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Lecture 28 - Stirling Numbers, Bell Numbers

In today's lecture we will look at the problems involved in balls and bins. The basic question

that we are trying to study is, how to distribute n balls into k bins? And counting the number

of ways of doing this. Now stated in this format it is a bit under specified. So, we could say

things like the balls are distinguishable. The bins are distinguishable or the bins need to be

nonempty and you impose lot of conditions on how the distributions should be. And we will

look at many variants of that and that will give us different kind of problems.
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So, the first type of problem that we will discuss is counting the number of compositions. So

here what we will assume is that we have n balls which are indistinguishable or n identical

balls. And there are k bins. So these bins, you can think of them as numbered from 1 to n or 1

to k. And they are distinguishable. You can think of distributing identical toffees to children

being distinguishable. You can say that is a similar problem, ok.

So, how do we do this? So let us, there are two variants of these as well wherein the bins

could be empty and nonempty. So the first problem that we will address is what is known as

weak  compositions.  So  weak  composition  is  basically  a  split  of  n  identical  balls  into  k

distinguishable bins and the bins could have zero balls in that. So, basically we need to find

out numbers a 1 to a k such that a 1 plus a 2 plus all the way up to a k is equal to n, they add

up to n. And each a i is greater than or equal to zero. So the weak comes from the fact that

some of these a i's could actually be zero, ok.

And if  we are talking  about  compositions,  what  we mean is  we still  want  k  numbers  k

positive integers such that they add up to n and further each a i is greater than 0 or we can say

is greater than or equal to 1. I mean every bin should be nonempty. There should not be any

empty bin. And we need to look at the number of ways of counting this, ok.

So, let us first look at the problem of weak compositions. So, we look at this problem in

following way: We have all these balls, let us say n of them. And in order to split them into k

bins we basically draw partitioning walls in between them. Ok. So, if we have to split it into k

bins k minus 1 partitioning walls are required, ok. And once the partitioning walls are put in

place, whatever is between the start and the first partitioning block can be thought of as a 1.

And between the first and second can be thought of as a 2. The last can be seen as a k.

Between the k minus 1 towards the end can be seen as a k.

And you can see that this is a one to one correspondence. If you draw these balls in this

particular way, any arrangement any distribution of and balls into k bins can be viewed in this

particular format, ok. Now so as an example we say that there are 10 balls. And if we wanted

to split it into three blocks, all that we have to do is two partitioning walls, ok. And this gives

one  particular  split,  ok.  So,  basically  we  want  to  count  the  number  of  ways  of  placing

partitioning walls when you have an arrangement of balls along a straight line.

We could also think about the same thing in a slightly different manner. So note that after this

partitioning  walls  have  been placed,  there  are  precisely  n plus  k minus  1  objects  in  the



arrangement. So this n corresponds to balls plus k minus 1 corresponding to the partitioning

walls. So there are n plus k minus 1 objects placed along a line. Okay. So we will exploit that

observation to count the number of ways of distributing balls into bins. So let us say we have

n plus k minus 1 blanks. And out of these blanks some blanks would be selected as positions

where you can put balls and the others will be where you can place the partitioning walls, ok.

So, if we were just placing the partitioning walls we just need to identify k minus 1 positions

to place walls or equivalently n positions to place balls, so they are identical in some sense. I

mean they count or the number of ways of doing this are exactly the same. So the number of

ways of choosing k minus 1 positions out of n minus k plus 1 position that count is the

number of ways for doing this is equal to n plus k minus 1 positions are there, out of which

you have to choose k minus 1 positions.

So, if we choose one set of positions then you have the remaining positions as positions of

balls. So the total number of ways of doing this would be n plus k minus 1. Choose k and this

is as you can see it will be also same as n plus k minus 1. Choose n, these quantities are

equal. So the number of weak compositions of n into k parts is n plus k minus 1. Choose n

minus 1. So we can write this as a theorem.
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Number of weak compositions of n into k parts is n plus k minus 1, choose k minus 1. This is

also equal to n plus k minus 1, choose n. So now we are in a position to find or count the

number of compositions. So when we were counting compositions, what we were interested

in is a 1 plus a 2 plus a k should be equal to n. And each a i should be greater than or equal to

1. We define b i to be equal to a i minus 1. Then summation b i should be equal to n minus k.



Ok. So, we can look at a different problem. Instead of trying to count the number of ways of

obtaining a 1 to a k such that they add up to n and each a i greater than or equal to 1, we

could look at count the number of weak compositions of n minus k into k parts, ok.

