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So we had seen many examples of group, today we will see one more example, a special

group called as the dihedral group while we are studying this group will also learn that this is

non-commutative  group.  We will  learn  the  concept  of  generators  and  how  a  group  is

presented or described. 

So let us understand what is the dihedral group is? So consider regular polygon having n

vertices, so let us think that in r2 in the two-dimensional plane there is a polygon with n sides,



it is a regular polygon. We are interested in symmetries of this polygon, by symmetries what

we mean is all those rigid motions which will leave this polygon in the same location it will

leave the polygon unchanged. Here we have given labels to the corners of the polygon but

when we are  talking  about  the  regular  n-gon we do not  really  labels  the  vertices,  label

vertices for a reason that will become clear shortly.

 So we want to look at all those motions, all those rigid motions which will leave the regular

n-gon unchanged, one such motion would be let us say if there are n sides and if we rotate

this n-gon by an angle 2 Pi by n that is the angle in radiance rotate by this much amount,

rotate  about  the  centre  of  the  regular  n-gon  then  the  starting  configurations,  ending

configurations  would  look identical  okay ofcourse  if  you have  labelled  the  vertices  then

whatever was at vertex1 will go to vertex 2 if our rotations where anti-clockwise, so that is an

example of a rigid motion which leaves the n-gon unchanged. 

So let us consider the collection of all such rigid motions of this regular n-gon, so fix an n so

let us say n is equal to 8 or 10 I mean pick any number and consider a polygon of those many

regular polygon of those many sides and we are interested in set of all the rigid motions

which will leave the n-gon or the inside polygon unchanged, if you look at this collection,

does this collection form a group and if so under what operation? 

Since your, we can think of these motions as rigid motions as functions with a transforming

one point to our changing one point to another, we could think of function compositions as

the natural operation. So, suppose S is a rigid motion, it means it is changing (I mean) it is

taking the polygon then moving it around in the 3D plane in R3 and finally it is placing it in

some particular way in I mean on the plane and the diagram looks exactly the same that is

what we mean by symmetry. 

So if you have one such and if you have g, if you do the operation of g and then follow it by f

that can be written as f composed with g, so it means you do these operations together then

you can reason out that the resultant operation will also leave the polygon unchanged, those

one operation which left it unchanged on the resulting thing which is the same as the original

one again apply another operation and that would give you back the original polygon itself

and therefore if you combine 2 of them, they will naturally be a symmetry. 

Now how do we describe these symmetries? We could ofcourse think of them as maps from

R3 to R3 but that is a huge object means you are mapping every point from R2 to some point



in R2 when you have given the function. Okay but here what really matters is where is the

vertex 1 being sent to? Okay, so we can in fact represent every symmetry of the regular n-gon

by means of a permutation, okay.

The permutation decides I mean if one was this particular vertex after the rigid motion this

vertex has to end up as some other vertex, which vertex is it? Vertex 2 has to end up in some

other place in one of these other vertices, where does it go to? So each symmetry can be

described using permutation, so that is a key observation. 

So here we are looking at symmetries of the regular n-gon, so if you fix the polygon and then

every symmetry can be viewed as a permutation on the set it is 1 to n, so label the vertices as

polygon as 1, 2, 3 up to n and then we can look at permutations over or arrangement of 1 to n

over these and each rigid motions which is a symmetry can be viewed as a permutation, so in

fact the rotation by 2 Pi by n radians would be the permutation which maps (1 to 1) sorry 1 to

2, 2 to 3 and n back to 1, so n minus 1 would go to n and so on, so 1 goes to 2 and 2 goes to 3

and 3 goes to 4 and so on, okay.

So if you look at the permutation given by 2, 3 up to n followed by 1 this is a permutation

which encodes or which this permutation represents the symmetry that is obtained by rotating

the n-gon by an angle 2 Pi by n, so now we have just done just one example, one of the

symmetries can be viewed in this way, you can convince yourself that every symmetry can be

viewed as a permutation (okay, now) and therefore the collection of symmetries is going to be

a finite set.

