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Lecture 12
Trees, cycles and graph coloring

In the previous lecture, we defined the notion, we introduce the notion of graphs, and then we

defined when the two graphs are same we, talked about what is the isomorphism between

graphs. And, then we saw a theorem called as Euler theorem. 

(Refer Slide Time: 00:47)

With did not proved this so that is the first thing that we will do today. So Euler’s theorem

states that, a connected graph has an Eulerian circuit if and only if the degree of every vertex

is even. So Eulerian circuit was a walk in the graph where no edges traverse twice every

edges traversed exactly once. For example, if we consider the following graph, this graph will

not have an Eulerian circuit as per the theorem because, if you look at these vertices they all

have degree 3 but we can convert them into i mean if you modify the graphs this particular

graph this will have an Eulerian circuit because the degree of vertex is even.

 I am just writing down the degrees of the vertices this is not the vertex labels. So, this graph

will surely have an Eulerian circuit and we will in fact construct one such and convert that

construction into a proof. So, let us say we start from this particular vertex, so if we went

about  in  this  particular  fashion  there  are  lots  of  edges  which  are  not  traversed  we  can

separately look at them. 



This is a yet another one, so we drew this as we traversed this graph by means of three cycles,

we could have done that more systematically we could have started from here and at this

point, we can just come back here or again we can take this come back here then do this. So

that gives us an Eulerian circuit. 

So, the method by which we drew look like an arbitrary, which is arbitrarily trace the edges,

we can essentially convert that method into a proof of our theorem, we will do that first thing.

So, the key idea is since every vertex has degree even, if you enter any vertex you have to

obviously leave the vertex. You will never be stranded at any particular vertex. So let us say

we are randomly moving from one vertex to other, may not being particular clever about

which is the outgoing edge.

For example, if we come to this particular vertex, one of the edges have been used, but, the

fact that the vertex has an even degree means that there is at least one leaving edge. So for

every vertex if we start at any arbitrary vertex and keep on moving that is tracing edges, the

only requirement or the only restriction that we will impose on our walk is that we will not

take the same edge twice.  Now if you do this  what happens, we can write the following

statement. 

If we walk in arbitrary fashion, we will always have an outgoing edge at every vertex, of

course, there is particular case that we have to be careful about, suppose, we come back to a

vertex and all the edges have been exhausted at that point. So, you start at some place and

you move around and finally come back at this place and suppose these are only exactly two

vertices then what we will do? So, that is one situation that we have to be careful.

It could be the case that once did this, there are other edges lying outside of this particular

circuit. What we have ruled out so far is that if we reached some particular vertex after lot of

travels, either it is one of the starting vertices we could reach at the starting vertex. If we are

at in between vertex and you have no edges to move, that means you have come there some

number of times and you have left that vertex one less time. 

So  formally  we  can  say  this  as  following,  if  we are  let  us  say  stranded  suppose  this  a

possibility that we are stranded. Then, we have entered the vertex the stranded vertex x times

and left it only x minus 1 times. The starting vertex is different because starting vertex we

never enter we just leave the starting vertex. So, but for every other vertex you are entering

that from some other place and then you are leaving it. So you would have left it one less

time than you have entered. 



So, the total edges of that particular vertex which is been traversed is equal to that accounts

only for 2 times x minus 1 edges, and that is an odd number of vertex and since we have

assumed that  every  vertex  has  even number  of  even degree  we will  never  be  in  such a

situation. We could of course start at a vertex and then come back to same vertex, that is a

possibility and at  that point it  could be that there are other parts  of graph which are not

traversed. 

But here we can use a reduction now by virtue of this graph been connected, we can say that

if there are other edges which are traversed, which are left behind then, there should be some

connection to that to the left out edges and what we can do is first point from where there is

an edge which is not accounted for, so look at this path and look at the first place first vertex

which has an edge which is not used we could start their and then continue And we must

essentially come back somewhere here. 

