
Advanced Computer Architecture
Prof. Dr.John Jose

Department of Computer Science & Engineering
Indian Institute of Technology – Guwahati, Assam

Module No # 01
Lecture No # 02

Review of Basic Computer Organization

Welcome to the first lecture on advanced computer architecture and NPTEL MOOC’s course.

The entire course is organized as 20 lectures, supplemented by few problem solving and tutorial

sessions. In the first lecture, we will be trying to recap the basic concepts that you all might have

learned in an undergraduate level computer organization course. This quick recapping will make

sure that all of you are at the same pace once we dig into the advanced concepts in computer

architecture.

So, for those who are familiar with the concepts of computer organization, this will be a quick

revision and for others, it helps us to understand the fundamentals associated with advanced

computer architecture design. We will focus our attention first into how instruction execution

happens inside a microprocessor.

(Refer Slide Time: 01:30)

We all know that computers are used to execute tasks. For a computer to do a task, the first step

involved is the task has to be represented in a machine understandable language. So, when you

have a task that is in a high level language like C or C++ or basic or Fortran, we use a compiler

to translate this task into a set of machine understandable instructions.

These instructions are then stored inside the memory of a computer and then processor for

execution of this task will interface itself with the memory and try to take these tasks or these

instructions from memory and do an analysis inside the processor and carry out the execution

and then continue with the future task. When you look into the instruction execution cycle, we

can see that the execution of a single instruction is subdivided into smaller sub micro operations.

We will try to understand what are they, In the slide given we can see that for each operation that

is to be carried out with respect to an instruction, we have multiple sub operations like

instruction fetch, decode, operand fetch, result store and next instruction. We will try to

understand what the sub operations are. When you talk about instruction fetch, it is a stage in

which an instruction is brought from the memory and placed inside the processor.

To facilitate this, the processor will issue the address from which the instruction is to be fetched

and that is typically the content of program counter. So program counter issue the address and

this will go into memory from there the addressed word the addressed instruction is being

brought into the processor and that is called instruction fetch. The next step is called instruction

decode.

Once the instruction is brought into the processor, the processor has to understand what does

instruction is. So, an instruction basically consists of two components. The first component is

called the OP code with respect to a instruction, which means what is the operation to be done.

The second aspect is the operand which specifies where the operation is to be done. So trying to

understand what the OP code and operand is that is called instruction decode.

And followed by the decoding as a byproduct of decoding, the process of has to generate

appropriate control signals in a sequence to carry out the execution of the operation. Having

completed instruction fetch and instruction decode, the very next stage is called operand fetch.

Sometimes in order to carry out an operation the operand has to be brought from registers or

from memory that is called operand fetch stage.

Operand is a place where data is located. After understanding what the operand is necessary

control signals are being issued by the control unit of a processor upon which the operands are

brought into the execution unit. Once the OP code is understood, and the operands are ready,

now, the next stage is execution of instruction. So, compute the result value typically these been

done in the arithmetic logic unit if it is an arithmetic or a logical operation or in other functional

unit, if it is done on a floating point unit or any other associated functional units.

The next operation is you have to store the results. Once the result is computed, the very next

step is we have to store the result. The storing can be either inside memory or it can be inside the

processor. With that the execution of one instruction is over now, the task is to find out what is

the next instruction to be executed. And that is the final step, determine the successor instruction.

If it is a normal sequencing operation, then the successor instruction is the very next instruction

of the current instruction.

If the current instruction is a branch, then depending on the outcome of the branch operation, we

have to find out what is the next instruction. It can be either the adjacent instruction or it will be

a target instruction which is specified as part of the instruction. So, these are the various stages

that are associated with execution of a single instruction. We will now try to understand how a

processor is going to interact with the memory, the interfacing of a processor and memory.

(Refer Slide Time: 06:45)

So, when you look at the slide you can see there is a processor which has an arithmetic logic unit

which will take care of the basic operations and the whole operations are controlled by a control

unit. And we have a couple of registers, which takes care of all these operations processor is

interacting with the memory with the address bus through which the address of the desired

location in the memory is communicated.