So this is an example of a finite group (okay) but the simplest way in which this group could

be described or any group could be described, any finite group could described is by means

of what is called as its multiplication table, so if a, b, c, d, e are the elements we have a matrix

index by a, b, c, d, e we have a square matrix and at each position, at the position i, j we will

give the value of combining I with J. 

So i star  j will  be written at  the position i,  j  in the matrix,  such a matrix is known as a

multiplication table, so here in an abstract sense we know that take all the symmetries of this

regular n-gon you get a collection and these collection (())(8:55) property that 2 of them can

be  combined  by  means  of  function  composition,  if  you  give  them  as  permutations,

permutations are again functions from 1 to n to 1 from the set, 1, 2, 3 up to n to 1, 2, 3 up to

n, so these functions can be composed and that operation basically is an associative operation,



so function under function compositions, the requirements for the set symmetries to be group

is satisfied. 

Required properties where first is closure that means 2 elements should combine and give an

element in the collection that is ofcourse the case and it is associative you can verify that and

the remaining properties where inverse, the existence of an inverse, so if you look at any

permutations,  it  has  an  inverse  permutation  and  that  inverse  permutation  will  basically

correspond to a particular symmetry.

Okay so you are basically reversing if 1 was sent to n look at the permutation which sends n

to 1 okay and the symmetry corresponding to that is the inverse is the symmetry that we are

interested in and the permutation which maps every element to itself or the identity map will

serve as the identity okay, so inverse and identity properties that are required of groups have

also we have checked those as well, okay. 

So this forms a group okay that is is clear from an abstract sense but can be present this in a

more concrete manner. Okay what are all the elements, can be lead out can you innumerate

it? Okay, so we will show that if you take the regular n-gon, we will assume that n is let say

greater than or equal to 3 because 2 sided polygon really does not make much, means it is not

very meaningful quantity, so we will consider that n is greater than or equal to 3 for all these

discussions that we going. 

So let us look at any polygon and will look at the special object wherein we are rotating by 2

Pi by n.  Okay let us call that as let us R okay, so R is a symmetry or the operation which

rotates by 2 Pi by n okay, so if you look at these elements 1 r, r square r raise to n minus 1

they are all symmetries, so one means do not do anything or the identity symmetry and r is

rotate by 2 Pi by n, r square is rotate by 2 times 2 Pi by n, r raise to i is rotate by i times 2 Pi

by n and so on. 

So these are some of the symmetries, are there most symmetries for the regular n-gon? So let

us introduce one more symmetry which is, we will call by the name s, which is, so by s we

mean the symmetry which looks at the line joining let us say 1 to the centre and flipping

about that point, so s is the special symmetry which is obtained by looking at the vertex, the

line joining vertex 1 to the centre and flipping it by that. 

In some sense the full collection of symmetries can be described using R and S okay, why is

this so? So how many symmetries can the regular n-gon have? 
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Okay, so let us since we agreed that every symmetry can be described by a permutation, so

every  symmetry  of  the regular  n-gon has  corresponding permutation  and because of  this

reason we know that the total number of symmetries is going to be at most n factorial, it is

going to be much less than that in our case. Since it is described by a permutation if you look

at vertex 1 and where does vertex 1 go to, does it go to vertex i, does it go to vertex n minus 3

and so on, so that is one information that we would need.

So let us say 1 goes to some location, okay now if 1 go to vertex numbered i then 2 being

neighbour of 1 in the original configuration after you have sent 1 to i, 2 should be sent to

either i plus 1 or i minus 1 okay, that is the only possibility because anywhere else you have

affected the rigidity of the polygon, so where the motions is no longer a rigid motion, okay. 

