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Welcome to the NPTEL mooc on Discrete Mathematics.  This is the fourth lecture on Set

Theory. In the previous lecture we have seen, how to embed the theories of natural numbers,

integers and rational numbers in set theory.
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In particular, we define the natural numbers, thus 0 was defined as the empty set, then 1 was

defined as the successor of the empty set which turns out to be the singleton containing the

empty set or in another words a singleton containing just 0. 

The successor of 1 is 2 which turns out to be the two members set containing 0 and 1 or

containing the empty set and the singleton containing the empty set and then the successor of

2 is 3 which is the set containing just three members 0, 1 and 2 and the successor of 3 is 4

which  contains  just  four  members  0,  1,  2,  3  in  general  the  natural  number  N  can  be

represented using the set containing 0, 1, 2, 3 etcetera up to N minus 1, that is natural number

0 to N minus 1 will form the set which has named natural number N.
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So, every natural number in the sense is defined as a set. We define the notion of inductive

sets, an inductive set is a set which contains the empty set and is closed under the successor

operator. The successor operator on set A gives us the set containing the which has a union of

A and the singleton containing  A. Then omega turns out  with the smallest  inductive set,

omega is an inductive set, in itself and this omega is defined as the set of all natural numbers.

So, as you can see omega contains the empty set which is 0, its successor 1, its successor 2

and so on. So, by necessity because it should be closed under the successor operator it should

contain all these 0, 1, 2, 3 etcetera. So, omega is defined as the set of natural numbers. So,

every natural number is now a set and then we define operations on natural numbers as Set

Theoretic Operations.



For example, addition on natural numbers is defined in terms of the successor. For example,

the sum of N and M plus 1 is the successor of the sum of N and M, so we are defining the

addition,  the sum on N and M plus 1, recursively use in the sum of N and M a smaller

number and the successor operator. 

So, affectively addition is defined in terms of the successor operator and then multiplication

in the same way can be defined using addition the product of N and M plus 1 is the product of

N and M plus N, so we define multiplication using addition. So, this way the operators on

natural numbers, operations on natural numbers could be define as Set Theoretic Operations.  
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Then we went on to embed the theory of integers on the set of; in set theory, we consider the

cross product N cross N where N is the set of natural numbers. We consider as a subset of

this, in particular we consider a relation tilde which is define in this manner. Ordered pair M,

N is in relation till day with P, Q if and only if M plus Q equals N plus P. The idea is that M

mins  N should equal  P minus Q and then the set  of  integers  Z is  defined as  the  set  of

equivalent classes under this operation, this relation tilde that is the quotient of N cross N

with tilde is what the set of integers is.
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And then we define operations on integers as operations on such equivalence classes, such an

equivalence classes in a integer, so operations on integers should be translate into operations

on such sets. So, we define plus Z and into Z appropriately. So, along with these operations, Z

with integers 0 and 1 forms an integral domain. 
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Then we went on to the theory of rational numbers and so, how to embed the theory of

rational numbers in set theory. In particular, we consider the set Z prime which is Z with (())

(04:41) 0 and then we consider the cross product Z cross Z prime and we define a relation

ordered pair A, B join ordered pair C, D if and only if AD equal to BC. The idea is that A by



B should be the same as C by D. That is fraction A by B should be the same as the fraction C

by D.
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Then the set of all equivalence classes of this relation is defined as the set of all rational

numbers. In other words Z cross Z primes questioned with the joint operation is called the set

of all rational numbers. So, a rational number is a equivalence class under this relation and

then  the  addition  operation  and  the  multiplication  operation  were  appropriately  defined

consisting with our notions of rational numbers addition and multiplication.
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And then we found that the set of rational numbers along with these two operations addition

and multiplication thus define and this Q here and 0 and 1 is a filed and we define the less

than relation as a linear order on Q. 
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We say that the set S is countable, if there is an (injection) injective function from S to N that

is the members of S could be counted using natural number. So, you could say this is the 0 th

member, this is the first member, this is the second member and so on.
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We saw that the set of rational numbers is countable, in particular when you consider all

ordered pairs of natural numbers this is countable, that is if you consider the first quadrant



then you could count the natural numbers in this order. That is counting (them) order pairs

belonging to one diagonal at a time, you can, you can count all of them. Extending this notion

you can show that every rational number, the set of all rational numbers is countable.

