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Welcome to the NPTEL MOOC on discrete mathematics.  This is the first lecture on number

theory. In number theory we study the theory on integers. Integers along with the two operators

multiplication and addition and the two constant 0 and  1one you would see in the module on

algebraic structures that form what is called an integral domain? So number theory is the study of

this integral domain.
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So in number theory, we deal with a set of integers and operators multiplication in addition along

with 0 and 1one together this form an integral domain.
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For two integers a and b where is a not equal to 0. We say that a divides b, if there exists an

integer x, so that b equals ax, that is a board multiplying a with some integer x, we would get b

that is when we said that a divides band this is denoted in this fashionslash using a vertical bar.

This notation asserts that a divides b. The negation of this, that is the negation of a divides b this

often written like this across the vertical bar to indicate that a does not divide b.
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So let us see some results related to division if a divides b then for every c which is an integer it

is the case that a divides bc. See Tthis is easy to show if a divides b then b equal to ax for some

integer  x then  for  any c  we have  b equal  to  ax.  Therefore  bc  equal  to  ax into  c  which by

associativity of multiplication can be written as xc times a this implies that a divides bc. So that

was easy to show.
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Another result is tussle does this if a divides band b divides c, then a divides c. In other words,

the divides relation is transitive. This is also easy to show, a divides b implies that for some

integer x, b equal to ax. Similarly, b divides c implies that for some integer y, c equal to by,

therefore c can be written as the product of xy and a which means there is an integer so that a

into that integer is c. So that implies that a divides c. 
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The third result is this if a divides band a divides c then for any p, q be that are integers, a divides

bp plus cq. That is if a divides band a divides  c, then a will be divide any linear combination of

band c, where the linear combination has integer coefficients p.  p and q are the coefficients of

the linear combination,  these are integers.  So any such linear combination of band c will be

divided by a.
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How do we show this, what i's given as this a divides band a divides c. If this is the case, then by

the definition we know that there are integers x and y. So that b equal to ax and c equal to ay. B is

a multiple of a and c is also a multiple of a. In that case for any xy we can say for every p,q

which are also integers bp plus cq this a into px plus yq. 

For any pair of integers p and q we can write bp plus q as a into px plus ayq  because b is ax and

c is ay which implies that for all integers p and q their exist x and y such that bp plus cq equals a

into xb plus yq. That i's because this statement is a weakest treatment in comparison to the one

above or in other words for every pair of integers p and q, bp plus cq is az for some integer set.

 In other words for all p,q which are integers the bp plus cq is a multiple of a or a divides b plus

cq and that is precisely what we wanted to show. For any pair of integers p and q the linear

combination of b and c is a multiple of a. 
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Our fourth statement is this if a divides b and b divides a then a equals plus or minus b. If a

divides b, then a into x is equal to b which is an integer and if b divides a then by is a for some

integer y then a xy is by which is a, where both x and y are integers. So there exist integers x and

y so that a xy equal to a, or in other words xy equals one.

 If for integers x and y, x into y happens to be 1 then we have only two possibilities either x equal

to 1 and y equal to 1 or x equal to minus 1 and y equal to minus 1. In the first case we have a



equal to b in the second case we have a equal to minus b. So combining these two we can assert

that is a plus or minus b.
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If a divides b for positive a and b then a less than or equal to b prove this yourself.
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And another property of the divides relation is this if an integer x that is non 0 is given and a

divides b then xa divides xb. This also you can try out, so those were some results about their

divisibility relation. 
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Now let us see what is called the division algorithm. At the heart of this algorithm we have this

theorem. For any two integers a and b, where a is greater than 0, b need not be greater than 0

there exist unique integers given r such that b is qa plus r, where 0 is less than or equal to r which

is less than a. So when you find such a unique ordered pair q,r  q is called the quotient and r is

called the remainder.
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So how do we prove that there exits such a unique pair qr? That is what we want. We consider

the real line on this real line consider point b. b is an integer it may be positive or negative and

we have a which is greater than 0. From b let us start marking points that are at distance a. So we

get an arithmetic progression b plus a is the next point, b plus 2a is the one after that,  b plus 3a is

one after that and so on.

That is going to   Let us go into  the right side. If you go to the left side we have b minus a, b

minus 2a, b minus 3a and so on. So starting from b we are going to the right jumping at a

distance of a every time. Similarly, we can also move to the left jumping at a distance of a every

time. Now on this real line 0 is somewhere let us say this is where 0 is. 