So there are only 2 options for where vertex 2 can land up, further if you have decided what,

mean to which vertex does 1 go to and which vertex does 2 go to, once these have been fixed

every other vertex its position will be fixed, if 1 has gone to some position let us say i and 2

has gone to let us say i minus 1, 3 has only one position left and 4 again has only one position

left and therefore you can argue that every position gets fixed.

So clearly from this we can conclude that there are at most 2n symmetries, you take any

regular n-gon then maximum number of symmetries that it can have is 2n and if you can

show, if you can describe some 2n functions, some 2n rigid motions, some 2n symmetries for

the regular n-gon we know that that is going to be full set because there cannot be anything

outside that because 2n is the maximum possible, okay.



So the symmetries if you want to visualise them, the 2n symmetries they are going to be

slightly different for the n equals even case and n equal odd case, okay if you look at the

square 4 sided you can rotate by 90 degree 1 will go to 2 that is going to be 90 and 180 means

1will go to 3 okay and (3 will go to) 2 will go to 4 and so on, so that is going to be n

symmetries of that kind and you can flip about 4 different axes okay, diagonals and the centre

of the sides.

Okay so that  will  give  you additional  n  symmetries.  If  this  is  was a  pentagon,   okay 5

rotations and then you can flip about each of the vertex and when you join the vertex to the

centre it is going to pass to the midpoint of the opposite side, so that is going to give you 5

different  symmetries  and  these  symmetries  are  going  to  be  different  because  in  rotation

except for the identity symmetry everything else, I mean all positions will be mapped to a

different, I mean there will not be an i such that i maps to i after the symmetry has been

applied. 

It goes to the image or the position where i lands is going to be different from i okay there is

not  going  to  be  a  single  position  which  remains  invariant  under  the  application  of  the

symmetry. Whereas when we flip about a particular axis a lot of elements, means at least

more than one elements could remain fixed, so here 1 and 3 are going to be fixed when you

flip about that particular axis okay and here when you flip about those axes you can say that

there is an exchange within 2 and 1.

Whereas in a rotation there is no exchange of elements, the exchanges are all going to be I

mean they get flipped by more than a distance 2 okay, so you can convince yourself that these

are the only symmetries but we will argue about it in a formal setting. 



(Refer Slide Time: 18:48) 

So let us say one, so let us imagine that r was this particular rotation by 2 Pi n, so 1, r, r

square, r raise to n minus 1 okay these are all going to be distinct elements because r n minius

if you look at any one of them ri and rj, so one goes to i where as if you apply r to the power j

one goes to j, so ri and rj has to be different, so this accounts for n symmetries. Now let s be

this particular operation that you get, so if you look at regular n-gon this is the vertex number

1 and this is the centre of the polygon join them, okay.

If it is an even sided polygon this line will pass through another vertex, if it is an odd sided

polygon it will pass through middle of another side, does not matter which one is the case.

We flip about this particular line and that is what we call as s, okay now note s, sr, sr square

all the way up to s r n minus 1, okay these are n symmetries, these n symmetries are also

going to be all different that means s, r raise to i is not equal to sr raise to j when i and j are

different. 

Clearly these are going to be symmetries because the first operations is going to leave, flip

about these particular axis that is going to leave the vertices that is going to not affect the it is

going to leave the polygon unchanged and if you follow it up by another operation which

leaves the polygon unchanged you are finally going to get an operation which leaves the

polygon unchanged, okay. Can two of them be equal? 

So if sr raise to i is equal to sr raise to j okay, that would mean even if you did not apply this s

still things would have been same that means r raise to i will be equal to r raise to j, so this is

not the case because we argued that r raise to i and r raise to j are different when i is not equal



to j, so here we have n symmetries and here there is another set of n symmetries and they are

all  different  from, these are  all  different,  these are all  different  but  there could still  be a

problem, could be one element from the set, so if you call this as A and this is B, may be a

intersection b is not equal to 0, if a intersection b was 0 then we have accounted for all the

elements, okay so let us argue that no 2 elements here are the same, so let us look at suppose

sr raise to i is equal to r raise to j. 

