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So we will study about the finite fields in this lecture. A field is a commutative ring such that the

non-zero elements form a multiplicative group. The examples are the set of complex numbers,

the set of real numbers and the set of rational numbers okay and the non-examples are the set of

integer, if you look at the set of integers, they do form commutative ring but the elements are not

invertible. All these are infinite sets, okay so these are examples, C, R and Q are examples of

infinite fields and in this lecture what we will concentrate is on trying to understand the finite

fields.

An example of a finite field is integers under mod P multiplication, mod P addition and mod P

multiplication. And here we have to insist that P is prime. If we look at elements in Z10, so doing

mod 10 arithmetic they do form a commutative ring but since 10 is not a prime number, this will

not be a field. If you multiply 2 and 5, they are non-zero elements and they multiply to give you

0. So this would in particular mean that 2 is not going to be invertible, there is not going to be

any element with which you can multiply 2 or 5 and get identity.



Okay because 2 and 5 are both factors of 10, whereas Z 101, 101 is a prime number so you can

verify that under mod 101 operations these form a field of size 101. Okay the elements (1 to) 0 to

100 forms an additive group and the elements, the non-zero elements, 1 to 100 they will form a

multiplicative group, every element you can check is invertible mod 101. 

So if you take any prime P, if and you look at ZP, this will have P elements, so that is a finite

field of size P. Can we have finite fields of size say 75? Can we have finite fields of size 128?

Okay so finite fields of what size is exist? That is a question to which we will try to answer. We

will provide some partial answers to this particular claim, this particular question.
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What we will show is the following. The first thing that we will show is every finite field is of

size P to the r for some prime P and integer R. In particular, after this we can conclude that there

will not be a finite field of size 75, because 75 is not a prime power. And then we will give a

construction of a finite filed of size P to the r okay and what is true but we will not show in this

lecture is that there is only one finite field of a given size. 

That means if we construct a finite field of size P to the r, that field can be thought of as a

representative finite field of that size. Every other finite field of that side is isomorphic to the one

that we will construct. So let us continue with this thread, first define an ocean of a characteristic



of a field. Look at the identity element okay and keep on adding it to itself.  In other words,

consider the additive subgroup formed by the unit element.  This is clearly a finite collection

because every element that you generate is going to belong to the field and a field itself is a finite

collection and therefore this is going to be a finite cyclic group.

The size of this particular cyclic group is what we called as a characteristic of the field. Now that

when  you consider  infinite  group,  the  additive  subgroup formed  by  the  unit  element  could

possibly be infinite. Okay so in that case we might refer to the field as having characteristic 0 or

infinite but here we are restricting ourselves to finite fields, therefore the characteristic is always

a positive integer. 

Now we will claim the following thing about characteristic. The characteristic of every finite

field is a prime number okay, how do we show that? So by definition basically considering 1, 1

plus 1, 1 plus 1 plus 1 and so on okay look at the first time when it becomes 0. Because this is a

cyclic group and it should, the process should some, at some stage give rise to 0 and that can be

thought of as the characteristic. Okay beecause these are the distinct elements, after 0 has been

generated if you add 0 the same structure is going to repeat again and again. 

So  the  number  of  times  1  is  being  added  to  itself,  to  get  0  that  can  be  thought  as  of  the

characteristic of the field. So let us say this t and t can be the smallest such number okay this

minimum number of times that you have to add 1 to itself so that you get 0. Now if t is not a

prime, we can write t is equal to a into b and then we can look at this particular equation 1 plus 1

plus 1 a times multiplied by 1 plus 1 plus 1 b times. 

By the distributive law this should exactly be equal to 1 plus 1 plus 1 added ab times okay and 1

added to itself a times we can denote that by a and 1 added to itself b times we can call it as b, so

these are two elements of the fields, two non-zero elements of the field because if either of them

were 0 then we know that t is not the smallest number such that 1 when added t times gives rise

to 0. So a and b we may assume is smaller than t and therefore now we have two non-zero

numbers which multiply and give rise to 0 okay. 