We will never be stranded the only way we can be stranded is if we had come back here. So

we can just traverse along the particular path, complete that cycle and then continue until

original cycle. So this can be done inductively and therefore that will guarantee that if the

degree of every vertex is even then we will automatically have an Eulerian circuit. The other

part is simpler if we had some vertex of odd degree then there are no Eulerian circuits this

can be seen because, if you look at the Eulerian circuit, the Eulerian circuit goes through

every edge. 

So, if you look at any particular vertex and count the edges it is, the Eulerian circuit has

entered every vertex and left every vertex. The number of times it is entered is exactly equal

to the number times it is left to that particular vertex, so since these are equal and together

they are count for total degree of any vertex. 

We will automatically get that the vertices must have an even degree every vertex must be of

even degree. So that concludes the proof of Euler’s theorem. So the next thing that we will

learn today is another kind of walk or a path on graphs which are called as Hamiltonian

cycles. 
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So, we will first define what are Hamiltonian cycle. A Hamiltonian cycle is a cycle in which

every vertex of the graph is visited exactly once. It is a cycle in g so, we are talking about

Hamiltonian cycle in a graph G. So, of course natural question to ask is where it does given a

graph does it have a Hamiltonian cycle or not. So, we will see some examples, so if you take

complete graph and vertices, this of course has many Hamiltonian cycles you can start at any

vertex and go to any vertex in this particular graph. 

So complete graph on n vertices this, is here the value of n is 5. So, k 5 has a Hamiltonian

cycle if, you look at and say the cycle graph this is also a graph which contains a Hamiltonian

cycle.  Whereas,  if  you take this  particular  graph this  does not have a  Hamiltonian cycle

because, the vertex if the number is as vertex 1 you start at vertex 1 you can never end up

back at vertex 1 and, if you start at any other vertex the movement, you reach the vertex 1

you are stranded there. 

And therefore this is graph, which does not have Hamiltonian cycle. So in these examples it

was easy to see whether it contain Hamiltonian cycle or not. And like the Eulerian cycle

problem, Hamiltonian cycle problem is not very easy to solve. So we will see a particular

example. So, we will again look at the Peterson graph, so this is a graph on 10 vertices so this

is 10 vertices and 15 edges and we want to know whether this graph contains a Hamiltonian

cycle.

You can look at the graph for stair it for few minute and figure it out if it does contain a

Hamiltonian cycle. If it does not contain a Hamiltonian cycle, what we have to show is that

no matter how you walk in this graph you can never start at the vertex and reach back at the



same vertex after visiting every vertex exactly once. So in fact that is what we will show that

this graph does not have a Hamiltonian cycle. Peterson graph does not contain a Hamiltonian

cycle.  Why is  that the case? We will  prove this  claim via very crucial  observation about

Peterson graph. 

So, let us call this Peterson graph as G, so first claim is G does not have any 4 cycle. This is a

crucial fact that we are going to use. How do we see that this a graph without 4 cycle? Now if

you look at this graph carefully, you will see that there are two cycles in this graph each of

length 5. There are many 5 cycles but, you can see that this outer pentagon and the inner star

which also can be drawn as a pentagon. 

So, if I number this is 1 to the outer once is 1, 2, 3, 4, 5 and the inner once is a 6, 7, 8, 9, 10.

So you can see that 6, 7, 8, 9, 10 also forms a cycle. So 1, 2, 3, 4, 5, is a pentagon or a 5 cycle

and 6, 7, 8, 9, 10 also form a pentagon. Now, this cycles mean if you consider these cycles

there are no other edges between them, for example between 1 and 3 there is no direct edge

between 5 and 3 also there is no edge. So these cycles are two disjoint cycles and they do not

have, if you just restrict the graph those vertices there are no smaller cycles in it. 