Now if you flip twice that is same as starting permutations that means s square is going to

give you identity. So if you have sr raise to i is equal r raise to j then we have r raise to i is

equal to sr raise to j, so this statement would imply the second statement by multiplying with

s on both sides, so we could assume without loss of generality that j is a larger quantity j is

greater that i, so sr raise to i is equal to sr raise to j and therefore we can cancel off.

So if we had done rotation by 2 Pi by n times i in one case and 2 Pi by n into j in the other

case we can reduce the number of rotations by smaller amount so we can argue that s must be

equal to r raise to j minus i okay but this clearly cannot happen, s is a flip r raise to j minus i

is some rotation a flip can never be equal to rotation because flip leaves a particular element

unchanged. 

I mean the vertex about which you are flipping that is here the vertex 1, so flip leaves one

unchanged whereas r j minus r raise to j minus I sends 1 to the vertex j minus I, okay so there

are no common elements. 
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So we argued that the elements of the dihedral group are 1r, r square, r raise to n and sr, sr

square up to sr raise to n these are 2n distinct elements, so distinctiveness we have already

argued. We also argued that these elements do form a group, now we want to see how this

group can be understood in terms of just r and s. Let us try and figure out the multiplication

table for this particular group, okay so let us look at general element, identity element how it

multiplies it is clear, one multiplies with anything and give the same. 

If you have something on from r raise to I, it could either multiply with r raise to j or r raise to

i could multiply with sr raise to j or you could have let us say sr raise to i and sr raise to j, so

there are 3 types of multiplications that can happen, so if you call these as a and these as b

elements of a with itself, b with itself and elements of a with b. 

Now r basically was a rotation by some angle theta, so if we thought of the polygon 1, 2, 3 let

us just look at how the polygon is drawn and if we find where exactly are 1 and 2 going to

after the symmetry is performed that will basically fix the entire polygon and therefore while

trying to understand the composition of the symmetries it is enough if we know where the

composition maps 1 and 2 into. 

Okay so let us say one rotation is by angle theta, so if you call r as rotation by an angle theta r

raise to i is basically equal to rotation by i times theta, so r raise to I and r raise to j if you

compose it that is equivalent to first rotating by j theta and then rotating by i theta that is

equal to j plus i theta, so rotation by j plus i theta and that is equal to ri plus j, so this is a

simple multiplication. 

Now these 2 have s coming in between the rotations that is flip are coming in between the

rotations, so s is basically a flip so if you look at 1, 2, 3 a flip basically about vertex 1 takes

this to the other side, so after the flip 2 will be here, 3 will be here and in place of 2 there will

be n and in place of 3 n minus 1 and so on. So in order to understand r raise to i times sr raise

to j we will first look at the simplest of these, we will look at the simplest of symmetries

involving as namely sr, so sr basically means we rotate by r and then do a flip. 

Okay, so let us draw this, so we had a rotation so 1, 2 and 3 if we do rotation, when we say sr

it means first apply r and then apply s, so that will take 1 to 2 and 2 to the position of 3 and

whatever was at n would come to the 1st position and then if we do an s that is flipping about

the starting position, so what we will get is n will remain wherever it is and 1 will go to the



other side and then there will be 2 1, 2 just above 1, so fixing 1 2 all the other positions gets

automatically fixed, okay. 

Now can we view this sr as some other expression, so you claim that sr is equal to r inverse s

that means first you flip and then you do a reverse rotate, okay so let us try and verify that is

the case, so if you look at 1, 2 the initial part of the polygon if we flip that means when we

apply an s we will get 1 at the same position and 2 basically goes to the other side and the

position of 2 will be taken by n.

