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Welcome to  the NPTEL MOOC on Discrete  Mathematics.  This  is  the second lecture  on

number theory.
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When the GCD of two numbers, two integers a and b is 1, we say that a and b are co-prime 

or that they are relatively prime.
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Let us see a theorem which we call theorem 2 1. For integers a, b and x, GCD of a and b is

the same as the GCD of a and b plus a x, that is an integer multiple of a added to b. Along

with a will have the same GCD as a and b.

(Refer Slide Time: 01:35) 

The proof goes like this: GCD of a and b plus ax according to what we saw in the last class, is

the least positive member of set S, where the set S is the set of all linear combinations of a

and b plus ax using integer coefficients. So GCD of a and b plus ax is the least positive

member of this set. But then this set is identical to that is this definition can be re-written as a

into y plus x z plus b z where y and z are in the set of integers.

This can be written as that is because given u and z. Any number a u plus b z can be written

as a into y plus x z plus b z for integers y and z. That is for every such u we can find such a y.

u will be y plus x z, therefore y will be u minus x z. But the least positive member of this set

in the final form we know is nothing but GCD of a and b.



(Refer Slide Time: 03:38)

Therefore GCD of a and b plus ax is nothing but GCD of a, b. Hence, the theorem.

(Refer Slide Time: 03:50)

Another theorem, which we number 2 2, states this, if a and c are co-prime or relatively prime

which means their GCD is 1 or they do not have a common factor and it divides bc, then a

divides b.
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To prove this, we consider GCD of ab and bc. This we know from the theorem proved in the

last class as b times GCD of a and c. But a and c are co-prime therefore GCD of a and c is 1,

therefore this is b. So GCD of a b and b c is b, which means all common divisors of ab and bc

divide b. Now a divides bc and a divides ab.  Therefore, a is a common divisor of bc and ab. a

divides bc is given, ab is a product of a and b therefore a divides ab. Therefore we know that

a is a common divisor of bc and ab which means a divides b which is indeed the conclusion

that we have been seeking. Hence, the theorem.

(Refer Slide Time: 05:54)

The  next  theorem which  we number  theorem 2  3  is  the  one  which  talks  about  Euclid's

Algorithm. What this theorem says is this: for r 0 and r 1 greater than 0, both of which are

integers if we apply the division algorithm repeatedly, if you apply the division algorithm

repeatedly as follows:
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The division algorithm is applied like this. We said variable i to 1 and then we have a do loop

in which what we do is  this.  We form ordered pair  r  i  plus 1,  q i  plus 1 using division

algorithm applied on r i minus 1 and r i and then we increment i. We do this while r i is not

equal to 0. So we apply division algorithm in this sense.

(Refer Slide Time: 07:33)

First let  me complete  the statement  of the theorem, after that we will  revisit  the division

algorithm. Then what the theorem says is this GCD of r not and r 1 is r i minus 1 which is the

last nonzero remainder of the process and in particular integers x not and y not such that the

GCD that we find namely r i minus 1 is a linear combination of r not and r 1 with x not and y

not as the coefficients can be obtained by writing each r j where j varies from 2 to i minus 1

as a linear combination of r 0 and r 1.
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Now let us take a look at the division algorithm. The algorithm begins with r 0 and r 1 and

then we find r 2 in the sense, we write r 0 as q 1 r 1 plus r 2, q 2 r 1 plus r 2. That is we find a

unique ordered pair r 2 q 2 so that when the division algorithm is applied on r 0 and r 1, this

ordered pair is what we get. Then r 0 would be expressible in this form. So we have now r 2.

So r 2 is the remainder of the division of r not with r 1.

So now we have r 1 and r 2. Then what we do is to recurse with r 1 and r 2. The division

algorithm is next invoked on r 1 and r 2. Then we would get an ordered pair q 3 and r 3.  r 3

would be the new remainder then we would recurse with r 2 and r 3. So when you continue

like this, the remainders would keep decreasing in value as we go along in absolute value.

Finally when we come to a stage where r i equal to 0 we come out of the loop. At this point

the last non-zero remainder that we had, namely r i minus 1, that would be the GCD of the

two given numbers r not and r 1.



(Refer Slide Time: 10:51)

Let us work out an example first and then we will prove the theorem. In the example, we took

a, consider two numbers 512 and 432. Let us say we want to find the GCD of 512 and 432.

What we do is this, we find the remainder of 512 on division with 432. Remainder is 80.

Then we discard the largest number which is 512 and then recurse with 432 and 80. So now

we want to find GCD of 432 and 80. That is to find the GCD of 512 and 432. It is enough to

find the GCD of 432 and 80. 432 mod 80 is 32.