And then we have a data bus through which data is going to flow from the processor to memory

and from memory back to the processor. And the signals that are generated from the processor

and the response signal from the memory will pass through the control bus. So, it is the

unidirectional address bus and the bi-directional data bus as well as the control bus which takes

care of smooth handshaking of operation between the processor and the memory.

If you look into further deeper into what a processor does, you can see that the processor is going

to fetch the next instruction always, decode the corresponding instruction and execute the

instruction and this whole process is going inside a cycle. Generally, processors have multiple

levels of cache memories, which are high speed memories that are inside the processor chip and

outside the processor is the physical memory or it is also known as main memory.

So here we can see that there is a program let us say it is GCC grew compiler it is running inside

the main memory since the processor is currently running a compiler a copy of this GCC is been

brought into the L2 cache and from their copies made into L1 cache. So processor fetching

operation happens from L1 cache and if at all it is not there, you go to look into L2 and bring it

to L1. If in L2 also you are not able to find out that desired location which is demanded by the

processor then control is transferred to main memory to carry out the remaining operation.

(Refer Slide Time: 08:56)

This is yet another representation of processor and memory interaction. We have a couple of

special registers inside process of known as MAR and MDR. Then program counter instruction

register, then we have general purpose registers, you have ALU and the control unit. Then the

data bus, the address bus and the control bus that is going to operate. MAR, MDR and control

unit are the three important components of the which MAR and MDR registers, they are

responsible for the direct interfacing with memory.

If the processor wants to fetch an instruction, the first thing that you have to do is the address of

the instruction which is available in the program counter has to be transferred to a MAR.

Similarly, if processor wanted to read or write any data into memory, then also the address has to

be kept inside MAR. So MAR is a register which is known as memory address register, which

contains the address of the next word that has to be accessed in the memory.

It can be either for a read or a fetch operation or it can be for a right operation. Now whatever is

the address that is placed in MAR, the data contents are being exchanged through MDR. So, if it

is a write operation, then the contents in MDR are transferred to memory on a location specified

by MAR. If it is for an instruction fetch or a read operation, then the contents of the designated

location specified by MAR are being transferred to the processor and it reaches MDR first.

This is the role that has been played by memory address register and memory data register. What

you see in the right side of the slide is yet another representation of the internal organization of a

processor- a general processor, you can see there are many general purpose registers, you have

an instruction decoding and control unit. the program counter, MAR and MDR like what had

been mentioned already, these are the two registers which will directly interface with the

memory, MAR carries the address and MDR carries the data.

Then you have the arithmetic and logic unit, which has two inputs, one is designated as A other

one is designated as B. Through A one of the operand will reach ALU, through B the second

option will reach ALU and the control unit will generate necessary control signals, whether it is

an add operation or it is a subtract or a logical operation like or, and and all that is been specified

by the corresponding control lines.

Since it is not possible to bring two operand through A and B together one of the operand is

brought to a temporary register called the Y at one clock cycle and in the adjacent clock cycle

you are going to bring the contents into B and then the content that is already stored in temporary

register Y is being transferred into A.

The result of ALU operation is stored in set and depending on where is the result to be stored, it

will be moved from Z the temporary output register into appropriate general purpose register

through the internal process of bus. So this is the internal processor bus.

(Refer Slide Time: 12:11)

Now processor and memory working closely together in order to execute a task that is what we

have seen. We can also see that the MAR which generates address is going to link with main

memory and their exist a unit which will uniquely choose one main memory word based upon

the incoming address and this is the decoder. It is a memory decoder the duty of the decoder is

whatever is the address that is been given by MAR based upon that decoder will uniquely choose

one word and that is a designated word.

So generally a decoder has

n inputs and 2n outputs.

Based on the

n inputs, one of the 2n outputs

are being uniquely chosen and memory data register is interfacing with main memory through

the data bus that is also known as data lines.