So this is how the polygon will look after we perform an s and if we rotate this by r then the

one will go to the position of n but if we do a reverse rotate that is r inverse then what will

happen is there will be a clockwise rotation therefore n will come here 1 will come to this

position and 2 will go to this position, okay. 

So you can see that whatever we obtained by sr is same as what we get by r inverse s, so we

can claim that sr equal to r inverse s okay and this would also mean that sr raise to i is going

to be r minus i s. It can be seen by repeatedly applying say rule number 1 if you have sr

square that is going to be sr r which is equal to r inverse sr and again apply the same rule so

you will get r inverse time r inverse time s that is r raise to minus 2 s, okay. So basically what

it means is if we have an expression which involves just the r, r raise to I, r raise to j etc we

can just to addition and if you have an s somewhere those s can be propagated to one side. 

So send all s to the left side and we will get sr raise to minus i and so on, so once all the s’s

has been accumulated at one end we will have some expression of the form, s raise to k r

raise to j or j prime and s raise to k we can simplify it to either identity or s because s square

is doing 2 flips that is equal to doing nothing or the identity operation, so by using these rules

all  the  expression  that  could  come out  of  multiplying  r  and s  is  we have  the  complete

multiplication table for r and s.

So sr raise to i, sr raise to j in particular would be r minus i ss r raise to j that is going to be s

square as identity so minus i plus j, okay. All these additions you can think of as been carried

out in mod n, okay. 
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So what this means is, the entire dihedral group can be described as consisting of basically r

and s and their combinations, so we will say that rs is a generator for D 2n okay, with the

restriction that r raise to n is equal to identity, s square is equal to identity and rs is equal to s r

inverse and see that this is going to be a non-commutative group, so here if you look at the

group, the group is of order 2n, there are 2n elements and look if you look at the element r its

order, so order we are using in multiple ways.

When we say order of a group that means the total number of elements and when we say

order of a particular element, so for example the order of r is equal to n, the order of s is equal

to 2, so now that we have seen many examples of groups we will move on to learn more

about the abstract concept of group.
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We will introduce the notion of isomorphism of groups, so let me describe 4 different groups

and you can think whether these groups are same in certain sense. The first collection of

elements is subset of complex numbers namely plus or minus 1 and plus or minus I, okay so

these are the complex roots of unity, so or fourth roots of unity, plus or minus 1 and plus or

minus i, okay these are elements as it you can multiply that. 

So these 4 elements the complex multiplication is well-defined and you can combine them

and you can verify  that  these form a  group,  let  me call  this  as  G1,  okay. If  I  write  the

multiplication table for this that will look something like this, here one is the element which

serves as the identity 1, minus 1, i, minus i these are the 4 elements and one will multiply

leave the elements invariant minus 1 square is 1, i square is minus 1, minus i square is also

minus 1. 

And we can fill up this table, okay my second group here is elements consisting of 0, 1, 2, 3

and I am considering addition mod 4, so again the elements at 0, 1, 2, 3 the identity in this

case would be 0, 1 plus 1would be 2, 1 plus 2 would be 3, 1 plus 3 will be 4 which mod 4 is

0, so both these are groups with 4 elements. Another group is the familiar group that we have

introduced and the we have started with consisting of 4 elements e,  a, b and c and their

multiplication was given.

So we said e is the identity and 2 elements when they, I mean any element which multiplied

by itself gives the identity and two elements, two different elements when they are combined



they give the third element, so b times a is c, b times c is a, a times b is c, a times c is b, c and

a combines to give b, c and b combines to give a. 

The 4th group that we will consider is elements 1, 3, 7 and 9 and the operations that we are

considering here is multiplication mod 10. Okay so 1, 3, 7 and 9 are going to show as the

elements and 1 is going to play the role of identity 1, 3, 7, 9, 3 into 3 is 9, 3 into 7 is 21 mod

10 that is going to be 1, 3 into 9 is 27 that is going to be giving 7, 7 to 3 is 1, 7 to 7 is 49 that

is going to be 9 mod 10, 9 into 7 is 63 that is 3 mod 10, so we can fill up this table.