So, look at a weak composition of n minus k into k parts and for each of them, for each of the

part of the composition if you add 1 what you will get as a composition. Ok. And if you have

a composition of n, you can you can convert that into a weak composition of n minus k, so

their  numbers  are  equal.  So  and this  counting  that  is  counting  the  weak  composition  is

something that we have already done and this is equal to n minus k that is the n minus k plays

the role of n now, plus k minus 1, choose k minus 1 and that is equal to n minus 1, choose k

minus 1.  So this  is  the number of compositions  of n.  So we can write  it  as a corollary.

Number of compositions of n into k parts is equal to n minus 1, choose k minus 1.

This would also mean that the total number of compositions if you do not say how many

parts you have to split them into, you just split it into arbitrary number of parts. Now when

we are splitting it an arbitrary number of parts we cannot really count the weak compositions

because if each part will allow it to be empty you can have say one empty part, two empty but

there are infinitely many ways of doing that. So the total  number of compositions makes

sense  whereas  the  total  number  of  weak  compositions  does  not  really  yield  anything

meaningful.

So, if you look at the total number of compositions the number of compositions of n that is, is

equal to summation n minus 1, choose k minus 1 where k varies the number of parts at least

1, 1 to n and that is going to be equal to 2 raised to n minus 1 that is just the binomial identity,

ok. So, now that we have done compositions we will move onto slightly different problem,

ok.
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So, this is known as set partitions. So here, so in the earlier case what we had was the balls

were indistinguishable  whereas  the bins  were  distinguishable,  means  you are distributing

identical objects to k people. Here the balls are distinguishable in the sense as red balls, green

ball. They are different colours, ok. But we are putting them in let us say cartons which are

indistinguishable from each other, ok. So, there is no first box, second box and third box, all

the boxes look identical. Ok. After you have, so suppose you have two boxes. Ok. And let us

say we had put three items here and four items here.

Now it is crucial as to which three items you had put. Suppose you had 7 balls, we could

choose  3  out  of  7  and  put  that  into  here.  Each  of  those  choices  would  give  a  distinct

arrangement. But whether these three that you have chosen goes in the first box or the second

box is not, it does not really matter because they look identical.  So you can think of them as

identical boxes and they are shuffled around after the balls have been distributed.

So how many ways are there of doing this? So again we will have n balls and k bins. So, the

problem we are looking this is: distribute n distinguishable balls, so n distinguishable balls

into k identical bins, ok. Or partition n objects into k bins. So you can think of it as let us say

there is a set of objects.

We can think of them as set of objects because each object is distinguishable from the other.

Okay. And then we need to split it into some number of say partitions. So this will be a split

into 1, 2, 3, 4 parts, six objects are being split into four parts. So we will define the count or

the number of ways of doing this as S n, k. So by S n, k we mean what we mean is the



number of ways of partitioning n into k non, so we will write square bracket n to denote the

set of numbers from 1 to n. So we can either think of them as distinguishable balls or when

we write square bracket n what we mean as a set of numbers from 1 to n. So, that set is being

partitioned into k nonempty subsets.

So, let us see some example. If we look at S n, 1, that is a number of ways of partitioning n

into one subset. So that is precisely one way of doing it. If we look at S n, n that means the

number you have n objects and split them into n nonempty bins and there is only one way of

doing it. Whereas if you look at S n, n minus 1, this is little more interesting. So here you

have n objects and you need to split it into n minus 1 boxes, nonempty boxes. So we can

think of it as all except one box would contain single element and there will be precisely one

box which contains two elements. Okay, so which two elements goes into that box containing

two elements, that can be decided in and chose two ways. So that is the total number of ways

as well. So this is equal to n choose 2.

Whereas if you look at S n, 2 this is going to be something different, the total number of ways

of splitting n objects into two parts, ok.

So, you can think of one part as a set as a subset and the other as a complement. So there are

two raised to n ways of choosing a subset. But this subset had to be nonempty. So we have to

remove 2 because if you take the full subset or the empty subset, then they would result in

one of the parts being empty. So that has to be avoided. And does not matter whether you take

the subset or the complement, so the first part is that is if the set that you have chosen is A

and the complement is A complement or of the set that you have chosen A complement and

the complement is A, both are counted as the same. So, there is by 2. So this will be 2 raised

to n minus 1 minus 1, Ok.

What is a general formula for S n, k? We could say that S n, k is going to be zero if k is

greater than n. So the only interesting case is where k is less than n and by convention we

could choose S 0, 0 as 1. This will just make our formulas look better later on. So, this means

if you have zero objects and you want to split it into zero parts, by convention we are saying

that there is only one way of doing it. So, we need to find a formula for S n, k. So, S n, k is

also known as the Stirling number of the second kind. We need to find a formula for S n, k.
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So the following theorem gives a recursive formula to obtain S n, k. So, S n, k is equal to S n

minus 1, k minus 1 plus k into S n minus 1, k, Ok. We need to prove that this theorem is

correct.  So  like  many  other  problems  in  Combinatorics  when  you  have,  so  there  is  a

combinatorial identity. When you have a combinatorial identity, what you can do is try to find

sets whose cardinality is same, ok?