And that is not possible in a field, unless one of a and b are 0 okay which we had, neither of a

and b can be 0 because we assumed the t was the smallest. So this contradicts the assumption the

t could have been written as product of 2 things which are not mean product of a and, so this



contradicts the assumption that t was a composite number. So the characteristic of every finite

field is P, I mean a prime number and if you look at P times t this is equal to 0 for all t belonging

to the field. 

So take an a element of the field, multiply it with P, you will get 0 because P times 1 is 0 okay

and P times 1 times t is equal to P times t, that is also going to be 0.
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So now we are in a position to show, why every finite field is of size P to the r for some integer r

and prime P. So let F be a finite field and let us look at a collection of elements of F which

generates F. Consider a minimal collection or minimal subset of F which generates F and what

does it mean for a collection to generate F? So we are looking at a set f1 f2 fk, some finite set

such that if we consider these elements and add them up, add them up enough number of times

we can generate the entire collection. Okay so we are looking at n1 f1 plus n2 f2 plus nk fk. 

Consider all, suppose S is the set f1 f2 fk, so let P be the set of all elements of the form m1 f1

plus n2 f2 plus nk fk where n1 is an integer. Okay so that will be the set generated by S and we

are looking at a set which generates the complete set F and we want that set to be the smallest.

Smallest or the minimal one in the sense, none of its subsets can generate F, so this definition of

minimal means, no subset can generate F. Clearly there are such sets which generates the entire

collection, if you take the entire F that will generate F because we can mean n1 n2 can all be 1 or

mean 1 and 0s.

So if you take the full collection,  the full field, that can generate itself,  so you can prove of

elements systematically and probably get a small subset such that no smaller subset can generate

the entire F. So let S be one such collection and further our previous observation that if p was the

characteristic then p times any f is going to be equal to 0. So while we are considering elements

of this form we can restrict to 0 to p minus 1 because n1 if we write it as say q times p plus r then



n1 f1 is going to be q times p plus r times f1 which can be written as q times p f plus r times f1,

so n times f1 is nothing but r times f1, where r is lying between 0 and n minus 1.

So when we are looking to generate the set F these coefficients of f1, f2, fk can be chosen from 0

to p minus 1 okay. So now if you look at f1, f2, fk and look at everything that is generated by f1,

f2, fk, the possibilities are, the n1 could belong to 0 to p minus 1, n2 should can belong to 0 to p

minus 1, so there are p possibilities or p choices for each ni. So in all the total number elements

that we can form is no more than F, so the total elements in F is no more than p to the k. Because

each one of these n1, n2, nk you can select it from 0 to p minus 1. 

And what we will show now is that, it is exactly p to the power k. So our claim is for distinct

choices of ni the element generated are unique. Why is this so? So suppose this is not the case

then let us say n1 f1 plus n2 f2 plus nk fk this is equal to let us say m1 f1 plus m2 f2 plus mk fk.

And we are assuming that n1, n2, nk if consider that as a tuple that is different from m1. m2, mk

considered as a tuple. And since these two expressions generate the same element, if you subtract

them you will get 0. 

So therefore we can rewrite this as n1 minus m1 times f1 plus n2 minus m2 times f2 plus all the

way up to nk minus mk times fk must be equal to 0. Now since ni is, ni minus mi, at least one of

them should be non-zero because if all of them were 0, the ni’s and mi’s are equal. So look at the

first non-zero entry, okay so let us say this is 0, this is 0, so ni minus mi is not equal to 0 okay so

times fi plus some other terms, involving fi plus 1 all the way up to fk, this is going to be equal to

0. 

We can rewrite this equation by taking ni minus mi times fi on one side, this is equal to let us say

alpha i plus 1 fi plus 1 plus alpha i plus 2 fi plus 2 all the way up to alpha k fk, multiply with the

inverses of ni minus mi on both sides, we can do that because ni minus mi is some number

between 0 to p then it has an inverse, multiply that and we can express fi as linear combination of

fi  plus 1 up to fk. This would mean that in this  collection f1 into fk, which we assumed as

minimal, one of the elements can be expressed as linear combination of the other elements. 

