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Welcome to the NPTEL MOOC on the Discrete Mathematics,  this is  the fifth lecture on

mathematical logic. 
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In the previous four lectures, we had an informal discussion on propositional calculus and

first order logic, these are examples of logic systems. Today let us have a formal discussion

on these, these of systems of logic. 
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So, what is the system of logical? A system of logic essentially consists of these components

the first one is, the syntax of the language this specifies what are the grammatical formulae or

the grammatical sentences of the language. Then we have the semantic component of the

system. 

The  semantics  of  the  language  specifies  the  meaning  of  the  syntactic  entities,  it  assigns

meanings to the syntactic entities and finally we have a proof system which is a rewriting

system which starts with a set of axioms has a rule of inference has many rules of inferences

possibly and then using these rules of inference it writes new sentences and the process of

writing these new sentences is called proving and what we get is a proof.

So, let us now see in detail what these components are for the two systems of logic that we

have studied namely propositional calculus and first order logic. 
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So, let us begin with propositional calculus, so let us begin with the syntax of propositional

calculus. The syntax is specified using what is called a grammar, a grammar as in English for

example we can say a sentence in English is made up of a subject and a predicate this is what

is called the grammatical rule or a grammatical production.
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So, likewise we can write a set of productions for the sentences of propositional calculus. The

first  production  is  this  here we say that  the grammatical  symbol A stands for an atomic

proposition, so what this grammar rule says is that an atomic proposition could be any one a 1

through a n here of course this  need not  even be finite  you might  even have an infinite



number of options. So, the rule could very well be this whereas our system might have an

infinite number of atomic propositions which is also possible. 
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So, this specifies what the atomic propositions are for example, the atomic propositions could

be that a 1 says it is raining  a 1 stands for the atomic proposition it is raining, a 2 might stand

for the atomic proposition I do not have an umbrella and a 3 might stand for I will not get wet

and so on. So, your system might have several such atomic propositions, so this is the first

grammar rule that we have.

(Refer Slide Time: 06:01) 



Then,  the  second  grammar  rule  says  that  the  syntactic  entity  S  which  stands  for  of

propositional  formula could be made up in this fashion, what this says is that a formula could

be  the  negation  of  another  formula  or  it  could  be  an  implication  one  formula  implying

another could form a formula or it could be an iterate formula. 

So, this is a recursive specification, what it says is that a formula could be a negation of

another formula or it could be an implication made up of two formulae which two have to be

synthesized afresh or the formula could be an iterate formula so that is where the recursion

breaks off.

So, this is the other grammar rule that we have for forming propositional formulae. So, you

can see that, in this we are using certain symbols the open and closed brackets, the negation

symbol, the implication symbol in addition to the propositional symbols, a potentially infinite

number of propositional symbols. 

So, this we call our alphabet, so the language of propositional calculus is made up of this

alphabet  and  from  this  alphabet  using  these  two  above  grammar  rules  we  synthesize

formulae.

So, a formula could be a negation of another  formula,  it  could be an implication of two

formulae or it could be an atomic formula. An atom in formula could be any one of a 1, a 2, a

3 etcetera. 
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So, let us see an example of synthesizing a formulae, you could derive negation of S from S

as the grammar rule shows here a formula could be a negation of a formula. So, a formula

could  be  derived  as  a  negation  of  another  formula  which  could  intern  be  derived  as  an

implication. 

Now, there are two formulae here,  in the implication there is  an antecedent  as well  as a

consequent, we could decide that the antecedent is a negation of another formula. So, now the

synthesized formula has two placeholders, two instances of S each will stand for a formula

. Now, we could decide that these two instances are in fact atomic formulae and then we

could say that the first atomic formula stands for propositional symbol a 1 and the second

atomic formula stands for the propositional symbol a 2. Now, this is a concrete propositional



formula this is what we call a well-formed formula, this is a formula made up of the alphabet

of our language, it has negation symbols, closing and opening brackets, two propositional

symbols a 1 and a 2, negation symbol and then implication symbol.

So, this is a well-formed formula of the alphabet of our language. So, this is how we derive

the formulae of the language using these two grammar rules we can derive the formulae of

our language. 
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So, this is the syntax, the syntax specifies, what are the well-formed formulae? The semantics

of the proof system specifies what they mean, what the formula mean. So, now let us go on to

the semantics of our proof system, how do we specify truth values for these formulae.
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To  specify  the  semantics,  we  consider  functions  of  this  form  functions  that  map  the

propositional symbols or the atomic formula to the set 0 and 1 such a function is called an

assignment. 