So if I look at the graph consisting of just vertices just 1 to 5 they do not have 4 cycle and if I

restrict to the graph to vertices 6 to 10 they also do not have a 4 cycle in it. And therefore we

can say that, it if at all there was a 4 cycle it should have edges, which go from cycle 1 to

cycle 2. There should be an edge any 4 cycle should have an edge which goes from the outer

circle to the inner circle. And outer circle to inner circle the edges are we need to draw that in

red, so these red edges at least one of this red edges must be present if, there is any 4 cycle. 

If there is a 4 cycle then that four cycle must contain one of these red edges. Without red

edges, it is impossible to have a 4 cycle, what we will show is? Even with the red edges, there

is no chance of having a 4 cycle. So let us say that one of these red edges is their all the red

edges you can see that from the symmetry we can assume that all of them are one of same

kind. So if there is a 4 cycle involved in one of red edges, then certainly there are 4 cycles

involving in any other red edge as well. 

That is from the symmetry of this diagram. So let us say 5, 6 is an edge which is there on

some 4 cycle 5 to 6. Now 5 to 6 from 5 if there is 4 cycle there are only 2 possible edges 5,1

and 5,4 and from symmetry again we can say that we can just look at 5,1. If there was a 4

cycle 3 of its vertices are already in place 5, 6 and 1. If there is 4 cycle 6 and 1 should both be



connected to a common vertex. And you can see that there is now such vertex 6 and 1 and

there is no other vertex such that, that vertex is connected to both 1 and 6. 

And since there are no other, so that is you cannot have a vertex x such that 6 x is an edge and

1 x is an edge. So that basically means that Peterson graph does not have any 4 cycle. So how

is this fact is going to help us show that Peterson graph does not have any Hamiltonian cycle?

(Refer Slide Time: 17:58)

So at that the moment we have shown that the graph G or Peterson graph does not have a 4

cycle. We need to show that g does not have any Hamiltonian cycle. So now suppose G did

had a Hamiltonian cycle, we can say that all  the vertices could have been traversed in a

systematic manner. So let us say the ordering of the vertices is V1 to V2 to V3 so there is

some ordering of which we can just place these 10 vertices. So I do not know whether V1 is

the vertex 1 or V2 is the vertex 2 and so on but there is some order, I mean some way that

you can traverse all of them. 

So let us assume that starting vertex is V1. Now this accounts it means if you look at these 10

cycles that accounts for 10 of the edges in the graph. Now we can think about what are the

other edges present. Just look at the Hamiltonian cycle if there was 1 and let us just draw it

and we will get a cycle consisting of 10 edges. And there are 5 other remaining edges, which

we have to add to this, get our original graph.

Where all can we add that edge V1 is an arbitrary vertex, if you had a Hamiltonian cycle,

surely there is one starting at any particular vertex could have, because you look at the cycle

start at look at any particular vertex in the cycle start at that point and traverse you will get



another Hamiltonian cycle. So if you have 1 Hamiltonian cycle you can have the Hamiltonian

cycle start at any particular vertex. So we can assume that v1 is equal to vertex number 1.

Now from V1 there are 3 edges 2 of them have already been accounted for the third edge

must go somewhere. Where all can it go? So here we have shown that G does not have a 4

cycle, it is apparent that G also does not have any triangles, if you take any 3 of them they are

not going to form a triangle. So G does have 4 cycle or 3 cycle. So V1 let say V3 or V9 that

would make a triangle in the graph. The graph does not have triangle the same applies if you

connect it to V4. 

Because then you will have a 4 cycle and the same applies if you connect it to V8. So now the

only 3 options are V1 could be connected to V7 V6 and V5. So V1 be can think of V6 as the

diametrically opposite vertex. Note that all of these vertices 1 to 10 has 1 edge missing from

there and together there are 5 edges missing. Now can it be the case that every vertex has

joined to its diametrically opposite vertex along this particular path.