So there is a smaller set, namely s minus fi which generates the same collection, okay that is a,

that contradicts our initial assumption, that s was the minimal subset okay and therefore we can

conclude that our claim is valid. Okay that there cannot be two distinct choices for n1, for the



tuples and them, such that they generate the same element. So this basically means that take any

finite field, its size had to be of the form p to the power k or p to the power r where p is some

particular prime
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So the next question is, can we really generate that particular field? Okay so that is the last part

of this lecture constructing a finite field of size (p to the k), no p to the r. So let us consider

polynomials, so the way we will do this is, we will construct a set of polynomials and we will

define  a  multiplication  and  addition  on  polynomials  and  with  respect  to  that  addition  and

multiplication, this collection of polynomials will basically be a finite field. 

So the set  basically  consist  of  polynomials  whose coefficients  are  from 0 to  p minus 1,  so

consider Zp and look at polynomials whose coefficients are in Zp. So if you take p equals 3, the

polynomial Zp we will consider are polynomials of degree less than r and coefficients from Zp.

So if I, if we choose r is equal to 2 and p is equal to 3, then our polynomials are going to be 0, 1,

2 this is the constant polynomials and then we have the polynomial x, x plus 1 and x plus 2 then

2x, 2x plus 1 and 2x plus 2. There are 9 elements here, namely p to the r, where p is 3 and r is 2.

This is the collection of polynomials, of course if you multiply two of these polynomials their

result is not going to be one of these collection, for example if I take x plus 1 into x plus 1 that is

going to x square 2x plus 1, that is not an element of this collection.

So under the normal multiplication these do not form a finite field. So you have to define a new

multiplication and addition. So the first thing is coefficients would be computed mod p, so in

particular if multiply 2x and 2x we will get 4x but 4 mod 3 is 1, so that will be, sorry 4x square

and that will be x square. But x square is still not an element of this collection. So what we will



do is, we will reduce the degree by taking remainder upon dividing by a degree two polynomial

or degree r polynomial.

This cannot be an arbitrary polynomial but let us say for the time being, let just say we will

divide it with x square plus 1, okay so when you multiply two of these polynomials, what we do

is, whatever is the resultant, we will convert the coefficients into mod p and whatever is the

resultant  polynomial  that  is  being  divided by a  polynomial  of  degree  r. When you divide  a

polynomial ax by another polynomial bx the remainder is going to be polynomial whose degree

is going to be less than the degree of bx.

So when we do this, when we divide by r whatever we get will be of degree at most r minus 1.

So now at least what we have is, we have a valid addition and multiplication operation defined

on this collection. We need to verify that this is indeed a group, I mean this indeed a field. So it

will not be a field when this is an arbitrary polynomial, so this makes it a ring. Because the

addition is well defined, addition is invertible whereas multiplication may not be invertible. 

We will introduce a concept called as irreducible polynomial and if the polynomial by which we

are dividing is an irreducible polynomial then we will show that, these collection of polynomials

will basically be a field. So before we introduce a notion of irreducible polynomial, let me just

state whatever we were doing in a generalized setting. So what we do is consider polynomials of

degree less than r with coefficients in Zp. 

So we are looking at a0 plus a1x plus a2x square all the way up to a r minus 1 x raise to r minus

1. Each ai has p choices and each of those polynomial is a different polynomial when you are

dividing by a degree r polynomial. Okay so these are distinct polynomials, they are precisely p

raise to r such polynomials, okay. 

Addition is component wise in the sense if you have a and b, so a is a sequence or a polynomial

and b is another polynomial of degree r then so let us just say this corresponds to the coefficients

are ai, coefficients of b are bi then a plus b is basically ai plus bi mod p, okay that is simple

enough. And a times b is the normal polynomial multiplication, so if we denote it by ci, ci is

equal to summation j going from 0 to i ai b i minus, sorry aj b i minus, so ci is aj b i minus j

summed up over all values of j.



That will be the normal polynomial multiplication and then whatever polynomial you get, so let

us just say c is the polynomial which we obtained as c0 plus c1x plus all the way up to ck x raise

to k, now this k note that it could be greater than r. Now divide cx by a special polynomial kx

and declare the remainder as product of a and b. And this kx has to be an irreducible polynomial,

we have been defined what is an irreducible polynomial, we will come to that. 

And then we do this, the property of irreducibility, makes sure that the collection forms a field.