So  this  is  essentially  an  assignment  of  truth  values  to  the  propositional  symbols.  A

propositional symbol is the same as an atomic formula, these two are  synonyms. So, an

assignment sigma at assigns truth values to the propositional symbols or the atomic formulae.

So, now once we have an assignment we can say which atomic formula are true and which

are to make formulae are false but how do we know the truth values of a synthesized formula

now, a well-formed formula.
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So, the semantics of a well-formed formula is denoted like this, when I write like this, what I

mean is the truth value of alpha under the assignment sigma, so this is a notation we shall use.
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So, using this notation we say that for an atomic formula a n the truth value of the formula a n

under the assignment sigma is nothing but the truth value explicitly assigned by sigma to it.

So, sigma is a mapping from the propositional symbols to the truth values, so the truth value

which is mapped to a n will be the meaning of a n, so that specifies the truth values for all

atomic propositions.



Now, let  us  consider  formulae  of  this  form,  formulae  that  our  negations  the  truth  value

assigned to the negation of a formula will be defined in this manner you compute the truth

value of the formula alpha under sigma and then subtract that from 1.

This is the truth value that is assigned to the negation of alpha. So, if alpha evaluates to 1

under sigma then not of alpha will be assigned 0, if alpha evaluates to 0 under sigma then not

of alpha will be assigned a value of 0 under sigma, so this is how you assign a truth value to a

negation. 

For an implication, likewise we can say this is 1 minus the meaning of alpha under sigma

multiplied by 1 minus the meaning of beta under sigma that is the truth value assigned to

alpha implies beta under the assignment sigma would be this quantity. So, you can see that

this assigns a truth value of 0 if and only if alpha evaluates to true and beta evaluates to false

under sigma.

Or in other words, if alpha is 0 or beta is 1 then alpha implies beta will be assigned a truth

value of 1. So, this is how we assign truth values to composite formulae, so this now specifies

a truth value for every single well-formed formula. 

So, given a well-formed formula we can parse the formula, see how the formula was derived

using the grammar and then running along the derivation we can assign truth values to the

constituents of the formula. So, it is possible to calculate the truth value of a formula given an

assignment. 
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So, consider a truth table for a formula alpha. In the truth table, we find that we have one row

corresponding to each assignment, so if the formula evaluates to 1 under this assignment then

the  corresponding entry  in  the  truth  table  in  the  final  column would  be  1 instead  if  the

formula evaluates to 0 then the corresponding entry will be 0. So, looking at the truth table

we can understand what the meaning of the formula is under any assignment.

So, a truth table is a complete specification of the semantics of a formula. So, given a formula

alpha, we can and as an assignment sigma we can refer to the truth table to see whether sigma

satisfies it or not once the truth table is available. 
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We  say  that  alpha  logically  implies  beta  which  we  denote  in  this  fashion  the  double

implication is supposed to mean that alpha logically implies beta. If every assignment that

satisfies alpha also satisfies beta that is when we say that alpha logically implies beta. 

In other words, if you look at the truth table and the columns corresponding to alpha and beta

we find that whenever alpha is true beta is also true but of course beta could be true even

when alpha is false in some assignments where alpha is false beta could be true but what we

know is that whenever alpha is true beta is true. Therefore,  we say that beta is a logical

consequence of alpha, if alpha holds then beta has to necessarily hold. 
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So, another way of saying is this, beta is a logical consequence of alpha we could write this

way to, to say that beta is a logical consequence of alpha and we say that a formula well-

formed formula alpha is a tautology if the truth value of alpha in sigma is 1 for all possible

assignments sigma. 

So, a tautology is a formula which is true always in every single assignment the formula

happens to be true when we write like this what we mean is that alpha is a tautology, alpha is

a logical consequence of nothing. In other words, alpha is true everywhere in which case we

say that alpha is a tautology. 
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So, let us look at a theorem now which we call theorem 1. This says that, if alpha is a logical

consequence of a set of formulae gamma, gamma is a set of formula remind you if alpha is a

logical consequence of gamma. 

In other words, when the whole of gamma is true gamma conscious of several formulae when

each of these formulae is correct then alpha is also true and alpha implies beta is a logical

consequence of gamma then beta is a logical consequence of gamma, so this is what we want

to show. 

Let us assume that alpha is a logical consequence of gamma and alpha implies beta is a

logical consequence of gamma, so what it means is that in an assignment which satisfies the

whole of gamma alpha is true as well as alpha implies beta is true. 

