and second one is initiation or repeat interval associated with

the functional unit. Over the last few lectures of discussion we have seen that let us

say I how consecutive integer operation like add or sub whatever it is and assume that

there is no data dependency between them.

Then in every cycle, I can actually fetch or I can actually issue the integer operations.

That mean since it is taking only one cycle in the execution stage, every cycle new,

new pair of operands are coming and I am able to perform the operations as well. Let

us try to see whether is it the same case, when you go to multi-cycle operations.  You

are going to define a term called latency associated with the functional unit.

It is defined as number of intervening cycles between an instruction that produces a

result and an instruction that is going to use a result.  So let us say I am going to

produce a result by an integer ALU. If somebody else wanted to use it, they should

not actually wait. The latency is actually zero because we know that if there is an EX

stage where I have a IF, ID, EX, MEM, and writeback that next EX stage comes here

and you see operand forwarding.



Even though there is a dependency between them, I can actually forward the result of

the EX to the next instruction. So the second EX instruction is not delayed for any

cycle by virtue of operand forwarding. So the latency associated with integer ALU is

zero, because we require 0 number of intervening cycles between the instruction that

produces the result.

That is an integer ALU that produces the result and anybody who is going to use the

result. Similarly, when you go to data memory, especially in the case of floating point

loads, that means I am going to produce a value and this value is a lower operation

value. So we know that load operation typically is going to reach the processor at this

point. I am going to access from memory.

So if somebody wanted to use the value that is already loaded, then its EX cannot be

here. The EX gets shifted by one cycle. So I will repeat the concept once again. If the

first instruction is a load, then at this point only we are going to have the value ready.

So the EX can be only at this point. Essentially, I need to wait for one cycle.

So whenever a value that has been produced by a load has to be used by some other

instruction, then at least one intervening cycle is required. That is what is meant by

the latency of a load operation. Now, consider the case that you are going to have a

floating point add operation, is going to produce the result. And here the latency is

shown as 3. Let us try to understand how this latency 3 is computed.
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So we are going to have two floating points. So let us say there is a floating point add

operation. So I have an IF, ID. Then if it is floating point add, rather than EX it is

going to A 1, A 2, A 3, and A 4 and then MEM and writeback. Now assume that there

is some other instruction that wanted to use this. So here it is IF, this is ID. EX cannot

start at this point because the value is available.

The result of the floating point add is available only at this point. So the EX can be

kept only here and this is going to be MEM and writeback. Now, how many cycles

are spared? You can see that here I cannot perform EX. So basically 3 cycles have to

be intervened.  So there is  a delay of 3 cycles,  if  the value that  is  produced by a

floating point add has to be used by somewhere else.

That is why the latency is been given as 3. Similarly, you just imagine you are going

to have a floating point multiplication operation and somebody else wanted to use the

result. Floating point multiplication we know that it is going to take 7 cycles. So it is

M 1, M 2, M 3, M 4, M 5, M 6 and M 7 followed by MEM and writeback. These are

the stages.

Now, if somebody else wanted to use this result, the result is available only after M 7.

So the EX should be here, EX, MEM, and writeback. So these are the cycles which

we will be going to extort and that is what you see it is a 6. So floating point add even

though the latency is 4 here you see, since the adjacent instruction is starting one

cycle late only 3 is being felt, 3 cycles of delay.

Similarly, for multiplication, I have 6 cycles delay. Now, we got to see that the next

one is floating point division which will need 24 cycles to complete the operation. So

there is a latency of 24 cycles that is coming into this. That is all about latency. Now,

let us try to understand what is the initiation interval, that is one more term that has

been defined.
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You can note from this diagram. Let us now try to understand what is initiation or

repeat interval. From the diagram you can see that this multiplication unit and the

adding unit are divided into smaller blocks and they are connected by a pipeline. That

means, every cycle whatever be the output of M1, that will be given to M2. Output of

M2 will be given to M3 in a pipelined fashion.