(Refer Slide Time: 13:07)

When you look deep into the CPU, you can see that all the important registers that we discussed

are already shown here and the whole thing is being controlled by a clock signal. Let us try to

understand what these operations are? We have a memory address register, then we have a

memory data register. Then there is a program counter which contains address of the next

instruction to be fetched. Instruction register, which carries the instruction once it has been

fetched from the memory.

And then you have arithmetic logic unit which takes care of all the operation. And there is an

accumulator or it is also known as a work register, which is directly associated with ALU and it

carries one of the operating majority of the arithmetic operations. And then there is a system

clock, which is directly connected to all these units to make sure that they are working in a

coordinative way.

(Refer Slide Time: 14:03)

Having non various registers inside the processor.. now, let us try to see what are the

implications associated with the fetch operation. So the fetch operation generally starts from a

program counter. If you wanted to fetch an instruction, the address of the next instruction, which

is located in the program counter is transferred to MAR. So the content of PC is transferred to a

MAR, that is the very first step, then the instruction is actually located inside memory.

So whatever the MAR is giving, that is an address based upon that the instruction is located

inside the memory.

(Refer Slide Time: 14:38)

Now, the very next step is the located instruction is now transferred to MDR which is the

memory data register. Now, from MDR through the CPU bus, the instruction is transferred to IR

where decoding happens with the help of the control unit. Control unit send the signals to

appropriate devices or units inside processor to facilitate the execution instruction.

(Refer Slide Time: 15:06)

So, we have seen the general structure of the internals of a processor and MAR and MDR are the

two registers that are responsible for interfacing with memory. We have already discussed that

there is an address decoder which decodes the input lines that has been connected that is nothing

other than the memory address registers output the address associated with a word. Based upon

address one of the word is uniquely selected and the contents are transferred to memory data

register.

(Refer Slide Time: 15:38)

Like what I mentioned, the process of uniquely selecting a memory word from a given address is

being facilitated by an address decoder given is the circuit of a

2x4 decoder has: 2 inputs and 4 outputs.

The function of the decoder is based upon these 2 inputs, one of output is uniquely been chosen,

if both the inputs are 0: then D0 is chosen

If both the input A0 and A1 value is 01: then D 1 is chosen

if it is 10: D2 is chosen

if it is 11, D3 is chosen.

Similarly, the internal circuit of a

3x8 or a 5x32 decoders

also can be drawn. So, the given on the right side slide, we can see that it is a 3 input address that

is coming and the decoder is a 3x8 decoder based upon that one of the 8 words is being uniquely

chosen and the contents are transferred through the database. So, when you have larger memory,

then proportionately a bigger decoder is being used and this recorder is going to take more time

if the number of inputs are more.

So, when you use large memory, naturally it is supported with the help of a bigger decoder with

more number of inputs and outputs. So decoding will take more amount of time. So, when you

give an address, it will take more time if it is a bigger decoder or addressing smaller memories

are much more faster than addressing larger memory because of the size of the decoder that is

being involved.

Let us now look into another aspect of interfacing with memory. We know that in memory, you

have words, but the basic unit of storage inside memory is a byte. When you operate on data, all

data may not be equal to 1 byte, sometimes certain data may be bigger than 1 byte, meaning the

word length will be multiple bytes, when processor is going to read and write larger words, when

it comes to storage inside memory, we have to understand in what order that they get stored.

So there exist a format in which multi byte words are being stored inside memory they are little

Endian format as well as big Endian format. We will now look into and then try to find out what

is the difference between these two storages.

(Refer Slide Time: 18:22)

As mentioned in the slide, that has consider the case that we are going to store a

32 bit number represented us 0XCD34AB12

where each one will represent a hexadecimal number.

Let us say

2 stands for 0010

similarly,

1 stands for 0001

 like that, you can define all of them. This 32 bit number when I am going to store inside the

memory is the least a significant byte is stored in a memory W that I can store one byte of

information in memory whose address is W.