So,  suppose  sigma satisfies  gamma  then  sigma  satisfies  alpha  and  sigma satisfies  alpha

implies beta. So, if under this assignment alpha is true and alpha implies beta is true then beta

must also be true because if beta is not true then alpha is true and beta is false.

Therefore, alpha implies beta must be false which is a contradiction. Therefore, these two

together ensures that beta is satisfied by gamma that proves the theorem. 
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So, as a corollary we see that if alpha is a tautology and alpha implies beta is also a tautology

then beta is also a tautology. 
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Now, we have seen the syntax as well as the semantics of the system of logic, how do we

correlate  the  two? How do  you  distinguish  a  tautology  when  you  see  one?  That  is  one

question, when you has given a formula you have to say whether it is a tautology or not. 

The second question is this, given gamma distinguish it is logical consequences. So, we have

these two questions, first we want to distinguish tautologies given a formula, we have to say

whether it is a tautology or not.

And secondly given gamma, gamma could be finite or infinite we have to distinguish it’s

logical consequences, that is given gamma in the context of gamma when we are given a

formula alpha we have to say whether alpha is a logical consequence of gamma or not. 

If gamma is finite then these two questions can be answered using the truth table method that

is you drop the truth table you have a formula alpha, you drop the truth table if the truth table

says that the formula is true in every single assignment then the formula is a tautology.

Similarly, you drop the truth table for every single formula in gamma, if gamma is finite and

then you also drop the truth table  of alpha and you find that in every assignment  which

satisfies the whole of gamma alpha is also true in which case alpha is a logical consequence

of gamma. So, the truth table method will help us in answering these questions in situations

where gamma is finite.

But the truth table method is a luxury that we have in the case of propositional calculus but

when we come to first order logic as we shall soon we find that we do not have a method



which is  analogues  to  the truth  table  method because  the semantic  space  there  could be

infinite. Therefore, we need a different way of saying is distinguishing logical consequences

as well as tautologies.
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For this we have what is called a proof system. In a proof system, we say that P is a proof

system, if P has a set of axioms an axioms is nothing but a  formula so a set of axioms is a set

of formulae and a set of rules of inference, a rule of inference is a relation on formulae. So, a

proof system consists of these two components, a set of axioms and a set of rules of inference

and then a proof. In this proof system is a sequence of formulae, a sequence beta 1 through

beta n is called a proof.
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Where beta 1 is an axiom, so a proof always begins with an axiom and beta i for i greater

than 1 is an axiom you could use an axiom anywhere in the proof. So, beta i is either an

axiom or follows from beta 1 through beta i minus 1 the previous formula in the proof by

some rule of inference.

So, this is our notion of a proof, we have a set of axioms and we have a set of rules of

inference. A proof is a sequence of formulae beta 1 through beta n, so that the first formula in

the sequence is necessarily an axiom and any subsequent formula in the proof is either an

axiom or follows from the previous formulae in the proof by some rule of inference. 

So, what it means is that within a proof you can use an axiom anywhere you want and at any

point in time you can use some of the previous formulae combine them to using a rule of

inference to create a new formula which could be the next formula within the proof. So, such

a sequence of formula is called a proof.
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So,  now  let  us  see  a  proof  system  for  propositional  calculus.  A proof  system  P 0  for

propositional  calculus  consists  of some axioms that  are  called  logical  axioms,  so axioms

could be classified into logical axioms and proper axioms. 

So, the logical axioms would belong to these templates, so in this proof system that we are

going to talk about there are three templates, these templates are these.

The first template is of the form alpha implies beta implies alpha this is the first template. So,

from this template you can form concrete axioms by substituting formulae for alpha, beta and

alpha and beta in this case. 

So, you could write a 1 implies a 2 implies a 1; a 1 implies a 3 implies a 1 and so on. So,

these are all concrete formulae that are derived using this template. Therefore, we will say

that a 1 is an axiom schema.
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The second axiom or the second family of axioms of this form alpha implies beta implies

gamma implies alpha implies beta implies alpha implies gamma. And the third family of

axioms says that not alpha implies not beta implies not alpha implies beta implies alpha. 

So, that these are the three families of axioms that we have, these are the families of logical

axioms by substituting any formula in a well-formed formula for alpha, beta and gamma in

these templates we can derive an infinite number of logical axioms. So, P 0 consists of an

infinite number of logical axioms. 
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In addition to that, we could also have called proper axioms. Let us say, we have a set of

proper axioms called gamma. So, this could be any set of arbitrary formulae that suits our

convenience and we have only one rule of inference, this rule of inference is called modus

ponens or MP for short it is triplets of this form alpha, alpha implies beta and beta where

alpha and beta are well formed formulae.
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Or we could write like this, a rule of inference could be written like this when you have alpha

and alpha implies beta then beta is derivable. So, what it means is that, within a proof if you

have already proved alpha and you have proved alpha implies beta then as the next step in the

proof you could write beta, that is if alpha and alpha implies beta are among the previous

formulae within the proof then the next formula within the proof could be beta.