By diametrically opposite what I mean is V1 and V6 are diametrically opposite, V2 and V7

are diametrically opposite, V3 and V8 are diametrically opposite and so on. So can every

vertex here be joined to its diametrically opposite vertex? If that was case V1 is joined to V6

and V2 is joined to V7. If every vertex is joined to its diametrically opposite vertex and this is

what would have happened but that automatically creates a 4 cycle V1, V6, V7, V2. So this is

not possible. 

So there is at least 1 vertex which is not joined to its diametrically opposite vertex. So we

may assume without loss of generality then that one vertex is V1. So V1 we may assume that

V1 is joined to one of V5 and V7 and these are cemetery cases. So we will just say that V1 is

connected to V5. So we can assume without loss of generality that V1 V5 is an edge in the

graph. So our starting point was we assumed that there is a Hamiltonian cycle and we some

have argued that Hamiltonian cycle has missing edges. And if you look at the starting vertex

as 1 it is missing edge is towards goes to vertex V5. 

So this is part of the graph there are other edges also. So if you look at vertex 6, where all can

6  be  connected  to?  We argued  that  V6  and  V1  are  not  connected,  so  there  are  other

possibilities but we will see that if you assume, I mean based on our claim that G does not

have 3 cycle or 4 cycle, we cannot connect 6 to any other edges, clearly 6, 8 and 6, 4 are

ruled out because of 3 cycle. V9 and V3 are ruled out because of 4 cycles, 6, 8 and 6, 4

causes 3 cycles, 6, 9 and 6, 3 causes 4 cycles. So they cannot because V6, V9, V8, V7 forms a



4 cycles so the only remaining vertices are V7, V5 any way are connected they cannot be

considered. So 7 and 5 ruled out 7, 5 and 1 are ruled out. Only remaining vertex is 10 if you

look at 6, 10 you again have a 4 cycle, 6, 10, 1, 5 forms a 4 cycle.

So this  is  also  causes  a  4  cycle  and therefore  we cannot  have  any edge out  6.  So  that

contradicts are initial assumptions that there is a, I mean if we have this particular edge we

look at Peterson graph surely there is an edge between 6 and 10, I mean some other vertex we

argued that 6 cannot have any outgoing edge other than V7 and V5. So by this argument we

could show that Peterson graph is a graph without any Hamiltonian cycle. 

So this required careful examination of many of the properties of Peterson graph, we could

not have a we did not have a general result like we had in the case of Eulerian cycle, Wherein

we told that we just have to look at the degree of vertex if each vertex is the degree 2, then

automatically every connected such graph was going to have an Eulerian cycle. So now we

will move on to some different notions. So we learned about cycles, we learned about two

different  types  of cycles Eulerian cycle  and Hamiltonian cycle.  The next  special  kind of

graphs we will look at is what are called as trees.
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So trees are graphs, which has two crucial properties. So let us call it by T. So t also there is a

graph first requirement is T should be connected. The second requirement is that T should not

contain any cycle. So let us see some examples if you look at this graph on 6 vertices this is

called as star graph. So this graph does not have any cycles and it is a connected graph. It is a

line graph this is also an example of a tree. 



If you look at wheel graph, this is not a tree because there are different cycles in this graph.

You can have trees of different kind, so this an example of rooted binary tree, root because

we usually but when we draw it like this, this signifies the root and binary because every

intermediary note has two children, we will study about those things later but we can see that

this is a graph in which there are no cycles and that it is a connected graph. So these kind of

graph are called as trees and see some crucial simple properties of trees.
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In a tree, let T be a tree first fact is there is a unique path from any vertex V to any other

vertex U. So choose two vertices between those two vertices there is a unique path, whenever

the graph is a tree. We will prove all these facts. The second facts is T has N minus 1 edges

where N is number of vertices. Third fact is removal of any edge results in preciously two



disjoint trees. So if you take a tree and remove one edge from it you will get another graph

which will have two connected components and both those connected components will itself

be trees. 

