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In this lecture we will learn about the cosets and quotient group. So let us consider a group, let us

say this is the group G and suppose this is a subgroup H. So let us define what are known as the

cosets of G with respect to H. So consider all the elements from aH, okay so aH is defined as all

those g belonging to G such that g is equal to a times H for h belonging to capital H, okay. So

this is our set H and we went to multiply all the elements in H by a, what we, once we do that we

will get another set which we will call as aH. 

Okay and this is going to be called as a coset. In particular, this is a left coset because we are

multiplying on the left. So now if you take an arbitrary group and construct all its left cosets we

will get different cosets, let us call them as a1H, a2H and so on. And these collections of cosets is

going to, I mean if you take the union of them that is going to be the complete collection. In

other words, union over all a belonging to G aH will be equal to the set G. 



But what is more interesting is, if you take 2 cosets they either are one and the same or they are

disjoints. Okay so this is a claim, the cosets partition G, so if you have, so what this means is

suppose aH and bH are cosets then either aH is equal to bH or aH intersection bH is equal to

empty. Okay how do we prove this? And if we have this claim, it is easy to see that if you take all

the cosets that will and take the union of that you will get the entire set because if you look at H,

H is a subgroup, in particular the identity belongs to H, okay. 

And if you take 3 times e for any arbitrary g belonging to the group, you are going to generate

the element g. So if you consider the coset gH that contains g okay. So the union of gH over all

G will certainly exhaust the complete collection of groups. Why is it true that is it either empty or

to cosets are the same. So let us assume that the cosets have some non-trivial intersection, if they

did not have any intersection, then we are fine because that is just the condition aH intersection

bH is empty.
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So suppose, let us say alpha belongs to aH intersection bH, okay so that would mean that alpha is

equal to ah1, there exists an h1, an element h1 such that alpha is equal to ah1 and alpha is equal

to bh2. And therefore we can say that ah1 is equal to bh2, so ah1 is equal to bh2, therefore a is

equal to bh2 h1 inverse. And since h2 and h1 are members of a group, we can say that, this is a

subgroup so h2 times h1 inverse will be equals to bh3 for some h3 belonging to H okay.

Let k is equal to ah, be an arbitrary element of aH. We want to show that k will belong to bh and

exactly same reasoning will show that any element in bh will also (belonging) belong to ah. So

let us first do the, the proof that any element of ah will belong to the set bh okay, so k is equal to



ah, so a can be written as b times h3. So k is equal to ah can be written as b times h3 times and

that is equal to b times h4 okay, so this means that k must belong to bh.

So we took an arbitrary element of ah and showed that it belongs to bh, if there is an intersection

between ah and bh. And similarly you can show that any arbitrary element of bh must belong to

ah, if there was a common element. So that concludes the proof that the cosets are either disjoint

or they have a, they are one and the same okay. So now this will help us prove the following

theorem known as Lagrange's theorem. 

So let G be a finite group and let H be a subgroup of G. So clearly H will also be a finite group,

then order of H divides order of G, okay. Why is this true? If you consider so all that one has to

do is, consider cosets of G with respect to H, so order of H is number of elements in H and order

of G is number of elements in G. So if you consider the cosets with respect to H they are going to

be say a1H, a2H and akH okay. So let us say these are the distinct cosets, some of these, mean

we have taken all  the  elements  of  G, some of the cosets  may overlap  but here we are just

counting the, we are just enumerating the distinct cosets.

Let us say k of them are there, which we called as a1H, a2H and akH okay and these cosets,

these collections, partition the collection G okay. So their sizes if you add up, we will get G, so

size a1H plus size a2H plus size akH is equal to size of G. But note that every coset is  of

identical size, size aiH is equal to size ajH, why is this so? This is equal to the size of H. Now if

we assume this fact, what we show is what we can immediately conclude is that, the total sum on

the left hand side is equal to k into size of H and that is equal to the RHS, which is the size of G.

So this would be the proof but all that we may get to see right now is that why are two cosets of

identical size.
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Now the set H is a finite set and let us say its elements are h1 up to hm okay. Let the sub group

of G, its elements be h1 to hn. Now if you look at ah1, ah2 and ahm, these are m elements and

they are all distinct because ahi cannot be equal to ahj for I not equal to j. This is because, if we

assume ahi is equals ahj, you can multiply both sides of the equation with a inverse and you will

get hi equals hj, so this cannot be equal. And therefore there are m elements in ah, where m is a

number of elements in the subgroup okay. 

So that concludes the proof, the fact that this is the finite group, was used when we said that

these partitions has a fixed number of elements and each of this coset is of finite size.
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So let us consider a group and these are the cosets corresponding to H, okay so let us say this is

aH, bH and so on. If G were the set of integers and let H be the multiples of n, for example if we

took n as 10 then H is all those elements of the form 0 plus or minus 10, plus or minus 10 and so

on. Now these cosets are basically the equivalence classes, a is related to b if a minus b is equal

to 0 mod n, okay here n is 10, okay.