So in case of our field of size 9, if you looked at these particular polynomials and x square plus 1

happens  to  be  an  irreducible  polynomial.  So  let  us  see  at  the  example  of  one  particular

multiplication, if you took 2x plus 2 and multiplied with 2x plus 1, this is going to be 4x square

plus 2x plus 4x plus 2. That is going to be 4x square plus 6x plus 2 and mod 3, the coefficients

have to be converted to mod 3, you will get x square.

Because 3x square 3 is 0 and 6x is 0 times x, so that is gone and we will get this as x square plus

2. When we divide this by x square plus 1, okay this can be written as 1 into x square plus 1 plus

1, so 2x plus 2 into 2x plus 1 is will be reported as 1. So this will be 1 because mod x square plus

1, when you divide it by x square plus 1, the remainder is 1 and that happens to be one of the

elements in the collection.

So whatever you multiply, since we are taking the remainder when you divide by x square plus 1,

where the division is now a polynomial division, the remainder is going to be a polynomial of

degree less than x square plus 1 that is going to be a polynomial of degree utmost 1. And we

have listed out all the degree 1 polynomial in our collection. This is a well-defined operation.

The only thing we need to really check is that, under this multiplication, every element in this

collection has a multiplicative inverse. 

This collection of polynomials is general collection, will be a ring, irrespective of whether x

square is reducible or irreducible but the reducibility property will ensure that each element has

an inverse.
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So now let us define the notion of irreducibility. So let us look at the polynomial kx, suppose we

can write kx is equal to hx times gx, then either hx is a constant polynomial or gx is a constant

polynomial. The polynomials which satisfies this condition is called as irreducible polynomial.

So  let  us  call  this  as  condition  1,  any  polynomial  which  satisfies  condition  1  is  called  an

irreducible polynomial okay. So this is a notion very similar to that of primality, a prime number

if you write it as product of two objects, mean two numbers then one of the numbers is 1.

It is (always), mean one of the, mean if a number is written as a into b and if a or b is 1, means it

is always the case then we say that the number p is prime. The only way in which you can write a



prime number as product of two other elements is by choosing one of those elements as 1 but

here instead of 1, we have what is a constant polynomial. So the only factorization possible for

kx, involves a constant polynomial then we will say k is an irreducible polynomial. 

In other words, this does not have common factors with any other polynomial other than the

constant factors. So now let us see how the notion of irreducibility helps us in constructing the

finite field. So the condition that we have to prove is that every element in the collection is

invertible, this is what we need to prove. So let us say ax is one particular element, since kx is an

irreducible polynomial, if we look at the greatest common divisor of ax and kx, this must be

equal to 1. 

We can adjust the constant polynomial,  so that the coefficients are, means it  is not anything

different from 1, it is exactly 1. Here the definition of your reducibility we could have constant

factor which is a constant polynomial but we can adjust the constant polynomial to be 1. So GCD

of ax and kx, if it is equal to 1 because kx is a irreducible polynomial okay reason is reducibility.

Because if it is anything other than 1 then ax and kx has a common factor and that common

factor is a common, is a factor of kx, so GCD ax and ax kx equals 1 and the definition of GCD is

the smallest positive linear combination, okay. 

So what this also means is, we can find alpha x and beta x such that alpha x ax plus beta x kx is

equal to 1. Now this would mean that alpha x into ax is equal to 1 minus beta x times kx okay so

if you look at this particular polynomial, that is called that as gx. What we know is, alpha x when

multiplied by ax gives gx and if we look at this mod kx, this gx is nothing but 1. So alpha x into

ax is 1 mod kx. So that means if we look at the polynomial corresponding to alpha x means

consider the remainder obtained on dividing alpha x by kx, let us call that as alpha prime x, alpha

prime x is the multiplicative inverse of ax. 

So we took an arbitrary polynomial from our collection and since GCD with kx is 1 we can find

a linear combination of ax and kx, which gives us 1and from that we can extract an inverse of ax,

okay that means that every element is invertible and therefore this collection forms a group.

What needs to be further shown is that for every degree, there is an irreducible polynomial, it is

little beyond the scope of this course, so we would just assume that, that for any particular degree

there is an irreducible polynomial of that degree. So that is the end of this lecture.