So, this is a rewriting rule called modus ponens, so this is the only role of inference that we

have. So, in the sense our axioms are logical axioms or the formulae, the set of formulae in

the set of formula gamma. 

So, axioms are from these and MP is our only rule of inference therefore a proof will consist

of a sequence beta 1 through beta n where beta 1 is necessarily an axiom it is either a logical

axiom or is a formula from gamma and any subsequent formula is either a logical axiom or a

formula from gamma or follows from two previous formulae by modus ponens. So, such a

sequence of formulae is what we call a proof
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So, you may have noticed that here in our system we have only two logical connectives for

example we have negation and implication but we have not used any other connective that is

because this set is a complete set of connectives, why is that? That is because we know that x

implies alpha x implies y is logically equivalent to x bar or y, negation of x or y. therefore,

negation  of  x  implies  y  will  be  logically  equivalent  negation  of  negation  of  x  or  y  but

negation of negation of x is the same as x.

Therefore,  negation  of x implies  y is  nothing but  the OR of  x and y that  is  OR can be

synthesized using negation and implication. Now, we know that OR and NOT together form a

complete set of connectives therefore negation and implication also form a complete set of

connectors. 

Therefore, in our system if we have only these two connectives still we can synthesize any

Boolean function  as we have seen before.  So,  that  is  why we have used only these two

connectives in our system.
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Now, let  us  see a sample proof,  when we write  like this  what  we mean is  that  alpha  is

provable from the logical axioms alone without any proper axioms, when we write like this

what we say is that alpha is provable from gamma, so in this case what we mean is that from

logical axioms and the set of proper axioms gamma alpha is provable. 
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So, in the sense we will show that alpha implies alpha disprovable from gamma. So, this is

what we want to establish alpha implies alpha is provable from let us say nothing that is from

logical axioms alone we can prove alpha implies alpha. 



So, how we prove is this, the first statement has to be necessarily an axiom, so the axiom that

we chooses this.  So,  this  is  the first  statement  in the proof,  the first  statement  has to be

necessarily an axiom, now is this an axiom we find that it is indeed an axiom because this is

from the second template.

In the second template, we have alpha implies beta implies gamma implies alpha implies beta

implies alpha implies gamma. So, if you substitute alpha implies alpha for beta and alpha for

gamma what we get is exactly this, so this is an instance of axiom schema 2. By substituting

alpha implies alpha for beta and alpha for gamma this is what we get. So, this is the first

statement in our proof.

The second statement in our proof is, alpha implies alpha implies alpha implies alpha this you

can see is an instance of axiom schema 1, if you substitute beta for or other alpha implies

alpha for beta in axiom schema 1 this is precisely what we get, so this is the second statement

in the proof. 
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Then the third statement is an implication alpha implies alpha implies alpha implies alpha

implies  alpha, how do we get this? We get this  from the first two statements.  So, if you

observe the first two statements we find that the second statement is in fact the antecedent of

the implication which is the first statement, the second statement and the antecedent here are

identical.

Therefore, once we have these two statements in our proof we can apply the rule of inference

modus  ponens  on  these  and  we  can  write  the  consequent  as  the  next  statement  that  is

precisely what we have done, this happens to be the consequent of the first statement in the

proof.



 So, this is by modus ponens on statements 1 and 2 and then, we have alpha implies alpha

implies  alpha  how? By A 1,  if  in  axiom schema 1  you substitute  alpha  for  beta  this  is

precisely what you get alpha implies alpha implies alpha, so this is the fourth statement in the

proof.

Now, you compare  the  third  statement  with the fourth statement  we find  that  the fourth

statement is the same as the antecedent of the third statement. Therefore, we can now derive

the consequent of the third statement as the next statement in the proof and this is precisely

what we wanted to prove.  We wanted to show that alpha implies alpha is provable from

logical axioms alone that is precisely what we have done, so this is an example of a proof in

our system.
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Now, we prove what is called the soundness of the system of logic, we say that a system of

logic is sound if whatever you prove in that system happens to be the logical consequences.