So, if you can find a set and find the number of and find two different ways of counting those

sets and show that these two distinct two different ways essentially counts the same object.

Ok. So, let us try to do that. So if we look at S n, k, S n, k is basically the number of ways of

partitioning n into k parts. Now when you are splitting n into k parts clearly the number n has

to go into one of the parts, ok. So, based on that we are going to count. So this is a set of

numbers 1 to  n.

Now if you look at the number n, this might either be in a part of its own. Or it might be with

some other elements. These are the only two choices. So, there can n be in the partition. First

alone, second in company, ok. If so if you look at the total number of ways of partitioning

says that n is alone and the number of ways of partitioning such that n is in company and you

add them up, we will get the total account, ok. If it were alone then it means the remaining

and minus 1 objects have to be split into k minus 1 parts. So this alone corresponds to S n

minus 1, k minus 1. So, in company should basically be k times S n minus 1, k.

Let us see why that is the case. So, we know that n is in company. So let us forget about n and

the remaining elements and if you just take n out of the partition, what you can see is that the



remaining n minus 1 elements are being sent into k distinct parts. They are sent into k parts

and into any of these parts if you put k if you put n, you will get a different partition. Ok. So,

in company the total number of ways of doing it is split n minus 1 into k parts and choose a

part as n's company. So, splitting can be done in S and minus 1, k ways and the choosing of

n’s company can be done in k different ways because there are k parts.

So the product is the total number of ways of doing it and therefore the total number of ways

of partitioning and into k parts is the sum of these two ways and that, so that proves the

theorem. We will see some interesting consequences of this identity.
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So, S n, k is equal to S n minus 1, choose k minus 1 plus k into S n minus 1, k. So, let us look

at the number of surjective functions. Ok. So, we will use this as applications, surjective on



two functions. So, we are interested in functions from an n element set to a k element set, ok

such that it is an onto function. Every element of the image every element of the codomain is

part  of the image.  So how many ways are there of doing it? So if you look at  any such

function we can think of it in the following way. So look at any element. That has a pre-

image. So let us say all these map to this particular element and maybe these map to some

other element and so on.

So, if you look at the pre-images they basically split the domain into different parts. So, there

you obtain  a  partition  of  n,  ok.  So,  if  you want  to  count  the  total  number  of  surjective

function you can basically count the partitions. So you take one particular partition it can be

converted into a function,  of course you have to decide this particular part is assigned to

which particular number. If you look at any particular surjective function it basically induces

a partition on the domain. Ok.

So, the way of the one way of constructing surjective functions would be first choose the

partition of the domain and then for each partition assign a particular number from the range.

So split or partition the domain into k on empty parts. For each set assign a distinct element

of  k.  You  cannot  assign  the  same  element  because  that  would  not  make  the  function

surjective, ok.

So, the number of ways of splitting the domain is basically S n, k. And if you have to assign

distinct numbers from 1 to k to these parts, that is going to be k factorial ways. So the total

number of surjective functions from n to k is k factorial times S n, k. And as a corollary of

this we can say. We can prove the following polynomial identity. So x raised to n is equal to

summation S n, k. x k where k is the following factorial. So that is x into x minus 1 into x

minus k plus 1. Ok.

Now note  that  this  is  a  polynomial  identity.  This  is  not  just  for  integers  or  just  natural

numbers, ok. So, this would also say that pi raised to n is equal to summation is over, k equals

0 to n. This would also say that pi raised to n is summation k equals 0 to n S n, k into Pi into

Pi minus 1 into pi minus k plus 1, ok. So, this is a fairly complicated expression. But this is

true for, what this means is that this Polynomial identity it is true for all real numbers. Ok. So,

from basic so in the sense it is an interesting formula. What we want to prove is something, it

is from the Combinatorics of finite objects, we will show something, is true for say much

larger class of objects. Ok.



The idea is very simple. If you want to show that two polynomials are equal the only thing

that you have to show is they are equal at some large number of points, ok. So, here you have

a polynomial of degree n, if so the LHS is a polynomial of degree n. And if you can show that

the RHS which is also a polynomial of degree n if you can show that they agree at n distinct

positions then they must be same for all different positions, ok. So, how do we show that they

are the same at  n  different  positions?  Ok. We will  show that  these equations  hold at  all

positive integer value. Once it is true at all positive integer value it must be true for all real

numbers.

So, let us say x we will, we can now assume that x is a positive integer and n is a positive

integer, so then we can use our combinatorial insights into proving this. x raised to n is just

nothing but functions from n to x, choose numbers from 1 to n and for each of them choose

an image, that would be a particular function. And that in that way you can find all functions.