So we will quickly see a proof of these facts. So you look at any particular vertex U and any

other vertex V, we want to say that there is precisely one path between them. So we may

assume the contraries that is let us assume that there are more path between U and V. So let

us say this is some path and then there is some other path. So if you look at these two paths

there, is a first place where this paths divert. This paths start at the same vertex and, end at

same vertex so clearly there is some place at which these paths divert. 

So let us say this the point at which they divert and then of course they will together at some

place. So if you call this first point as I and then there is surely first point after i where they

come together because surely they come together at V so they must come together at some

point and the first place where they together it is called as J. So in between I and J there are

no common vertices, the paths do not have any other common vertices in between I and J. So

these are all edges in the graph.

Now if you look at vertices I and J and if you start walking from I to J along the path 1 and

then from J to I along the path 2 that is basically a cycle in the original graph. If there are two

paths then surely there is cycle in the original graph. If there are more than one path, we can

engineer a cycle in T because by looking at this two paths we can say that their will surely be

a cycle in the original graph and the original graph by virtue of being a tree we know that it

cannot contain any cycle.

So this cannot be the case that there are more than one path. So there is at most one path, how

do we say that there is a at least 1 path? Well because this a connected graph between any two

vertices you can go from 1 vertex to another vertex. So that proves statement 1 that there is a

unique path. We will now prove statement 3 that removal of any edge results in two disjoint

trees. How do we show this? We will let us look at one particular edge U, V so there is direct

edge between U, V.

Suppose we removed this, now look all the vertices which are connected to U and all the

vertices which are connected to V. Now after removal of this edge there cannot be any third

kind of vertex which is neither, connected U nor connected to V because if there was one

such vertex then it is not connected to either U or V in the original graph and therefore we

argue that every vertex in the original graph either belongs to this set S U or S, V. 



Now if you remove U V, S U and S V are not going to be connected, why? Because if they

were connected then it would mean that from U to V there is more than 1 path because U to V

there is a direct path and if S U and S V where connected by some other thing, clearly by

virtue of any vertex been in S U there is path to U and here is a path to V. So you can go from

U to this particular vertex U prime and from U prime we can go to V prime and V prime we

can go back to V.

So that is an alternate path but by are first fact we know that there is at most there is exactly1

path. So we can argue that S U and S V are disconnected components. And by virtue of this

being connected to I mean all these definition of all those things which are connected to U

that is a connected path and of course there is no cycle in S U if there were cycle in S U then

there is a cycle in original graph. 

So, this is a cycle free connected path and therefore that is a tree. And this is also another tree

so, we know the removal of any edge results in exactly 2 disjoint trees. And, now we can

prove the third fact that any tree has at most N minus 1 adjust. So if you take any tree with 1

vertex clearly there are no adjust in it. So the base case would be that we are going to prove

this statement by induction.

And the induction hypothesis would be true for the graph with one vertex. Now you take any

other tree, suppose it is more than one vertex and surely it should have an edge remove that

particular edge. So take any tree T and if the number of vertex is greater than 1 then surely

there  is  at  least  one  edge  and  remove  any  of  those  edge  and  then  we  would  get  two

components, let us say S U and S V, S U is a tree and therefore the number of edges by

induction.

So S U has size when we write size S U that means the number of vertices in that particular

component minus 1 edges. And S V has size S V minus 1 edges. So, together the total number

of edges that will be S U minus 1 plus S V minus 1, plus 1 for the edge U V that we had

removed. So that would be size of S U plus size of S V that will be N minus 2 plus 1 which is

equal to N minus 1.  So any tree will  have exactly  N minus 1 edges we will  just  define

something for later. So this is a notion of forest, a forest is just a collection of trees which are

disjoint. 