So M1 can take new pair of operands that has been given by ID. Or we can say that

the multiplier unit is internally pipelined. Similarly, the 4 stage adder is also internally

pipelined.  That  adder  can  take  new values  every  cycle,  but  it  takes  for  a  set  of

operands for completion of floating point adding, it will take 4 cycles. So 7 cycle of

multiplication and 4 cycle of floating point adder/subtractor are internally pipelined.

As long as there is no dependency between the data, every cycle I can start a new

operation, whereas your division unit is an unpipelined. That means, once you supply

a division operation, for example consider the case that you are going to have division

operation  of  R2  and  R3,  which  is  to  be  stored  on  R1.  Let  us  say  the  adjacent

instruction is R4, R5, and R6.

If you look at these two instructions, you can see that there is no dependency between

them. R1, R2, R3 are the first operands of the first division operation. Whereas, the

second division is operating on R4, R5, and R6. There is no dependency between

them. So the result of the first division is not needed as far as the second division is

concerned.



But still, since our division unit is unpipelined, it will take 24 cycles of latency that

happens. 25 cycles are required to complete the operation.  And if you look at the

division, I can use my division unit only after 25 cycles. That means, the number of

cycles that must elapse between issuing two operations of a given type. I am going to

use the same division again, two divisions has to be separated by 25 cycles because

my division unit has a latency of 24.

Now if you look at this, the individual ALU has an initiation interval of 1. That means

two integer ALU operation should be separated by one cycle. Similarly, data memory

operations, floating point add, floating point multiplication all will take one cycles.

That  means in the very adjacent  cycle,  I  can have an operation  of the same type

provided there is no data dependency.

But in the case of a division since the functional unit is unpipelined, for the next 25

clock cycles, the unit will not accept any operand. That is why the initiation interval

of the division unit is higher. So let us try to understand what we learned in this. In the

case of a multi-cycle pipeline after the ID stage, there are different functional unit. It

is  a  duty of  the ID stage  to  forward whatever  is  the decoded instruction  and the

corresponding operand into the appropriate functional units.

If  it  is  an  integer  operation  or  a  logical  operation  that  has  been  done on integer

registers forward it to EX unit. If it is a multiplier operation, irrespective of whether it

is an integer or a floating point unit,  it has to be supplied to the 7-stage pipelined

multiplier. Now, if it is a floating point adder/subtractor operation, then the ID stage

has to forward the instruction and the corresponding operands to the 4-stage pipelined

floating point adder/subtractor.

And for a division we have an unpipelined unit which will take 25 stages to complete

the operation. So that is basically dealing with all these instruction. So the ID unit is

now more capable. Depending on instruction it is going to forward the corresponding

operands  and the  decoded  instruction  into  appropriate  functional  units.  And these

functional units will take different amount of time to complete.



We learned about latency and initiation interval, two important terms in order to get a

deeper understanding about how this functional units behave. Latency means, it is a

number  of  intervening  cycles  between  an  instruction  that  produces  a  result  and

another instruction that is going to use the result. In the case of an integer operation

we know that in the very adjacent cycle I can use it because of operand forwarding.

Then there is no delay actually, that is called the latency of zero. Whereas, in the case

of a load operation, there is one cycle delay. So after the load is over, minimum one

cycle of delay is required for another instruction to use it. When it comes to floating

point add or subtraction we require minimum of 3 cycles, because the floating point

adding itself is 4 stage A1, A2, A 3, and A 4.

There is a normal shift of one cycle in every pipelined instruction. So another 3 more

cycle is required if you wanted to use the result produced by a floating point adder. In

the case of a multiplier, since it is a 7-stage multiplier, latency of 6 is experienced.

Whereas in the case of division, it is an unpipelined division unit. So the latency is 24

and the initiation interval is 25.