 Okay so these are all 4 elements groups but are they really different groups? Or some of

them just I mean instead of, see if here if I had instead of writing 0, 1, 2 and 3 if I had written

let us say, if I named them as, if I had written this entire thing in binary so 00, 01, 10, 11, 00,

01, 10, 11 and filled up this table they are exactly the same in a certain sense, it is just that the

names are different, so up in renaming these 2 groups are the same, here also although the

numbers are, mean whatever is used to write down those groups looks different or they are

just renaming of each other. 

So can we find the renaming of one of these groups and get the other groups okay, or is that

not possible, so we will argue that some of these are same up to renaming and certain others

are not. So these 3 groups G1, G2 and G3 are nothing but renaming off each other, whereas

(sorry) G1, G2 and G4 renaming is of each other whereas G3 is fundamentally different okay

and this is what we will say I mean when we are looking at group theory to states this fact we

will say that G1, G2 and G4 are isomorphic groups.

Whereas  G1  and  G3  are  non-isomorphic  and  therefore  G2,  G3,  G4  they  are  all  non-

isomorphic groups okay, so how do we see that they are isomorphic? We just have to find

renaming.  So to  show that  2  groups  are  isomorphic  conceptually  that  is  straightforward

because all you have to do is find a renaming, okay so some part of the renaming we already

have mean 0 acts as the identity, so here 0 should be mapped to 1,okay. 

So 0 will map to 1 and 1 we will map to i, 2 we will map to minus 1 and 3 we will map to

minus i. If you do this mapping, you can verify that this is an isomorphism from G to G1,

okay so G1 and G2 are isomorphic because if you map 0 to 1, 1 to I, 2 to minus 1 and 3 to

minus i that will basically make this particular group behave exactly like mod 4 okay and if

you want to convert G2 to G4, so 0 will be mapped to 1, 1 will be mapped to 3, 2 will be

mapped to 9 and 3 will be mapped to 7. 



More easier way of seeing this would be G2 can be viewed as 1, 1 plus 1, 1 plus 1 plus 1 and

1 plus 1 plus 1 plus 1 okay, so this element if we call it as a then G2 is equal to a, a square, a

cube, a raise to 4 and if you look at G1 and if we take the element I, the entire collection can

be seen as i, i square, i cube, i raise to 4 and if you look at G3 they are nothing but 3, 3

square, 3 cube and 3 raise to 4, 3 square is 9, 3 cube is 27, so 3, 9, 7 and 1 okay, so these are,

all these 3 are just another way of representing the cyclic group which contains exactly 4

elements. 

Now all that we showed is these 3 are same, how can we say that the 4 th, the group G3, here I

should have written G4, how do we argue that G3 is very different from G4? So in G3 there

is no element which generates the complete collection, it is not a cyclic group because you

take any element if you square it so alpha square is equal to identity for every element and

therefore it cannot be one of the other 3 groups.

Okay known renaming, if you look at the diagonal, diagonal contains only identity whereas in

all  the  other  cases  the  diagonal  contains  exactly  2  different  numbers,  so  these  are  non-

isomorphic groups. 
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Okay, so formally a group G is isomorphic to a group H if first there should exist a bijection

let us call it as f from G to H and further f of G1 G2, so G1 and G2 here are combined using

the binary operation in g this should be equal to f of G1 times f of G2.

So f of G1 this is an element of H, f of G2 is an element of H and these when they are

combined using the operation that makes H a group, the resultant is equal to f of G1 G2 and

this should be true for all G1 G2 belonging to G. If this is the case then we say that f is an

isomorphism between G and H and we can say G, if there is an isomorphism we can say that

the groups themselves are isomorphic, okay so we will stop this is the end of this lecture, will

continue on group theory in the coming lectures. 