In that case a will be here at a distance of  a from 0 to the right. So let us consider this interval,

the interval from 0 to a. You start from b and start jumping at a distance of a either to left or to

the right. In one of the directions you would jump into this interval exactly once. That is there

will be exactly one point falling in this interval which is within this arithmetic progression. This

interval has exactly one point of the, in particular what we need to know is that there is one

point.
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Suppose that one point corresponds to q,r, ordered pair q,r corresponds to the one point that we

find. Then at this point we have b minus qa equal to r or b equals qa plus r and here 0 less than or

equal to r less than a. Now we have to argue that this ordered pair is unique.
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Suppose otherwise. Suppose q prime r prime is another such ordered pair. clClearly r prime is not

equal to r because otherwise q prime is the same as q and therefore this ordered pair would not



be distinct from the earlier one. So r prime is not equal to r and r prime is b minus q prime a that

is because q prime r prime is an ordered pair which satisfies our requirement. 

So r prime is a non negativenon-negative member of the a prime that is because we assume that 0

less than or equal to r prime. q prime r prime is another ordered pair where r  prime is greater

than or equal to 0.
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But then r is the least non-negative member of the a prime. So r prime is greater than or equal to

r plus a. But what is r plus a this is b minus qa plus a. But this is then greater than or equal to a.

And therefore our prime will not qualify, because we want like q prime r prime such that b is q

prime a plus r  prime and 0 less than or equal  to  r  prime less than a.  This  is  violated here.

Therefore, there cannot be another ordered pair q prime, r prime.
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So q,r  is unique hence our claim. If a does not divide b then 0 less than r less than a. In that case

none of the points in the arithmetic progression will be devisorices of a. Therefore, r will be

strictly greater than 0.
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Now it is easy to show this theorem. For any two integers a and b where is not equal to 0, there

exist unique integers q and r such that b is qa plus r and 0 less than or equal to r less than mode a.



See here we only say that a is not equal to 0 we do not assume that a is greater than or equal to 0.

So you can prove this theorem yourself.
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We say that a is a common divisor of b and c if a divides b and a divides c where a, b, c are all

integers.  So a pair  of numbers b and c can have multiple  common devisoers every nonzero

integer has only a finite number of divisor.
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Therefore, the common divisors of two numbers b and c which are integers form a finite set.

Therefore,  we can talk about the greatest of them. The greatest common divisor happens to be

the largest of this finite set.
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So we will denote this by GCD of b and c if b not equal to 0 or c not equal to 0. We can extend

this notion to multiple integers we can talk about GCD of b, c, d which is the GCD of GCD of b

and c and d.
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Now we shall study an interesting theorem which says that, If G is the GCD of two numbers b

and c then there exist  integers  x naught  0 and y naught0 such that  j  is  bx naught0 plus cy

naught0.  In  other  words, if  g  is  the  GCD of  b  and  c  then  g  can  be  expressed  as  a  linear

combination of b and c with integer coefficients.
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So let us see how to do this. In particular consider two numbers let us say b equal to 3 and c

equal to 7. Then we want to express the GCD of these two which we know is 1. GCD of 3 and 7



is 1. We want to express 1 as a linear combination of  3 and 7. So we could write this as 3x plus

7y we have to find x and y so that 1 is equal to 3x plus 7y that is precisely what the theorem says,

The GCD of two numbers can be expressed as a linear combination of those two numbers with

integer coefficients x and y.

So let us consider the various possible values of x and various possible values of y. When x equal

to 0, y equal to 0, we have the linear combination evaluating to 0. When x is 1 and y is 0 we have

3. When x  is 2 y is 0 we have 6. On the negative side we have minus 3, minus 6. When y is 0

and x is 1 when x is 0 and y is 1 we have 7. when x is 0, y is 2 we have 14.

On the other direction we have minus 7 and minus 14. Here we have 10 and 17. This is how the

values would look like. For various integral values of x and y, the linear combination 3x plus 7y

would have these values. So you find that indeed there is one particular choice of x and y for

which the linear combination of value is to 1. When x equal to minus 2 and y equal to 1 we have

3x plus 7y evaluating 2 minus 6 plus 7 which is 1. So there is a choice of x and y for which the

linear combination evaluates to 1. Sso how do we generalize this? We want to bring the assertion

for every pair of integers b and c.

(Refer Slide Time: 25:01)

So we have this pair of integers b and c. Let us define the set s as the set of all integers bx plus cy

where x and y are integers. So it is precisely this set that we depicted here for integers 3 & 7. So



this is clearly an infinite set. Let d be the least positive member of s. Depending on the various

choices for x and y we have different values in s we are picking out the least positive member of

s we call it d.
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Say d is bx naught0 plus cy naught0. Every member of s is a linear combination of b and c for

some choice of x and y. So d is also the same. So there is a choice of x and y namely x naught 0

and y naught0 for which d is bx naught 0 plus cy naught0.  If d does not divide b, then there exist

unique r and q such that b is qd plus r, where r  is strictly between 0 and d.
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So we have r is b minus qd which is b minus q into dx naught0 plus cy naught0. Rearranging we

get that, this is b into 1 minus qx naught0 minus c into qy naught0 or I can put plus here and

move the negative sign here. So we have two integers 1 minus qx nauhgt0 and minus into qy

naught0 so that our is a linear combination of b and c with these as the coefficients.