(Refer Slide Time: 18:32)

Now, let us try to see some examples and we see some challenges that are being faced

while doing multi-cycle operation. So consider the case that you are going to have a

multiplication operation and this D indicates we are going to operate on a double data.

So  double  data  means,  basically  your  operand  is  a  floating  point.  So  when  you



perform a multiplication  operation  on a  double data,  you know that  IF and ID is

normal and then you have 7 stages of multiplication followed by MEM and writeback.

After that I have an add operation. So add operation starts in the second cycle. And it

has A 1, A 2, A 3, and A 4 and MEM and writeback will be following after that, and

then you can see a load which is the third instruction, which will make use of the

integer pipeline, because the EX stage is used for calculation of effective address or

IF, ID, EX, MEM, and writeback.

And then you have a store which is going for IF, ID, EX, MEM, and writeback as

usual. Now, what we want to understand from this, the result of the multiplication is

available only at M 7, at the end of M 7. Result of add operation is available at A 4.

Whereas result of a load operation is available at MEM. So any kind, if somebody is

going to use the result of multiplication, it has to be after this.

If somebody is going to be using the result of a load operation, it has to be after this.

And look at one pattern. We started one-one instruction in every cycle. But when you

look at the time at which they are completing, the writeback stage is happening for

multiplication very late, whereas your add is complete a little bit early, load even still

early and then the store. So this is called out of order completion.

If you look at the order in which the instructions are completing, it is not in the same

order, the way which instruction have started fetching. This is happening because of

variable number of cycles needed at the execution stage. Having understood the basic

of what is a multi-cycle pipeline, now let us dig deeper into what are the issues that an

architect face during the design of such multi-cycle pipelines.
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The first one is your division unit is not pipelined. So that can lead to a structural

hazard.  Let us try to recap what you mean by structural hazard.  Structural hazard

means when two instruction try to use the same hardware then that is known as a

structural hazard. So think of a case I have a division operation to be done on, let us

say, these floating point registers.

My F indicates they are floating point registers and R is indicating integer registers.

Now, another one is another instruction. So division of F2, F3, F4. Division of F6, F7,

and F8. If these two instruction come in adjacent cycles, the second instruction has to

wait until the first one is completed by the division unit. This is because the division

unit will not accept any operand until the previous division is over.

So this is not due to any dependency. You can see that from this pair of instruction,

there is no data dependency at all and this is what is known as a structural hazard.

Since the division unit  is not pipelined,  all  subsequent instructions,  all  subsequent

division instructions rather has to wait because the division unit is already doing the

division of a previous operation.

Now, the second design issue is instruction have varying run times. So this can lead to

a scenario where multiple instruction reads the write back backstage at the same clock

cycle.  Instructions of varying run time, this will produce more register write.  So I

need to have facilities which will permit me to write into different registers. Let us



assume the first one is going to write to R1, second instruction is to R2 and third

instruction is to R3.

All these three instructions are going to reach the WB stage, the write back backstage

exactly  at  the  same time.  This  is  because  different  instruction  will  take  different

number of cycles in its execution. So somebody who is starting very late can complete

early. So we should expect these kinds of scenarios. So that is a challenge. How will

you address this?

Now, we can have WAW hazards that is been possible. So how will you get WAW

hazard? So think of a case that this is R1. Let us assume the second instruction is also

going to write into R1. Now, we will try to see what are the next problems that are

being faced. One of the important problem that we face in multi-cycle pipeline is the

WAW hazard.

(Refer Slide Time: 23:31)

So what exactly is the WAW hazard. Think of a case that you are going to complete

your writeback at some clock cycle.  Let us say some other instruction is going to

complete before you even though it is started later than the first instruction, it can

sometimes  complete  before  the  first  instruction.  Now  imagine  that  both  the

instructions are going to write into the register R1.



So the second instruction will write into R1 before the first instruction now written.

That is exactly write after write hazard. So WAW hazard is actually possible in these

kind of pipelines.