These cosets are precisely those equivalence classes okay and we could, we had seen earlier that

we  could  do  arithmetic  or  we  could  add  and  multiply  these,  these  equivalence  classes

themselves. So the cosets could themselves be added and multiplied. And when can we really do

this? Can we impose a group structure on the cosets? Okay so that is the question that we will try

to answer. And in some cases we can do that when the (coset), when the group, the underlying

subgroup has some nice properties, we can have a group structure on the cosets, okay that is

known as a quotient group. 

In some sense, you are using the group, the subgroup H to divide the group G into different parts

and then we carry out some operations, we define some group structure on the parts obtained.



(Refer Slide Time: 12:27)

So in order to look at these things closely, we will (introduce) we will look closely at the concept

of homomorphism. Okay we had seen the notion of isomorphism earlier  and homomorphism

between G and H, so let us say G is a group and H is another group, a function from G to H is

called as homomorphism, if f of g1 g2 is equal to f of g1 times f of g2, g1 g2 is computed in G

and f g1 times f g2 that is computed in H. 

So this is satisfied for all g1 g2 belonging to G then we will say that f is a homomorphism from

G to H. okay so suppose G is this and H is some other group and there is a map f and it satisfies

this  equation  1  then  we  say  that  this  is  a  homomorphism.  Now  while  we  are  studying

homomorphism we can restrict our attention to basically the image of f, okay so let us say this is

a subset to which f is mapping g2. 

We will restrict our attention to just those elements the others does not really matter, okay. So if

you call this as image under f, we will just study the effect of the homomorphism by restricting

our attention to just the image, the other elements do not really matter or in other words we can

say that we were looking at homomorphism which are onto a functions okay. In other words, we

will just study those homomorphism where G is mapping to the full set H. 

Now there is an easy claim that you can verify, image of a homomorphism will always be a

subgroup okay. So even if we have taken the larger collection and if we were just looking at the



image,  that  will  be the  subgroup of  H.  Okay so that  is  the reason why we can  restrict  our

attention to homomorphism which are onto. 
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So let us see some properties of homomorphism, let us say if f is a homomorphism of G to H,

then f of identity will be equal to identity. It maps the identity in G to the identity in H. And the

second thing is f of g inverse, so let say g is any element and if you look at its inverse and look at

the image inverse that will be equal to f g inverse, both of these statements are easy to verify, we

will just verify the second part, okay.

So let us look at the f of g times g inverse, f by the virtue of being a homomorphism this must be

equals to f g times f g inverse and f of g times g inverse, g times g inverse is going to be identity,

so this is f of identity okay and f of identity this is equal to identity. Now this is, e is the identity

in G and e prime is the identity in H. So what we can conclude is f g times f g inverse, this is

equal to identity in H, so this is an element of H and this is another element of H, okay. 

So and when they multiply, we get identity that means those elements are inverses of each other.

So we can write f g inverse is equal to f g the whole inverse, okay so that basically is fact 2.
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The next concept that we will see, is what is the kernel of a homomorphism. So homomorphism

is a map from one group to another which preserves the group structure. And we argued that

when we have a homomorphism, the identity will map to the identity. Now we can look at all the

elements,  there  might  be  multiple  elements  mapping  to  the  identity, so  all  of  them will  be

mapped into the identity. That collection is known as the kernel. 

Okay  so  kernel  is  the  set  of  elements  in  G  whose  image  is  identity,  so  the  kernel  of  a

homomorphism is the collection of all those elements in G, which maps to the identity. There is a

simple fact, kernel is a subgroup of G, we denoted the entire group by G this is the kernel. Okay

so kernel will invariably be a subgroup of G. How do we verify that? So in order to verify that a

subset of a group is a subgroup, what we need to do is verify that for every a, b belonging to K, a

b inverse belongs to K. If you verify this part then we can conclude that the subset is, the subset

K is going to be a subgroup.

Now it is easy to check because f of a b inverse, if we can show that this is identity then that

means for every a b belonging to K, a b inverse also belongs to K. f of a b inverse is nothing but

f of a times f of b inverse which is f b the whole inverse. Now f a is identity, f because a belongs

to the kernel and f b also is identity because b belongs to the kernel and inverse of identity is

identity, so this entire thing is e bar okay. So kernel is always a subgroup of G.
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Now here we are in a position to state our main result which is a connection between the kernels

and the quotient structure. We were asking this question, when can we define a substructure on

the cosets? If we look at kernels, kernels we know as a subgroup and we can consider we can

construct cosets with respect to a kernel K. So let us say this is a kernel and then you consider its

cosets. For this you can (multiply), I mean if you had these cosets a1K, a2K and so on and if you

define  the  operations  on  these  cosets  as,  so  let  us  say  aiK  times  ajK,  so  aiK  is  the  coset

containing the element ai and ajK is the coset containing the element aj.

And if you define this as a coset ai aj K okay that is the coset containing the element ai aj, now

we can verify that this is a valid definition because let us say ai prime is some other element of

the same coset and aj prime is some other element of the coset ajK, if we multiply them out, the

rule say that they should be equal to ai prime aj prime K but this should also be equal to ai aj K,

so this is what we need to verify. 