So if the collection had k disjoint trees and total number of vertices was N then we will have 

N minus K adjust in it. Which can be proven by the by using fact 2 repeatedly. We have just 1



connected component the number of edges was N minus 1. I will start of with the next topic, 

which is known as colouring.
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So, we will define what is called colouring. So we have a graph and then we want to colour

the vertices. What is a valid colouring is what we will first define then we will look at simple

algorithm to colour a graph. So let us formally define what is a colouring? A colouring is

basically a function from vertex this vertex set to natural numbers. This is a set of natural

numbers and this one so any function from the vertex set to natural number is called as a

colouring if it is satisfy certain requirements. 

The requirement is C X should not be equal to C Y, if X, Y is an edge. All the way we are

writing it as ordered pair X, Y since we are looking at undirected graphs they essentially

mean the set X, Y. So each vertex is been assigned a number and for vertices which share an

edge between them they should be assigned different numbers. So let us look at our Peterson

graph if we give let us say red colour to this particular vertex then vertices 2, 8 and 5 cannot

be given red colour they should be given a different colour. 

These colour you could assigned them as numbers, so this should be a different colour. 8 can

be the same the colour there is no problem because there is no edge between 2 and 8. So these

vertices can be coloured in particular manner and then 10 can be given red colour itself 7 can

again be given red colour, but 6 cannot be given red colour because 6, 7 is an edge it cannot

be given yellow colour, so it should be given some other colour blue colour let us say. 



Now if look at vertex 9 there also can be given blue colour because 9 is not, I mean the vertex

9 cannot be given either red or yellow. And if you now look at vertex 4 that can be given red

colour and vertex 3 can be given blue colour. Vertex 3 cannot be given red or yellow because

it is neighbours which is coloured with same colour. So here we can see that Peterson graph

can be coloured using 3 colours. If you say red is 1 blue is 2 and yellow is 3 you get a

function from vertex 8 set to natural numbers. 

So that is the notion of a colouring. Clearly if you have N vertices you can surely colour it

using N colours and if  you take the complete  graph on N vertices you would require N

colours  but  what  we  are  interested  in  is,  if  we  given  graph,  how do  we  determine  the

minimum number of colours required to colour the graph, that we will define that particular

property the least number of colours required to colour a graph G is called as the chromatic

number of the graph. 

And this is denoted by kai G. So what we are interested in is given a graph, how do we

determine its chromatic number? This is a difficult problem for arbitrary graphs, finding an

algorithm which will determine this is not a easy task. We will look at a greedy algorithm for

colouring and we will  say the chromatic number is  going to  be certainly less than some

quantity. So we will basically prove the following theorem. 

Suppose the maximum degree in G is K that means if you look at vertex the maximum degree

that it has among all the vertices, the vertex which is maximum degree, has degree K. Then

kai G or the chromatic number is less than or equal to K plus 1. That is the first statement the

second statement says if G is connected and not regular then, kai G is less than or equal to K.

Not regular means so we will first define what are regular graphs. So a graph is called a

regular if every vertex has the same degree. 

If you look at our Peterson graph, look at every vertex its degree is exactly 3. So this is the

example of a 3 regular graph. So if it is not regular then it will require less than or equal to k.

If you look at this cycle graph, every vertex has degree exactly 2 and since the degree of

vertex is exactly 2, kai G is less than or equal to 3 that is what first statement says but, this is

an example of graph which is regular. If you had taken some other graph where the degree at

most 2 but it is not a regular graph then you can argue that you don’t require more than 2

colours.  So the proof of this theorem will  be via an algorithm, so we will  show that the

greedy colouring algorithm.
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We will  correctly  colour  the  graph  without  using  more  colour.  So  what  is  the  greedy

colouring  algorithm?  The  algorithm  is  very  simple,  so  let  us  describe  the  algorithm

systematically. So,  choose  an  order  on vertices,  so  let  us  say  you are  going to  examine

vertices in this particular order V1, V2, Vn and colour of V1 we will assume to be 1 and at

any stage suppose you are colouring ith vertex look at the least number that can be assign to

that without violating the colouring property. 