(Refer Slide Time: 06:26)

Now, we come to real numbers. Of course we know that there are real numbers that are not

rational or irrational. In particular, root 2 is irrational. It has been known for long that root 2

is irrational, the proof goes thus, assume the contrary, so suppose root 2 is rational, so here

we suppose is that root 2 is rational. If root 2 is rational then we would be able to represent

root 2 as a fraction A prime by B prime, where A prime and B prime are integers. 



So, consider this fraction A prime by B prime, out of A prime and B prime we can remove the

common factors and get this fraction in reduced form. Let us say A by B is the reduced form.

What I mean is that A and B do not have a common factor or that gcd of A and B is one.

So, if root 2 is a rational number then the (())(07:24)  A and B so, that root 2 is A and B and

gcd of AB equal to 1
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So, root 2 is A by B. If root 2 is A by B then root 2 B is A, squaring both sides we have 2 B

square equal to A square. So, A square is the square that is what we have on the right hand

side. On the left hand side, we have 2B square which is an even number. It is 2 multiplied by

something, which means A square is an even square.

We know, that an even square is the square of an even number. The square of an odd number

is always odd. Therefore, if A square is an even number then A is also an even number.
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So, A is even. So, let A be 2K. Then substitute it in this equation. We have A square equal to

2B square. So, A squared equal to 4K square, which is equal to 2b square. So in particular, let

us consider this equation 4K square is equal to 2B square. So, 2 is common factor on both

sides. So, let us cancel 2 from both sides, so we have 2K square equal to B square. Now, 2K

square is even therefore, B square is even as well, which means B square is an even square. 
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Which means B is even, but then we had earlier found that A is even, so A is even and B is

even which means 2 is common factor of A and B or in other words gcd if A B is greater or

not equal to 2, at least 2 is a common factor which is a contradiction because here, we assume

that gcd of A B is equal to 1. Root 2 has been written in the reduced form A by B. So, A and B

do  not  have  a  common  factor,  but  here  we  find  the  2  is  a  common  factor,  which  is  a

contradiction. Therefore, root 2 cannot be rational, root 2 is irrational. So, there are irrational

numbers.
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So, there are real numbers which are not rational. Now, we are trying to embed the theory of

real numbers in set theory. So, what we need is that every real number should be constructed

as a set. The sets that we construct are called ‘Dedekind Cuts’.
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We define a Dedekind cut thus a subset X of Q. So, X is a set of rational numbers such that X

is not empty and X is not Q. X is closed downwards and there is one more condition which is

that  X has  no  largest  member. Such a  set  is  called  a  ‘Dedekind  cut’.  So,  once  again  a

Dedekind cut is a set of rational numbers but not every set of rational numbers is a Dedekind

cut.  In  particular,  a  Dedekind  cut  cannot  be  the  empty  set,  it  cannot  be  Q either  and a

Dedekind cut has to be closed downwards.
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What it means is this, if X is a Dedekind cut then X is a set of rational numbers. Let us say Q

is a member of X, so Q is a rational number which belongs to X and let us say R is less than

Q and R is rational number which is less than Q. So, let us say R is a rational number which

is less than Q. In that case R belongs to X.

So, what we mean is this. When we say that X is closed downwards, we mean that for every

rational number Q which belongs to X and for every rational numbers R which is less than Q,

if Q belongs to X then R belongs to X.
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And we say that X has no largest member. So, such a set is a Dedekind cut. So, we can say

that, when you consider a set of all rational numbers, the Dedekind cut X divides it into two



sets. X is one set and the complement of it X bar is the other set, that is Q minus X is X bar,

the relative complement. It partitions the set of all rational numbers into 2. 

So, on the smaller side we have X, on the higher side we have X bar.  Every rational number

belonging to X bar is larger than every rational number belonging to X. X has no largest

member, X bar may or may not have a smallest member. Such a partition of the set of rational

numbers is affected by a Dedekind cut. 
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In a particular, let us consider the (rational number) irrational number root 2, which we have

just shown to be rational. So, a decimal approximation for root 2 is this 1.414213562 etcetera.

In particular, if I consider a set of rational numbers containing 1, 1.4, 1.41, 1.414 etcetera.