So if LSB saved in W the next byte from LSB stored in W + 1 similarly, if the MSB is saved in

W + 3 this kind of a storage representation is known as little Indian format. But some processors

follow big Endian format where the MSB more significant byte is stored in the lower address and

the least significant byte is stored in the higher address that is known as Big Endian format. So,

consider the case wherein in a register you have a value 0A, 0B, 0C and 0D.

This 32 bit number or a 4 byte data upon storing in a big Endian format than the most significant

by 0A will be stored in the lower address the address small letter ‘a’ and the next higher address

will carry the remaining bytes in sequence. If the same number if I am going to represent in

Little Endian format, then the least significant byte 0D will get stored inside memory location A

and the next higher address will carry 0C.

Similarly the highest address will carry the most significant byte that is the basic difference in

which. Similarly, if a number 450 if you are going to represent number 450 in a 32 bit value,

then this is the numerical value equivalent to 450. If it is storing in Little Endian this is the way

by which it is saved where the least significant byte will carry C2 and the most significant byte

will carry will be stored in the higher address.

So towards the left side we have the lower address and towards the right side if you have the

higher address the LSB -least significant byte is stored in the higher address and it is just vice

versa in the case of big Endian. Having seen how multi byte words are being stored, the next

aspect that we would like to review inside memory is about alignment of data. You know that

memory consists of sequence of bytes.

Now, when you are going to store words, some word or 1 byte, some data may be more than 1

byte say 2 bite, some data may be 4 byte can I save the data immediately after the previous data.

No, generally all memory are aligned and based upon what kind of alignment we use new data

can start only at specific locations.

(Refer Slide Time: 22:04)

Consider this slide where in the first row shows align to 1 byte. Alignment to 1 byte means that

that a data can start at any byte. There is no restriction at all, every byte, you can begin a new

data. So the pink color is a 1 byte data. Whereas the green is a 2 byte data and the blue is another

1 byte data. So I can store data at the beginning of every byte. So the first 1 byte is 1 data and

then you have 2 byte data that can be immediately stored after the first byte.

You will understand the difference once you go for an alignment of 2 bytes and alignment of 2

bytes means data can start only at words whose byte addresses are multiples of 2. So I can start

the data at zeroth byte, second byte, forth byte, sixth byte, eighth byte like that, that is called

alignment of 2. If my first that is 1 byte let us say I am going to store at byte number 0, but byte

number 1 I cannot store the data because every new data starts at multiples of 2 bytes.

So, the data which is green, which is of size 2 bytes will start only at 2 and it takes 2 bytes. Now

the blue one is another data which is of 1 byte storage and it can easily start at 4 because 4 is

permitted. If at all you have any new data that is coming the new data can be kept only at 6 such

as 4 byte new data that is coming it will get stored in byte number 678 and 9 that is called

alignment to 2.

Similarly, if you go for an alignment of 4 then data can start only at memory addresses which are

multiples of 4. So after the 1 byte read data, which is at byte number 0, byte number 1, 2 and 3

we cannot store a data. The next new data will start at byte number 4. Another new data will start

byte number 8. This is called memory alignment and alignment can be in the order of 1 byte, 2

byte, 4 byte etc.

(Refer Slide Time: 24:09)

This slide also shows how alignment is being done. So, if you have a 1 byte alignment, every

byte you can start a new data if it is 2 byte then if the first data should be there in byte 0 and byte

1 next to data can be in byte 2 and by 3. So, if you look at every new data starts at multiples of 2

and if you are going for a 4 byte data, then data can start only at multiple of 4. Any other thing is

misaligned data that is what you see out here.

(Refer Slide Time: 24:40)

Let us know try to understand what are the basic operations that a processor can do. It is called

basically classification of instructions. The first and foremost height of operations that basically

microprocessors do is on arithmetic and logical operations wherein it performs integer

arithmetic, logical arithmetic, comparison of quantities, shifting and rotation of numbers testing,

comparing and converting bits. These are the basic operations that come under arithmetic and

logic operations.