But we know that r is strictly between 0 and d therefore what we have found is that r belongs to s

and r is positive. But we had picked d as the least positive member of s and here we find r which

is a positive is a member of s but is less than d.  Therefore, we have a contradiction and from

what  we  derived  this  contradiction  we  assume  that  d  does  not  divide  b  and  then  got  this

contradiction therefore it must be that d divides b.
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Similarly, we can also argue that d divides c.  So if  d divides b and d divides c then d is a

common divisor of b and c. Now consider the GCD of b and c. Let g be the GCD of b and c.

Since d is bx naught0 n plus cy naught0, we have that g divides d. g divides b and g divides c, so

g divides bx naught0 plus cy naught0 as per the theorem we saw earlier so g divides d.
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g and d are both positive. So since g  divides d, g is less than or equal to d. But then g is the GCD

of b and c and d is a CD a common device. g is the greatest common divisor therefore clearly g is

greater than or equal to d in other words g is equal to d.
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In other words, the GCD of b and c, this is the smallest positive integer that can be written as a

linear combination of b and c with integer coefficients.
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Now another theorem, For any two integers b and c not both 0. The GCD is the positive common

divisor that is a multiple of every common devisor. For any pair of integers b and c, not both 0,

the greatest common divisor happens to be the positive common devisorces that is a multiple of

every common divisor.
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To prove this, suppose d is a common divisor of b and c, then d divides every linear combination

of b and c. If d divides b and d divides c then d divides bx plus cy for any pair of integers x and

y. So d divides every member of the set. In particular d divides the least positive member of the

set. This is what we call s. bBuut then what is the least positive member of s. That happens to be

the GCD b and c so if d is a common divisor of b and c then d divides g.
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So every common divisor of b and c divides g. If g and g prime are both positive common

divisors, that are divided by every common divisor, then g and g prime of themselves common

divisors then we have g divides g prime and g prime divides g, which implies the g equal to g

prime.

But in other words g is the only common divisor with this property the only common divisor that

is divided by every common divisor of b and C. In other words, the only common divisor of b

and c which is divided by every common divisor of b and c is the GCD of b and c.
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Another theorem regarding GCD’s for every positive integer d we have that GCD of bd, cd

equals GCD of bc multiplied by d. What is the GCD of bd and cd. This happens to be the least

positive member of the set bd x plus cd y where x and y are integers.  Which is d times the least

positive member of  bx plus cy, where x and y are integers. 

This is the case when d is a positive integer which is indeed the case here. But this is the GCD of

b and c that is precisely what we wanted to show. So you can remove common factors from bd

and cd,. d is a common factor of bd and cd and then find the common GCD of the remnants.
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NowThe related theorem is this, fF or every positive common divisor d of b and c GCD of b by

d, c by d is GCD of b and c divided by d. How do we prove this?  In the previous theorem you

put dsd,  b by dsb and c by dc. If you substitute thus in this theorem we get the new theorem as a

corollary.
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Yet another theorem if GCD of a and d is 1 and GCD of b and d is 1 then GCD of ab and d is 1.

In other words, look at the fraction a by d you cannot reduce this fraction anymore a and d do not

cancel. Similarly, b and d also do not cancel. B and d do not have common factors other than 1

therefore if you consider ab by d then d cannot cancel against ab.

d and ae do not have common factors d and b do not have common factors other than 1 therefore

d and ab also will not have common factors other than 1. Of course intuitively clear to you but

how do you prove it?
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We know that GCD of a, d equal to 1 GCD of b and d is also equal to 1. Therefore we have

integers x naught0, y naught0,  x 1, y 1 so that 1is ax naught0 plus by naught0 and one is bx 1

plus dy 1. So there exists x naught 0, y naught 0, x 1 , y 1 all integers. So that this is satisfied.
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Let us define z1 as dy naught 0 y1 minus y naught 0 minus y 1 and z naught0 as x naught 0 x1. If

this is the case, then we readily find that ab into z naught  0 is 1 minus dy naughtinto 1 minus

dy1.  Replacing x naught0 and  x1 with 1 minus dy naught0 and 1 minus dy 1 we find that ab

into z naught 0 is this. Which is 1 plus dz 1. That is ab into z naught0 plus d into minus z 1 equal

to 1.

TTherefore if you consider the linear combinations of ab and d with integer , the least positive

member of that set is going to be 1. If 1 is present in that set, certainly 1 has to be the least

among them. In other words, GCD of ab and d will have to be 1. That is it from this lecture. We

will see more properties of GCD in the next class hope to see you in the next. Thank you. 