So the total number of ways of doing that is x into x into x n times, so that is x raised to n. So

this is the LHS, number of functions from n to x. Now we want to find these we want to

count this set in a different way. Ok. So, if you look at the set of all functions, we could look

at functions whose image is of size 0, 1, 2 and so on. 0 will of course be 0, there are no

functions of size 0. I mean there no functions whose image is a set of size 0, ok.

(Refer Slide Time: 30:36)



So, if you look at functions from x from n to x whose image is of size is i, how do we count

that? So, the first step would be count the number of functions from n to x where image is a

set of size i. So basically that quantity would be the ith term in the RHS. So, this we will

show as the ith term in the RHS. So we want to count the number of functions from n to x

whose image is  a  set  of  size i,  ok.  So,  x  is  this  particular  set.  And we were  looking at

functions which map into this particular set.

Now if the image is of size i, then so that is a subset of size i. That can be chosen in x choose

i ways. So number of ways of choosing the image is equal to x choose i. Once that has been

chosen we had the set n and we wanted to map it to x. We first restricted that the subset that it

maps into a set of size i, that could have been chosen next choose i ways, ok. And then we

need to find a surjective function from this particular set n to the subset that we have chosen.

So the total number of ways of doing that would be S n, i into i factorial. Ok. Because that is

the total number of ways of, that is the total number of surjective functions, ok. And into the

image could have been chosen in x choose i ways. Ok. So, this is equal to S n, i multiplied by

falling factorial x. So when so this is the ith term in the summation. So total number of ways,

so what we did is instead of looking at all possible functions from let  us say n to x, we

summed over the size of the images. So if the image is of size 1, then how many functions are

there? The image is of size 2 then how many functions are there? So sum over sizes of image.

So, the size of the image can vary from 1 to n, ok. Or we may assume that x is great x is less

than n, so the size of the image varies from 0 to size of x, ok. Once we have fixed the size of

the image, we could choose the image in x choose i ways. The image set could be chosen in x



choose  i  ways  and then  we just  need to  look at  the  subjective  functions  from n  to  that

particular set and the surjective function is equal to S n choose i into i factorial into x i. And

that is equal to S n, i falling factorial i and this summed up for all values of, i is basically

equal to the total number of function and that is equal to x raised to i. So, that concludes the

proof of this particular identity.
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The next object that we will see is the total number of partitions. So, when we talked about S

n, k, S n, k was nothing but the number of ways of splitting n into k parts. If we sum this up

over all parts, all values of k, so k going from say 0 to and, that is the total number of ways of

partitioning and this we will denote it by a special number called as B n or the Bell number.

So,  the  next  thing  that  we have on agenda is  to  show that  the Bell  numbers  satisfy  the

following identity: so B n plus 1 is nothing but summation over I going from 0 to n, n choose

i, B i. Why is this? So, LHS is the total number of ways of partitioning. So, we need to look

at the number of ways of partitioning n plus 1 and show that the RHS also counts exactly

that, ok. Again, we can look at the element n plus 1 and there are many possibilities, the

element n plus1 could be in some block with many other elements, ok.

So, let us let us say that so if we were partitioning n plus 1 in some particular block and the

others are in some other block. So the possibilities are that the complement is a set of size 1

to  n,  ok.  So,  what  we are  looking at  is  the  block  in  which  n  plus  1  is  present  and its

complement block. So in order to prove this theorem, we look at the element n plus 1. In any

partition n plus 1 should be in one of the parts and the remaining elements if we consider they

can be of size 1 to n, ok. So, this is what we are saying. We have split n plus 1 into some

number of parts. And n plus1 is in one of those parts.

If you look at all the other elements together that is going to be a set of size k. So k is the size

of the complement of the part containing n plus 1. And this k can vary from says 0 because

everything could be n plus 1 could be in a block which contains everything else or it could go

all the way up to size n, it cannot be n plus 1 because one element is taken off. Namely n plus



1, ok. So, and these other elements now has to be split into some number of parts. They have

to be partitioned, that is all. So, there are how many ways of doing this?

So if the complement is of size i, so let us say if the complement is of size i, the total number

of ways of splitting that is going to be B i in whatever was the complement if it is if its size

was i then the number of ways of splitting it is B i. But these i elements could have been

selected into n choose i ways, ok, n plus 1 surely is not there. The remaining n elements out

of them i had to be selected. So B i into n choose i is the total number of ways of splitting the

n plus1 elements into different parts provided n plus 1 is in a different block, ok. And if you

sum this over all possible values of i going from 0 to n, we will get the total number of ways

of splitting. So that basically proves this combinatorial identity. Let us stop here.