Therefore, it is enough to find the GCD of 80 and 32. 80 mod 32 is 16, 64 plus 16 is 80. To

find the GCD of 512 and 432, it is enough to find the remainder of the division of 512 with

432 which is 80. So now we should recurse with the smaller of the two original numbers

namely 432 and the new remainder which is 80. So 512, the ordered pair 512, 432 reduces to

the ordered pair 432, 80 which then reduces to the ordered pair 80, 32 which then reduces to



32, 16 and which reduces to 16 and 0. The GCD of 16 and 0 is 16 and this would be the GCD

of the original pair of numbers.
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The theorem also says how the GCD 16 can be expressed as a linear combination of 512 and

432 with integer coefficients. If you go through the steps, you find that in the first step, we

take the modulus of the division of 512 with 432. Therefore we have 512 is 1 into 432 plus 80

or 80 is 1 into 512 minus 1 into 432. Let us call this equation 1.

(Refer Slide Time: 13:59)

And then in the next step we have a division of 432 with 80. We find that 432 is 5 into 80

plus 32 which means 32 is 1 into 432 minus 5 into 80. Let us call this equation 2. The next

step is on the ordered pair 80 and 32. 80 is 2 into 32 plus 16. Or in other words 16 is 1 into 80

minus 2 into 32. Let us say this is equation 3. So 16 can be expressed as a linear combination



of 80 and 32 with coefficients 1 and minus 2 respectively. But, then 32 can be expressed as a

linear combination of 432 and 80 with 1 and minus 5 as the coefficients.

(Refer Slide Time: 15:13)

So 16 is 1 into 80 minus 2 into 32. But 32 in turn we find this expressible in this form which

upon simplification gives us 11 into 80, this is 1 into 80 and then minus 2 into minus 5 is 10.

So 10 plus 1, 11 minus 2 into 432. So 16 is expressible as a linear combination of 80 and 432

with 11 and minus 2 as the respective coefficients. And then 80 we know is 1 into 512 minus

1 into 432 from the first equation. So substituting that here we find that 16 is 11 into 512

minus 13 into 432.

So, now 16 has been expressed as a linear combination of 512 and 432 with 11 and minus 13

as the coefficients. So this is what the theorem talks about.



(Refer Slide Time: 16:42)

To prove the theorem, what we do is this: we know that by theorem 2 1, GCD of r 0 r 1 is the

same as GCD of r 1 and r not minus r 1 q 2.We use integer minus q 2 here which is GCD of r

1 and r 2, that is because the second term is nothing but r 2. r not minus r 1 q 2 is the same as

r 2. So GCD of r not r 1 is indeed GCD of r 1 r 2. So if you continue like this, you can show

that this is the same as GCD of r 2 r 3 which is the same as GCD of r 3, r 4 and so on, until

we come to GCD of r i minus 1 r 0 r i where r i is 0.

But GCD of r i minus 1 and 0 for nonzero r i minus 1 is nothing but r i minus 1. So GCD of r

not r 1 is r i minus 1 as the theorem claims.

(Refer Slide Time: 18:14)

Now do as an exercise. The rest of the proof that is by induction show that r j is a linear

combination of r not ands r 1 for all j varying from 2 to i minus 1. So in particular r i minus 1



which is  the result  of the algorithm,  which is  the GCD of r  not and r  1 is  also a linear

combination of r not and r 1. So I leave this to you as an exercise. So we have been talking

about common divisors and greatest common divisors.

(Refer Slide Time: 19:04)

Now let us talk about common multiples. For integers a and b, we know that a divides ab and

b divides ab. So ab is a multiple of a and ab is a multiple of b which means ab is a common

multiple of a and b. So a and b do have common multiples. The least positive of the common

multiples of a and b is called the least common multiple or LCM of a and b. So for any pair

of integers a and b, we can define the least common multiple of a and b.

(Refer Slide Time: 20:25)

So we have a theorem for this notion, which we number 2 4. Let small l denote LCM of a, b

for integers a and b. If c is a common multiple of a and b, then l divides c. Also 0 plus or



minus l, plus or minus 2 l, plus or minus 3 l, et cetera. That is the integer multiples of l are all

the common multiples of a and b. So these are the only common multiples of a and b and all

of these are common multiples of a and b.

So what we assert here is this, if l is the LCM of a and b and c is a common multiple of a and

b then l divides c. In other words the LCM divides every other common multiple. So common

multiples are all multiples of LCM.

(Refer Slide Time: 21:45)

So we prove as  follows:  Let  c  be a  common multiple  of  a  and b,  an  arbitrary  common

multiple of a and b, then by the division algorithm, we know that there is a unique pair r, q

such that c equals q l plus r for 0 less than or equal to r less than l. Suppose, this r is nonzero.

Then a divides l, a divides c, a divides l because l is LCM of a and b. So l in particular is a

common multiple of a and b. So l divides l, l divides c because by definition c is a common

multiple of a and b.