In other words, if you take gamma as the set of proper axioms and manage to prove alpha

then alpha is indeed a logical consequence of gamma that is whatever you prove is a logical

consequence therefore the system of proof that we have is sound. So, how do you prove this?
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If  alpha  is  provable from gamma that  is  what  we have assumed alpha  is  provable  from

gamma and then we want to show that alpha is indeed a logical consequence of gamma. If

this is provable from gamma then there exists a sequence beta 1 through beta and culminating

in alpha, so that beta 1  is an axiom and any other formula in the sequence is derived from

two previous formulae by modus ponens.

Or in other words, there exist a proof which is culminating in alpha  that is when we say that

alpha is provable from gamma. So, this we know if alpha is provable then there is a proof. 

Now, let us look at beta 1, beta 1 is surely an axiom, so any assignment that satisfies the

whole of gamma must satisfy beta 1 too, why is that? if beta 1 is an axiom either it is a logical

axiom or it is a proper axiom, if it is a proper axiom it is a member of gamma.

Now, we are looking at  an assignment  which satisfies  the whole of  gamma therefore  in

particular beta 1 was also satisfied, if beta 1 happens to be a proper axiom. On the other hand,

if beta 1 is a logical axiom then beta 1 must subscribe to one of the three templates a 1, a 2

and a 3. 

If you look at a 1, a 2 and a 3 you find that these three templates are essentially tautologies

that is whatever you substitute for the variables here what you get is a tautology, you can drop

the truth table and see that if whatever truth values you assigned to alpha, beta and gamma

these formulae will always evaluate it true.



Therefore,  our logical  axioms are always tautologies  therefore they are satisfied in every

single assignment. So, if beta 1 is a logical axiom then it is true in every single assignment

not just in the assignments that satisfy the whole of gamma. 

So, in particular in any assignment which satisfies the whole of gamma beta 1 is true also.

Therefore, if beta 1 is an axiom then any assignment that satisfies gamma must necessarily

satisfy beta 1.

Or in other words, beta 1 is a logical consequence of gamma. So, we are now proving by

induction  this  is  the  basis  of  the  induction,  the  first  statement  in  the  proof  is  a  logical

consequence of gamma. 
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Now, assume that beta j is a logical consequence of gamma for every j less than i and we are

going to look at beta i consider the sequence from beta 1 through beta i this is also a proof

culminating  in  beta  i  every formula  here  is  either  an axiom or  follows from two of  the

previous formulaes  modus ponens. 

Therefore, this is also a proof and here we know that beta 1 to beta i minus 1 are all logical

consequences of gamma, what we want to show is that beta i is also a logical consequence of

gamma.
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Now, beta i could be several, beta i could be an axiom if beta i is an axiom we have an

argument that we made in the case of beta 1 that argument is valid here to if beta i is a logical

axiom it is true everywhere, so it is true in particular in the assignment which makes gamma

true, if beta i is a proper axiom then it is a member of gamma. So, in any assignment which

makes the whole of gamma this is also true trivially.

So,  if  beta  i  is  an axiom then we know that  beta  i  is  a  logical  consequence  of  gamma.

Suppose beta i follows from some beta j and beta k by modus ponens, if this is the case then

either it is the case that we have beta j and beta k which is the same as beta j implies beta i or

it is the case that we have beta k and beta j which is the same as beta k implies beta I, the two

are symmetric so we will discuss only one.

It is exactly in these two situations when we will be able to derive beta i from beta j and beta

k using modus ponens. So, let us consider the first case, let us assume that beta k is beta j

implies beta I. 

Now, what we know is that all the previous j's are logical consequences of gamma therefore

we know that beta j is a logical consequence of gamma and beta k which is beta j implies beta

i is also a logical consequence of gamma.
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By the theorem, we have just shown if beta j is a logical consequence and beta j implies beta i

is a logical consequence then beta i is also a logical consequence. Therefore, what we have

found is that for i beta i is a logical consequence of gamma. 

Therefore, by induction we can say that this is the case for every i less than or equal to n. In

the proof, that we are going to consider beta 1 to beta n but then what is beta n? Beta n

happens to be alpha that is the culmination of the proof, the original proof that we started

with.

We started with the proof of this form which ends in alpha that is why we claimed that alpha

is provable from gamma. So, now what we have shown is that the culminating statement

which is beta n is also a logical consequence of gamma by induction. 

In other words, alpha is a logical consequence of gamma. In other words, if alpha is provable

from gamma then alpha is a logical consequence of gamma. In other words, whatever we

prove is sound in this system of proof, okay that is it from this lecture. In the next lecture, we

will see a proof system for the first order logic, thank you. 