(Refer Slide Time: 24:16)

So we need to have mechanisms that will help us to address these WAW hazards.

Then another  important  problem is  out  of order completion  can sometime lead to

imprecise exceptions. Here I wanted to draw your attention to understand what is a

concept  of  an  imprecise  exception.  So exception  is  an  unusual  behavior  that  can

happen. For example, division by zero.

As far as fetching is  concerned no problem. During decoding you try to take the

values of two registers and when you divide one over other let us assume that the

divisor is zero, that can lead to an exception. So think of a case that your memory got

corrupted. So you fetch an instruction and during decode phase you happen to see an

opcode which is not defined, that is an exception.

So similarly there are many exceptions are there. Now when you have out of order

execution that can lead to imprecise exceptions. An imprecise exception means an

exception  is  occurring  on  an  instruction  that  is  going  to  complete  before  some

instruction that are issued before it. So think of a case. Let us say I have I1 that is

going to complete only at this point.



Let us say there is I2 which started after I1 and it is going to get over before I1. For

example, your I1 can be a division operation. Your I2 can be a normal load operation.

Now think of a case that you are going to have an exception in I2. Do not try to

handle the exception because you are not even sure that whether I2 will  be really

executed or not because the previous I1 is still under execution.

So there can still be possibility that I1 may face an exception at some point later. The

exception  handling rule tell  that  exceptions  has to  be handled only in order.  First

before  handling  the  exception  created  by  I2,  I  have  to  be  sure  that  there  is  no

exception  that  will  be creating by any instruction proceeding I2.  So if  we permit

instruction  to  complete  out  of  order,  then  that  can  lead  to  creation  of  imprecise

exceptions.

Now, stall for RAW hazards will be very more. Generally we know that in our normal

instruction  pipeline,  we know that  your stall  is  very minimal.  If  there is  an ALU

instruction immediately after a load, there will be a stall between them. But if it is a

sequence of ALU instruction even though there is a data dependency between them

by the technique of operand forwarding we will be able to handle that.

But when it comes to multi-cycle pipelines, it may not be the case always. So look at

this example, where you are going to load an instruction. See here this R indicates

integer registers and F indicate double registers or floating point registers. So consider

this load instruction which is going to get over at clock cycle number 5 and from the

value loaded, you are going to have a multiplication operation.

So F4 is the resultant of the load instruction and this F4 act as a source operand for

this multiplication. This multiplication is operating on a double data. So when you are

going to have, your multiplication can start only after the MEM stage because only

after the MEM stage the value to be loaded is available and that is operand forwarded.

So there is one cycle stall.

But we know that any operation after a load will consume a stall. Now you have 7

cycles of multiplication operation and you look at the sequence your add operation

has an F 0, which is same as the result of the previous multiplication. Meaning the add



instruction is dependent on the result of multiplication. So my A1 can start only if M7

is complete. Now you look at the number of stalls.

The  number  of  RAW stalls  have  drastically  increased.  Similarly,  the  result  F  2,

whatever is the result of the add instruction that is needed for the store operation.

Essentially, the result of add operation that is to be stored in F 2 has to be stored back

to  memory.  So  your  store  operation  can  happen  only  after  the  add  operation  is

complete. Now you may ask why MEM is here. MEM can be here also.

Two memory operations cannot happen in the same cycle. That is where I get one

more stall over there. So to conclude, we have problems of structural hazard when it

comes to division, because division unit is unpipelined. We have problems of multiple

write  operations  per  cycle  due  to  varying run  times.  Sometimes  there  can  be the

possibility of WAW hazard.

This out of order completion can sometime lead to imprecise exceptions that has to be

handled and we need to address many number of stalled cycles or whenever you go

for multi-cycle pipeline, RAW hazards will be having more number of stalls.