(Refer Slide Time: 25:13)

The next category of operation that microprocessor do is all about moving of data, moving data

from memory to the CPU and moving data between memory and moving data from CPU back to

memory and from input and output. So, when data is located, either in memory and if the data is

needed in CPU, this move instruction or data transfer instruction will help the microprocessor to

bring the data which is in a different unit. Similarly, it is also used for getting and putting data

from peripheral devices also.

(Refer Slide Time: 26:04)

The next category of operations comes as program control operations, which is basically used for

starting of a program halting of a program. And let us say, if I wanted to skip you instructions,

we use conditional statements and these are also known as program control operations and to test

to decide whether you how to skip few instructions or not. So, any kind of thing that is going to

transfer the control they come under the program control operations.

We will now look into what is called instruction set architecture, we know that instruction is the

basic unit of operation. So generally when you take a task to be done, the task has to be

represented as a sequence of instructions.

(Refer Slide Time: 26:47)

So, you know what an instruction program and the software is multiple instructions combined

together to form program and multiple programs combined together to form software which will

basically is a big task. There is OP code and Operand like what we have mentioned OP code

specifies what needs to be done operand specifies where it needs to be done. And the set of all

possible instruction that a processor can do it is known as instruction set architecture.

Based on where the operands are, instructions set architecture are classified into four stack

architecture, accumulator architecture, register memory architecture, and register-register

architecture. Registered-register architecture is also known as load store architecture.

(Refer Slide Time: 27:38)

We will now see what is the difference between these instructions set architectures. The first

architecture is known as stack architecture. In the stack architecture, we have the arithmetic logic

unit, which are connected only to a system stack. That means the operands of any arithmetic or a

logical operation can be from processor stack only. Generally we have the memory where in

your data is located.

From the memory you have to use push and pop operations to transfer data between the system

stack and the memory. And then when an operation is to be done. In the case of a stack

architecture, we will not specify where the operands are. Operands are by default located in the

top two elements of the stack. Consider the case that we are going to have

C = A + B

 a basic operation to be done, where C, A and B are memory locations.

In the case of a stack architecture, if you wanted to perform

C = A + B

 our first job is to make sure that A and B are transferred into the stack. And the operation to

transfer a memory location to the stack is called push. First, the value A is pushed onto the stack

and then value B is pushed on to stack. Now the stack contains both A and B and then we

perform ADD operation. In the case of a stack architecture, like what I mentioned, we are not

going to mention what is the operand only the Opcode is mentioned and operands are always

there in stock.

So add means take two elements from the stack, perform add operation and store the result back

in the stack, you can see that the result is stored back in the stack. So after the add operation, the

result that is

A + B

 that is available in the stack. Now whatever is there in the top of the stack, I am going to push

into the C where i will get the result there in C. So basically in stack architecture, whatever it is

the operand that has to be transferred to the stack.

And then the appropriate operation has to be called. Moving on to accumulator architecture. The

peculiarity accumulator architecture is you do not have a stack inside you the processor instead,

you have one register, which is known as accumulator and accumulator is connected to one of

the inputs of ALU and to the output, you can see that it is connected to one of the input of ALU

and one the output of ALU as well.

So, when you wanted to perform an operation, if it is a binary operation, the first input should be

present in accumulator, the second input I can mention and it can come from memory. So,

accumulator is connected to memory, but the result always goes to accumulator and we use load

instruction to transfer the content of a memory location to accumulator. Similarly, we use a store

instruction to transfer the content of accumulator back to memory.

In order to do the same instructions

C = A + B

first we load A. Load A means content of memory location A is transferred to accumulator and

then we perform add B value perform add B the content of accumulator that is A is added with

the content of memory location B. So always the operand that you specify in accumulator

architecture is the memory location add B and then B will perform a store operation.