These  are  all  rational  numbers  that  are  smaller  than  root  2.  So,  the  Dedekind  cut

corresponding to root 2 will contain all this rational numbers. It is a super set of all these.
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We consider all rational numbers that are less than root 2. The set of these form a cut. This

cut is what we equate with root 2, that is the real number root 2 is equated to this cut. So now,

every real number becomes a set. In particular, it becomes a Dedekind cut

(Refer Slide Time: 13:14)

For every real number X the cut that is the associated to X is a set of all rational numbers,

that are less than X but of course the cut cannot be defined in this manner because here, X is

a real number. So, the cut is define only using rational number as we saw earlier.
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So, the set of all real numbers is now, the set of all Dedekind cuts. Every real number is

Dedekind cut.
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It can be shown that every real number has a decimal representation.  For example, when you

are given real number X, consider the X on the real line and then consider the largest integers

smaller than X. Suppose that is N then N is the integer approximation to X that is X floor will

be N.

Then consider the portion from (N)the portion on the real line from N to X. This segment has

a length less than 1 divide this into 1 tens. The number of 1 tens from N to X will be the next



digit, suppose that is N1. So, N1 will be the digit in the tenth place and so on. So, you can

construct the decimal representation of the real number in this manner.
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Consider the rational number 1 by 3, a rational number is also a real number. Therefore, we

have a Dedekind cut associated with 1 by 3 as well. The set of all rational numbers less than 1

by 3 will  form the Dedekind cut that is associated with the real number 1 by 3, then its

compliment X bar in this case has a smallest number which happens to be 1 by 3 itself.

Therefore, if the complement of a Dedekind cut has a smallest member then that Dedekind

cut  corresponds  to  a  rational  number,  if  it  does  not  have  a  smallest  member  then  it

corresponds to an irrational number. 
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In particular, for root 2, the cut corresponding to root 2 is the set of all rational numbers less

than root 2 and its compliment is a set of all rational numbers greater than root 2, since root 2

is not rational it will not belong to either set. So, the compliment in this case we see does not

have a smallest element.
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We can show this is a set of all real numbers, R is not countable. We saw earlier that the set of

all natural numbers, the set of all integers, the set of all rational numbers are all countable, but

the set of all real numbers is not countable. So, let us prove this now.

In particular, let us consider the part of the real line that is with 0 and 1 excluded. So, we

consider the interval 0, 1 opened at both ends, that is we are considering all real fractions. 
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We will show that 0, 1 is uncountable. You see a technique called ‘Diagonalization’. If 0, 1 is

uncountable, then its super set are also should be uncountable. So, let us assume that 0, 1 is

countable,  that is the set of all real fractions is countable let us say and we will derive a

contradiction.
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If this is countable then the (())(16:54) 121 into mapping from the set of real fractions to the

set of natural numbers. So, you could say this is the first fraction, this is the second fraction,

this is the third fraction, this is the fourth fraction and so on. So, there is a enumeration of

fractions. So, let us say we have this enumeration. So, let us say 0. A1, A2, A3, A4 etcetera is

the first fraction. So, A1, A2, A3 etcetera are all digits. This is the decimal representation and

the second fraction is 0. B1, B2, B3 etcetera.

Then in the diagonalization technique we pick the diagonal digits, from the first fraction we

pick A1, from the second fraction we pick B2, form the third fraction we pick C3 and so on.

In general, from the ith fraction we pick the ith digit.
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So, after picking digits in this fashion, we form a new fraction, which we write thus 0. A1

prime, B2 prime, C3 prime, D4 prime etcetera. Here X prime is defined as X plus 1 mod 10.

For example, if X is 0, X prime is 1, if X is 1 then X prime is 2 and so on and when X is 9, X

prime is 0.

So,  we can  see  that  X prime  certainly  differs  from X. So,  here  what  we do is  this,  we

construct a new fraction which we write in this manner 0. A1 prime, B2 prime, C3 prime

etcetera. So, this fraction differs from every single fraction in enumeration. 
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It differs from the first fraction. In the first fraction, we have A1 in the first position, whereas

in the new fraction that we have constructed we have A1 prime at the first position. It differs

from the second one because in the second one we have B2 in the second position but we



have B2 prime in the new fraction. It differs from the third fraction and the third position. In

general, it will differ from the ith fraction in the ith digit.
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So, the new fraction is not in the enumeration. In other words, the enumeration that we had,

the hypothetical enumeration that we had is not exhaustive. So, that is the contradiction. We

assume that  the set  of  all  real  fractions  was enumerable  and therefore we assume this  a

numeration was exhaustive.
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So, here is an example of the construction. So, if the fraction said, we had were like this then

the first fraction here has 3 in the first position, so in the new fraction that we construct we



will write 3 plus 1, 4. We had 8 in the second position of this second fraction. So, we would

write 9 in the second position of the new fraction. We had 4 in the third position of the third

fraction, so we will write 5 in the third position of the new fraction and so on.