(Refer Slide Time: 29:30)

Now issues in longer latency pipelines. So consider this multiplication instruction and

then you have some time you have add operation, then you are going to have a load

operation. If you look at the sequence, you can see that they all are going to reach the



writeback stage exactly at the same clock cycle number 11. So if you have only single

write ports, then I cannot write them.

So even though this  is writing to, one is writing to F0 whereas the other two are

writing to F2. So I have to write a value into F0. At the same time, I have to write a

value into F2 and it has to happen at the same time. If you have only one single write

port, then I have to make sure that serializing the completion. If you keep multiple

write port then the overhead of managing and sometimes we may not get cases like

this and that can lead to wastage of the resources.

Another issue is how can you resolve this. We have to make sure that never this kind

of  a  scenario  exist.  So resolve write  port  conflicts  in  the ID stage itself.  When I

perform an  ID  stage  here,  for  a  multiplication  instruction,  I  know that  there  are

another 7 more cycles for the multiplication operation and then you have a MEM and

writeback. So if ID happens at 2 for a multiplication operation, I know that there is a

writeback that happens at 11.

Similarly,  when I have an add instructions whose ID is at  5 I know that this add

instruction also is going to reach the writeback stage at 11. If we have the information

that is available inside the control unit,  which tells  that and instruction previously

issued at clock cycle number 2 will also reach the writeback stage exactly at the same

time, then I am not supposed to complete my decoding at clock cycle number 5, either

I should delay.

That is called resolving write port conflicts in the ID stage itself. Every instruction

upon reaching the ID stage knows by what time they are going to reach the writeback

stage  and  try  to  look  at  the  past  and  see  whether  any  other  previously  issued

instruction also will reach the writeback stage exactly at the same clock cycle. If so

the second instruction or the later instruction has to be delayed appropriately if you

wanted to make sure that no instruction is reaching the writeback stage together.

Or stall either of the instruction on a priority basis at MEM writeback stage. So once

you reach the MEM writeback stage you know that there is a previous instruction that

is also going to perform a write. So you have to incur a stall at the MEM stage. If



there is a stall at this MEM writeback stage, then the stall is going to trickle down to

EX, M 7, A 4 like that.

So whenever I encounter a stall at the end of the MEM stage, then the instruction that

is reaching at A 4 that has to be stopped. Instruction that is there at M 7, those have to

be stopped. That is called trickling back effect. So here in this slide, we have seen,

there can be possibility that multiple write operations have to be performed at the

same clock cycle.

Either you keep multiple write ports or use serializing of the write operation in the

same clock cycle. Or else we have to resolve such kind of scenarios by looking early ,

sufficiently early itself by using a look ahead mechanism. The moment you perform

ID stage you will know by what time this instruction is going to reach the writeback

and appropriate actions has to be taken in order to delay certain instruction such that

they would not reach the writeback stage exactly at the same time.

You can even stall  the instruction later in the MEM writeback stage appropriately

trickling back into earlier stages of pipeline will also happen.

(Refer Slide Time: 33:20)

Now, here in this case, you can see that your load instruction is going to write into F2

and instruction before that is also going to write into F2. As per the normal sequence

an add instruction that is fetched in the fourth cycle will reach the writeback only in



the 11th cycle. Whereas a load instruction that is issued in the 6th cycle will complete

its writeback in the 10th cycle. So what exactly happens?

The register, the destination register of these two operations are same. So load will

write the value at clock cycle number 10. Whereas the add is going to write the value

at clock cycle number 11. So any instruction that comes after the load, if they are

going to read the value of F2, ideally we want after this point, whoever is going to

read the value of F2 it is the value that is been loaded by this load instruction.

But  in  this  case,  after  the  value  is  loaded at  clock cycle  number  10,  clock cycle

number 11 the register F 2 is overwritten meaning any instruction that is coming after

here they are not seeing the value done by the load instruction, rather they are seeing

the value that is being written by the add instruction. So that is what is known as the

write after write hazard on register F2. This has to be addressed.