So, in the case of an accumulator architecture, the result of ALU operation will also be reflected

inside accumulator and store C means, it will transfer the content from the accumulator back into

the location C. The third category is called register memory architecture, in register memory

architecture, similar to what we have seen in accumulator architecture, we have registers inside

your CPU, we have many such registers inside CPU.

It is not restricted to one register like accumulator and these registers are named as r1, r2, r3 and

so on. Now, when you use load instruction, we have to clearly specify to which register you have

to load and from which memory location you have to load. So, the loads are now associated with

two operands, one is a destination register and the other one is the source memory location. And

when you perform an add operation, the resultant should be there inside a register one of the

operand will be register, but the second option can be from anywhere in memory.

So

add r3,r1, B

means content of r1 is added with content of memory location B and the resultant is stored in the

registered r3 and to transfer the result that is already available in register r3, we use

store r3, C

 wherein at the end you get the final result in the variable C.

 Moving on to the last architecture which is known as register-register architecture or load store

architecture. Here also we have a couple of registers inside your processor, but ALU is

connected only with these registers, ALU is not connected with any of the memory locations like

what we have seen in register memory architecture. So that is the basic difference between them

in the case of a register memory architecture, you have a path to the ALU from memory, whereas

in this case, such a kind of a path is not existing there.

Now, when go to the load store architects to understand the operands of an arithmetic logic

operation can only be registers. So, you have an load operation, wherein the first operand is

moved to register r1 another load operation wherein the second option is moved to register r2

perform add operation, so that the result is now in register r3 and transfer the result. So, that is all

about register or load store architecture.

Moving further now, we will try to have a simple exercise example, wherein we can see the

difference in terms of number of instructions needed, if you are going to carry out simple

operation in stack machine and the other architectures.

(Refer Slide Time: 33:45)

So, let us consider

 A = D * B + E

as the operation to be done let us first see how we will do in stack machine. So, we know that we

have to perform a push operation on D, wherein D is first transferred and then you push B and C.

So now B and C are in the top performing an add operation, so

B + C

will be done and the result will be stored in the stack. And then we will do a multiplication

operation such that D and the sum of

B + C

will be multiplied that result will be there and then push E and then you perform the subtraction.

And finally, you pop the value back into A this is how

A= D * B + C – E

is being carried out. Let us look into an accumulator machine how are you going to perform the

operation. In the case of an accumulator machine you have to load the value B. So B will be

going into the accumulator and then you perform add C. So in that content of accumulator, which

is already B is added with the memory location C and the result is available in the accumulator.

And then we can perform multiplication of D. So already you have the result we will be there is

accumulator. So at this point accumulator carries B + C, now you multiply with the D.

Now

D * B + C

available in the accumulator. And then you can perform subtraction of E followed by storing the

result in A.

So when you move to load store machine, first we will be loading the value of D into register R1.

And then the value of B loaded to R2 and value of C is loaded to R3. So now the values of B and

C is already there in register, we can perform an add operation on R2 and R3 which is already

this mentioned, R2 and R3 values are there. So R2 and R3 are now added and the result is stored

in R4 now once you have the result in R4 then whatever is your D which is that an R1 can be

multiplied to the result of R4 to get the result in r5 and then you load the value of E into R6 and

perform the subtraction operation such that the content of R5 and R6 are there and you subtract

R6 from R5 to store the result in R7 and then you store the final result which is available in R7

back into our register A which stores a final result.

(Refer Slide Time: 36:13)

The next section what we are going to address today is about addressing mode is the way by

which the operand is specified as part of the instruction, we will try to understand addressing

mode with the help of an example. Consider the case that I wanted to call a student and solve an

exercise on the board. I can use many ways to call the student. Let us say I wanted to mention the

name of the student directly then that is known as immediate addressing mode.