So, the new fraction that we construct does not match any of the existing fractions. So, this

technique is called the ‘Diagonalization technique’.
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Since, the set of all real numbers is a super set of the set of real fractions 0, 1 R is also

uncountable. So, what we find this that is the set of natural numbers N, the set of integers Z,

the set of rational numbers Q are all countable, but the set of al real numbers is uncountable

set. Discrete mathematics deals with the countable sets.
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Now, we define a linear order less than relation between real numbers in this manner, we said

that a real number R is less than real number S, if and only if R is the subset of S. So, R is a

Dedekind cut here, which is a set and S is also a Dedekind cut. We say that R is the proper

subset of S that is precisely when R is less than S. So, when the less than relation is defined in

this manner, we can say it is a linear order.
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Then, we define the addition operator. The real number addition operation is defined this, for

real numbers X and Y, X plus Y is defined as the set of all rational numbers Q plus R so that

Q belongs to X and R belongs to Y. Here, X and Y are treated as Dedekind cuts. 
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Similarly, the multiplication operation is defined like this for non negative real numbers X

and Y. The product of X and Y is defined as the product of all rational numbers Q and R. So

that Q is greater than or equal to 0 and belongs to X and R is greater than or equal to 0 and

belongs to Y.
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If, X and Y are both negative, then X into Y is defined as the absolute value of X multiplied

by the absolute value of Y. We do a real number multiplication here. If exactly one of X and

Y is non negative, then X into Y is defined as the negative of the magnitude of X multiplied

by the magnitude of Y. The multiplication here is the real number multiplication again.
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So,  we  can  see  that  the  set  of  real  numbers  along  with  these  operations  addition  and

multiplication and the real 0 and real 1 is a field.
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Now, let us see how we define sets. If what we have as a finite set. We can just enumerate the

members of the set. For example, the set 2, 5, 7 has three members, we can explicitly list

three members and enclosed them within the bracers and this is one representation of the set.

This is what is called an enumeration of the members of the set. So, the set can be represented

using an enumeration or we can represent the set using an abstraction.

(Refer Slide Time: 22:32)



So, let us say alpha is a first order formula with a free variable X. Then we could write the set

of all individual X, so that X satisfies alpha so this is an abstract representation of the set, but

an abstract  representation can lead to paradoxes. One such paradox is this. This is called

Berry’s Paradox. Let A be the set of all numbers X, such that X is a natural number that can

be defined in at most 100 characters.

(Refer Slide Time: 23:07)

On any finite alphabet there is only a finite number of strings with less than 100 characters.

For example, if you have three members in the alphabet, if your alphabet is A, B, C then how

many strings can have exactly 100 characters? You consider a string of 100 characters, so

there are 100 positions to fill. At each position we have three choices, so we have 3 power

100 ways in which 100 character strings can be constructed.



So, here we are talking about strings of at most 100 characters. So, we can count the total

number of such strings, so that is the finite number.
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Since, there is only a finite number of strings with less than 100 characters. We can talk about

the least natural number that can not be defined using at most 100 characters. We can, cannot

we?  Let  that  number  be  N,  but  then  this  is  the  definition  of  N,  that  uses  at  most  100

characters, then we have this question asked will N belong to A or does it not? We have a

paradox, but then we can get rid of such paradoxes, if we are precise with the definition. So,

here the problem was with the use of the word definition here. So, there is an (())(24:34) here,

either by using multilayered notions of definitions we can avoid such paradoxes.
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But does it allow us to get rid of all paradoxes, infact not. Even if (you) we use a precise first

order formula for representing alpha here, we can still have paradoxes.
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Consider the set B define in this manner. B is defined as the set of all X such that X does not

belong to X. So, here the abstraction is very precise. It is defined using the set membership

notion. So, B is defined as a set of all sets that do not contain themselves.
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But then does B belong to B? If B belongs to B, then B should not belong to B. On the other

hand, if B does not belong to B, then B should belong to B. This paradox is called ‘Russel’s

Paradox’.
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So, this is the fundamental paradox. This is because not every collection of objects can be

dimed  a legal  set.  What  it  means  is  that,  the  axioms of  set  theory  have  to  be  carefully

formulated. One such formulation is Zermelo Fraenkel Axioms. We shall study about the set

axioms in the next class that is it from this lecture, hope to see you in the next, thank you.

           