Similarly, b divides l and b divides c. If a divides l and a divides c then a must divide r as well

because then r is c minus q l, then a divides r and similarly b divides r. Or in other words r is

a common multiple of both a and b. r is between 0 and l minus 1 inclusive of both the limits.

Therefore, r is less than l or in other words, l is not the LCM of a and b as we assumed. So

this is a contradiction. We started with the assumption that l is the LCM of a and b. So we get

a contradiction. Therefore, it must be that the assumption we made namely that r is not equal

to 0 must be false.
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So we conclude that r equal to 0. But c is q l plus r which is now q l since r equal to 0. In

other words, l divides c. So c is a multiple of the LCM. So every common multiple of a and b

is among these as the theorem claims.

(Refer Slide Time: 24:47)

Another theorem about LCM: For every positive integer d LCM of bd, cd is LCM of b and c

multiplied by d.
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So to prove this, let us define small l as the LCM of b and c and capital l as the LCM of bd

and cd. So we have these two numbers small l and capital l. Then bd divides ld and cd divides

ld. l is LCM of b and c. So in particular l is a multiple of b. Therefore ld is a multiple of bd.

Similarly ld is multiple of cd as well. So ld is a common multiple of bd and ld, bd and cd. So,

L divides ld because we have just shown that the LCM divides every common multiple. So

capital L is the LCM of bd and cd. Therefore capital L divides small ld.
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Also b divides the number L by d. And c divides L by d. That is because the capital L is a

multiple of bd and capital L is a multiple of cd. Therefore b divides the number L by d, L by d

is an integer. So L by d is a common multiple of b and c. In other words the LCM of b and c

namely small l divides L by d which implies that small ld divides capital L.



So  we  have  just  shown  that  capital  L  divides  small  ld  and  small  ld  divides  capital  L.

Therefore, it must be that capital L is the same as small ld which is precisely what we want to

show. We wanted to claim that LCM of bd and cd which is capital L is the same as d times

LCM of b and c which is d times small l. Hence the theorem.

(Refer Slide Time: 27:58)

Another theorem dealing with GCD and LCM, which we name theorem 2 6, this asserts that,

for any pair of integers a and b, the GCD of a and b multiplied by the LCM of a and b is the

absolute value of ab, the product of a and b. To prove this, first we assume that both a and b

are positive. So first, let us assume a and b are co-prime. We consider the case of a and b

being co-prime first.

Then GCD of a and b must be 1. They are relatively prime so they do not have a common

factor other than 1. Let the LCM of a and b be d times a for some d, some integer d. Then b

divides da, da is the least common multiple of a and b. So in particular da is multiple of b or

in other words b divides da. But then b does not divide a; b and a are co-prime. So GCD of b

and a is 1, therefore b does not divide a.

This therefore implies that b divides d. So ba is less than or equal to da. But ba is greater than

0, that is because both a and b are positive. So b is greater than 0. This is a common multiple

of a and b, b is greater than 0 and is also a common multiple of a and b. So ba is greater than

or equal to da. da is the LCM of a and b as we assumed. Therefore ba must be greater than or

equal to da. So we have these two inequalities here, ba is less than or equal to da. Similarly ba

is greater than or equal to da.
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Combining these two we have da equal to ba which means the LCM of a and b is a into b,

which is the same as the magnitude of a, b since a and b are both positive. So this is the case

where a and b are co-prime.
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So now let us assume that a and b are not co-prime which means they do have a common

divisor  which  is  greater  than  1.  Let,  g  be  the  GCD of  a  and b.  So g is  greater  than  1.

Therefore, from the theorem that we saw in the last class, we have the GCD of a by g and the

GCD of b by g is 1. But we know that the GCD of a by g, b by g multiplied by the LCM of a

by g, b by g is a by g into b by g. Multiplying both sides by g squared we can write the

equation in this manner, g into GCD of a by g, b by g multiplied by g into LCM of a by g, b

by g is a into b. But this is nothing but GCD of a, b and this is nothing but LCM of a, b.



Therefore, the product of the two GCD of a, b multiplied by LCM of a, b is a into b. Once

again, we assume that a and b are positive, therefore this is the same as the magnitude of ab.
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So the only remaining case is when a or b is negative. When one of a or b is negative, then

GCD of a, b is GCD of mod a mod b. And LCM of a, b is LCM of mod a mod b. Now mod a

and mod b are both positive integers. Therefore the product of GCD of mod a mod b and

LCM of mod a mod b would be mod of a into mod of b, which is the same as the magnitude

of ab.

Now the left hand side here is GCD of a, b multiplied by LCM of a, b. GCD and LCM of any

pair of integers are positive. Therefore the left hand side is GCD of a, b multiplied by LCM

of a, b and the right hand side is mod ab, exactly what we wanted to prove. So that is it from

this lecture. Hope to see you in the next. Thank you.