Okay in order to verify this, this is a set and this is another set, when are these sets identical, if

you that one is contained inside the other when a is contained inside b and b is contained inside

a, then the sets a and b are the same. We will just verify for one direction, the other direction is

automatic, the same reasoning would work. So an arbitrary element of the LHS is ai prime aj

prime K okay.

Now note that ai prime is equal to ai into K1 and aj prime is equal to aj into K2 okay and

therefore ai prime aj prime K can be written as ai K1 aj K2 into K, if we could somehow show



that ai K1 is equal to K1 prim ai, okay so suppose these were true then what we can do is, we can

just rearrange the elements and get ai aj times K1 prime K2 prime K and K being a subgroup

these things multiplies into some K3, so we will get (a1 aj) and ai aj and K3 okay and that is

going to be an element of the set ai aj K okay. 

So what we need to show really is that ai K1 is equal to K1 prime ai, okay so this may not be true

for arbitrary subsets but the subsets for which this is true have a special name those are called as

normal subgroups. So we can assume the theorem to be complete, assuming that a K is equal to

Ka, if aK was equal to Ka for all a, then ai K1 is equal to K1 prime ai. So assuming that the

kernel is a normal subgroup we done with our proof because this was a normal subgroup then

this K1 aj, you can flip that and push the aj to the left side and push the K1 to the right side. 

Okay so all that remains is to show that the kernel is a normal subgroup. Okay so how do we

show this? So in order to show that some subgroup is a normal subgroup, what we need to show

is aK is equal to Ka, so let say, consider an arbitrary element aK and we need to show that aK

belongs to Ka. So consider the element a Ka inverse, so a Ka inverse we claim that this belongs

to K okay. 

This is because, if you look at the homomorphism f and if you consider f of aK inverse, this is

equal to f a times f K times f a inverse. Now f K is identity because K belongs to the kernel, so

this is equal to f a times f a inverse and this is equal to identity because f a and f a inverse is, an f

a inverse are, inverses of each other. Okay so aK a inverse belongs to K therefore if we take aK a

inverse as K prime, okay K prime into a is equal to aK a inverse times a which is equals to aK

okay. 

So we have written aK as a product of an element belonging to the kernel and a where the

multiplication with a is on the right side okay. So the kernel of a homomorphism is a normal

subgroup. So to put things together, what we verified is that, you take any homomorphism, its

kernel if you consider the kernel it is going to be a subgroup not just that it is going to be a

normal subgroup.

And once you have as normal subgroup, the multiplication of cosets is well defined and therefore

that induces a, the homomorphism induces a quotient structure or a group structure with respect

to the cosets. And what we will show next is that, this is the only possibility, in the sense if we



can make the cosets into a multiplicative structure, there is a, if this definition of multiplication is

to be valid then K must indeed be a normal subgroup.
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Okay  so  that  is  the  second  part,  suppose  the  cosets  multiplication  is  well  defined  then  the

subgroup is a normal subgroup. So coset multiplication we define as, if you have aH and bH

their product is defined as ab times H. Now this definition is to make sense that means if it is to

be well defined then H must indeed be a normal subgroup. The way we would show this, prove

this theorem is by showing that H is the kernel of some homomorphism okay. 



So we will construct a homomorphism for which H is the kernel, it is easy to construct. So here

we have a group and this is a subgroup and the subgroup gives rise to various cosets, cosets let

me call it as a1H, a2H and so on. Now let me just consider the collection of these cosets, so let C

be the collection of cosets, so C is a set okay and each element of C is a coset and now the, what

we have assuming is that the coset multiplication is well defined you can verify that the set C is a

group under coset multiplication okay. 

Since  the  operation  is  well  defined  we  can  check  whether  that  operation  is  an  associative

operation, whether inverse is present, where identity is present and so on. You can verify all these

things and conclude that this collection C under the coset multiplication is a group. So now, let

us  consider  our  main  group  G and  consider  a  function  which  maps  elements  of  G  to  this

collection C okay. 

So an element x is mapped to the coset xH, so clearly every element of C is the image of some

particular element in G and we can verify that this function f, function f is a homomorphism

from G to C. Why is that so? So f of say xy, this is equal to xy times H by definition f maps any

element  to  the  coset  containing  that  particular  element  and  that  is  xyH.  And  since  our

multiplication was well defined, we know that this is nothing but xH times yH and xH is f x and

yH is f y. 

So we verified  that  the  function  f  is  a  homomorphism from G to C and the kernel  of  that

homomorphism is  precisely  H. Kernel  of  f  is  all  those elements,  which map to the identity

element of C, the identity element of C is basically H and therefore, you can verify that every

element in the coset H will map to H and therefore, since the kernel of f is H by our earlier

theorem H has to be a normal subgroup. So this concludes our study of groups and subgroups

and the quotients structure that is induced by a normal subgroup. 