This also can be done by a delay issue in ID/EX of the load until add has reached the

MEM stage. So you have to make sure that the add is reaching the MEM stage. Once

it reaches the MEM stage then it is defined. Because within one cycle you will reach

the writeback. So delay all other subsequent instruction such that they all will reach

the writeback at the same time.

Or keep the result of ADD.D and give it to the needed instruction. That is yet another

possibility. If your add instruction is going to update the register later, do not update

F2. Whatever is the operation, at the end of the operation, the add has to forward the

result only to those which is going to use it. In that case, only load is going to write

into F 2. So these are some of the methods by which we address this WAW hazard.
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Now how to handle issues in longer latency pipeline. So the first one is you have to

check for structural hazard if any. Check for structural hazard in terms of structural

hazard  can  happen in two ways.  First  is  multiple  writing  in  the  register  file,  and

second one is adjacent division operations. Since the previous division is not yet over

second instruction cannot proceed.

Similarly when multiple writes happen in the same clock cycle, number of write port

is  not  sufficient.  Then you have to check for RAW data hazard.  Read after  write

hazard at the ID stage. So how will you do? Or how can you essentially find it out?

There is a RAW hazard between a pair of instruction. So this is possible if the source

of an instruction is in ID.

So how can you actually check a RAW data hazard? If the source of an instruction in

the ID stage is F5; let us say the name of the register is F5, then F5 should be there as

the name of destination register of some other instruction which is there in ID/A1, A1/

A2, A2/A3 or ID/M1, ID/M2 or ID/M1, M1/M2 like that. So if I am the source of an

instruction, then that instruction name, the register name should not occur in any of

the pipeline register after me.

So I am in the ID stage. After that it is ID/A1 or ID/M1 pipeline register. So this is the

pipeline register between ID stage and the floating point adder and this is the pipeline

register between the ID stage and the multiplier. Similarly, you have pipeline register



A1/A2. This is the pipeline register between the first stage of adder and the second

stage of adder. Similarly I have M1/M2. I can have M6/M7 also.

So this number indicates what are the pipeline stages and this is actually a buffer. So

in short, how are you looking for data hazards? The answer is simple. If the source of

an instruction which is there in the ID stage is similar to or it is exactly same as the

name of the destination of an instruction which is already there in ID/A1, A1/A2 or

A2/A3 like that. Then there is a RAW hazard.

In that case appropriate forwarding has to be done. Similarly, how are you going to

check for WAW hazard? If any instruction in A 1 to A 4 or M 1 to M 7 has the same

destination as an instruction in ID and the time at which they reach WB is same then

delay this instruction by one cycle. And then you repeat the same operation whether it

has been resolved or not.

This is the way how are you going to check for data, check for data hazard that is

RAW hazard as well as WAW hazard. In the case of WAW hazard, any instruction

that is there in A1 to A4 or M1 to M7 should not have the same destination as that of

an ID. And perform operand forwarding. So previously we have seen that operand

forwarding generally happens from output of ALU to its input or from the output of

MEM stage to the input of ALU.

And now, this EX stage itself is of multiple cycles. So operand forwarding should be

there from EX/MEM, A4/MEM, M7/MEM, D/MEM and MEM/WB all into the input

of the corresponding unit. Let us say A1, M1 or division unit. So with this we come to

the end of this lecture.  In this lecture we were trying to see about those pipelines

where the execution takes more than one clock cycle.

We have seen the normal integer pipeline which takes only one cycle in the EX stage,

a four stage pipelined floating point adder multiplier, another seven stage multiplier,

and then you have seen a unpipelined division unit as well. So these functional units,

have  varying  run  times  and  because  of  that  there  is  a  chance  of  out  of  order

completion of instruction, which can lead to WAW hazard, multiple write operations



and structural  hazard and we have seen how basically  these things are addressed.

Thank you.