Consider the case that the students name is Ram, I can tell Ram please come to the stage and

solve the exercise on the board. So Ram please come, the name Ram already mentioned as the

instruction I am giving it is called immediate way of mentioning the operand. The second thing

is I am going to specify the role number of Ram. So the address of Ram is been mentioned. If I

know Rams number is 20 I will tell whose roll number 20 please come and then solve it in the

board.

So rather than mentioning it does Rams name I mentioned his number. Similarly, I can put it in a

different way I can actually keep this role number 20 inside a box, so I will tell I want the student

to come and solve it for me on the board. His roll number is kept inside this box. So, somebody

can open that box and the box contains a chit with a number 20 written and 20 is Ram and RAM

will come and do.

When I directly mentioned the roll number it is called a direct mode of addressing when I specify

it is an indirect way then it is called indirect mode of addressing. Similar to that, when you

specify instructions, the operand can also be mentioned in different ways that is what is known

as addressing mode.

(Refer Slide Time: 38:22)

This slide shows you different ways in which I can perform the operation, so consider the case

that I wanted to add 2 numbers. If the 2 numbers what I am going to discuss are all part of the

same register, I can use

add r1, r2

meanings is

r1 = r1 + r2

it is known as register addressing mode. Second one is I want to go directly add r1 with 5 where

5 is my data. So

add r1, #5

is one general representation used to mention immediate values that meaning is

r1 = r1 + 5.

The third one is direct addressing mode where content of location 200 has to be added with r1 so

r1 = r1 + content of memory location 200

that is called direct addressing mode. Second one is called register indirect addressing mode add

r1 at r2, meaning is you go to r2. Let us say r2 values is value is 400 go to memory location 400

that has to be added with r1 in order to get the result that is called register indirect.

Then we have something called memory indirect add r1 at r2 where content of r2 is taken that

will give you memory location go to that memory location that will give another number go to

that is called double in directing it is called memory indirect. Then there is displacement

addressing mode where I specifying

add r1, 100(r2)

go to r2 get a location add 100 to it then that is your effective memory address and go to that

memory location in order to access the operand.

Index addressing mode is r2 and r3. So, both are been added together and then you are going to

consider that as a memory address and then you have scaled addressing mode. So, r2 is

multiplied with the 4 and then you added with another register. So effectively in this case, you

have r3 that is acting as the index r3 into 4, content of r3 into 4 and then there is a base of r2.

Then we have auto increment and auto decrement addressing modes where the value of memory

location mentioned in r2 is taken and automatically r2 incremented. So that next time when in

go, it will point to the next location.

Similarly, when you go for auto decrementing mode, first you decrement the value of r1 and then

you are going to take it. So, these are all different ways by which we can address the different

operands based upon the convenience that has to be used in mentioning the instructions.

So, with this, we come to the end of the first lecture, we will try to have a quick recap on what

we have done in this lecture.

The basic objective of the first lecture was to get a quick recap on basic computer organization

concepts. We started with what is instruction execution what are the various sub operations

associated with execution of an instruction. After completing that, we then went to see what is

the internal organization the specific registers MAR, MDR, program counter PC then IR

instruction register and then we saw how the fetching happens, how instruction is decoded? How

appropriate signals are being generated.

We saw the roll of decoders in the case of addressing in memory location and then we have seen

different types of instruction that the processor can do followed by instruction set architecture.

Classification of instructions set architecture based upon where operands of an ALU operation

can be. Like stack architecture, accumulator architecture, register memory architecture and load

store architecture. We have seen an example also.

And we concluded the lecture by having a detailed discussion on what are the various addressing

modes? Kindly go through the lecture videos if you are not familiar with compute organization

concepts, feel free to post in your queries. And slowly we will learn this text books are also there

that has been mentioned. Kindly go through the textbook, the specific chapters in order to get

more grip into the subject.

I hope that you will enjoy the subject in the rest of the lectures while we move on to advanced

computer architecture. Make sure that you clarify concepts in that week itself by posting it in the

queries. We will be happy to address your doubts and clarifications. Wish you all a happy

learning. Thank you