So look at the vertex I and look at its neighbours, so they would have got some colour and

you can choose for I the colour which is least amongst the acceptable colours. So acceptable

colours would mean any number which is not a colour of its neighbour. So I such that ith

colour is used by a neighbour. Consider the set of colours that neighbour has already used and



remove those colours from natural numbers and whatever is the least remaining colour that

would be the least amongst the acceptable colours and that is the colour you choose for I. 

This is the greedy colouring algorithm. Now if you look at the greedy colouring algorithm

whenever you are examining a particular vertex since it at most the neighbours if you look at

1 to D plus 1, if look at the set of 1 to D plus 1 amongst these numbers at least 1 number

would be missing and that number can surely be chosen as a colour for I. Now we are using

colours from 1 to D plus 1 and using these colours you can colour the entire graph and

therefore, the greedy colouring algorithm finds an acceptable colouring where you do not use

any colour greater than D plus 1. 

The second part of the theorem states that, if you have a connected graph which is not regular

then you can colour it with less than or equal to K colours. So max degree is K and if the

graph was not regular than K colours suffice. Clearly if the graph was regular then we cannot

guarantee that it will be colourable in K using K colours. For example, if you take pentagon,

which is a 2 regular graph, we can see that we require at least 3 colours. 

But if you look at let if say the square this is a two regular graph and it can be coloured with 2

colours. The second condition just states that if you are guaranteed that is not regular, then

you do not need more than the max degree number of colours. So let us prove that part again

we are going to use our greedy colouring algorithm and what we will do is fix the order in

which the vertices are to be coloured.
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So we want to fix the order of vertices V1 to Vn, we will start describing this by first stating

what is V N. So what we know is that max degree is equal K and this is not k regular graph

this is a not regular graph, if is not regular graph then it means that there is at least 1 vertex

whose degree is less than k. So we will choose that vertex as Vn. So Vn is the vertex of

degree less than K. So there is vertex whose degree was strictly less than K and we will take

that vertex as Vn. So if you take Vn it is going have lot of neighbours in the graph. 

So suppose this is the graph G and V N is the particular vertex it is connected to some other

vertices. There it can be at most K minus 1 of them, we first write all of them in any order, so

V N minus 1, V N minus 2, up to V N minus R. So only requirement is R plus 1 will be less

than K. And then we will take V N and look at neighbours of V N, so write down neighbours

of V N minus 1 so these are neighbours of V N minus 1. And, then we can write down

neighbours of V N minus 2 and so on. 

This is the first block is neighbours of V N and second block is neighbours of V N minus 1

and so on.  So of course when you are writing neighbours of V N minus 1,  if  you have

included if there is some common neighbours with end you do not include them. So all the

fresh neighbours of V N minus 1 neighbours which is not been included so far is included

into this block and you do systematically since, it is connected graph this will list out all the

neighbours and finally you will get V1. 

So if you look at vertices in the order V1 to V N and apply greedy colouring in this particular

order we can argue that we do not require more than k colours at any point. The reason being

look at any vertex that you pick let us say V I is some particular vertex one of its neighbour is



somewhere ahead, there is at least one neighbour which is further ahead except for V N, V N

does not  have any neighbour ahead of it  all  its  neighbour are  appeared and would have

appeared previously. So if you take V I and look at all its neighbours and since at least one of

the neighbours is in front the number of colours used by the greedy colouring algorithm to

colour the neighbours V I would be at most K minus 1. 

Because V I degree of V I going to be less than or equal to K, but amongst these since at least

1 neighbour is in front of V I it comes after V I we know that the colours so far used will

strictly less than K. So there is at least 1 colour left amongst colour 1 to K and that colour can

be used for V I, of course this argument does not work for V N but V N any way guaranteed

that its degree is less than K because that is how we choose V N. So even for V N we will

have a colour left with when we are colouring via the greedy colouring method. So, that

concludes the proof.


