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Welcome to the 9th lecture of the MOOC on Parallel Algorithms. In the previous lectures

we have seen several algorithm design techniques; we will continue with the discussion

on algorithm design techniques. Today we shall see an algorithm design technique called

symmetry breaking. For example, when we have several entities conflicting with each

other for some resource,  you can construct a resource graph conflict  graph for those

entities. 

And then when we allocate  the resource,  we might  want to allocate  the resources to

entities that do not conflict with each other. So, we have to break the symmetry between

the entities in some way. So, this is the essential idea of a symmetry breaking, we shall

study symmetry breaking in the context of a linked list today.

(Refer Slide Time: 01:19)

So, we have seen; we have seen linked lists before in this course and we have done an

algorithm for ranking the linked lists. So, let us say we are given a linked list in an array,

you  are  familiar  with  the  physical  representation  of  an  linked  list.  In  the  physical



representation the notes are jumbled together and are given in an arbitrary order that is

the order in which it is given in the array, has no relation to its logical order.

For example if the is the first node, you indicate the first node using a head pointer. This

note points to another using the next pointer, which will point to another using the next

pointer and so on. So, we have seen how the list can be ranked when it is given in this

form, but the problem that we are going to address is different, we are given a linked list

in the physical form and what is needed is to vertex colouring of the linked list. 
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This is a special case of the vertex colouring of graphs. When we are given a graph G

equal to V E; where V is the vertex set and E is the edge set. We said that a colouring of

G vertex colouring of G assigns a colour could be just an integer to each vertex so, that

no 2 adjacent vertices get the same colour. 

So, the problem is just this, every vertex of the graph must be assigned a colour and no 2

adjacent vertices should get the same colour, its possible to repeat the colours the number

of colours use could be much less than the number of vertices in the graph. So, this is the

graph vertex colouring problem. We say vertex colouring in particular because we could

also talk about the edge colouring problem, where we assign colours to the edges of the

graph. But in this lecture we are going to consider the problem of vertex colouring and

that too for a linked list. 
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So, let us consider a logical diagram of a linked list. So, as you can see a linked list as a

by parted graph you can classify the vertices into 2 sets so, that every edges from 1 side

to the other. So, that is the definition of a by parted graph.

So, a linked list is a by parted graph and therefore, it can be two coloured that is you can

use utmost two colours to colour the linked list. So, there are 2 distinct colours to this

linked list; it one is this you can give a colour of 0 to the first vertex 1 to the second

vertex, 0 to the third vertex, 1 to the fourth vertex and so on. 

So, every odd vertex gets the colour of 0 and every even vertex gets the colour of 1 this

is one possible colouring. The other possible colouring is to give a colour of 1 to the first

vertex, 0 to the second vertex, 1 to the third vertex, 0 to the fourth vertex, 1 to the fifth

vertex and 0 to the sixth vertex. 

So, in those cases every odd vertex gets the colour of 1 and every even vertex gets the

colour of 0. So, there are 2 valid 2 colourings for the linked list. So, these are what are

called  the vertex colourings,  we call  it  a 2 vertex colouring because we are using 2

colours. Now a 2 vertex exploring of a linked list can be done using the list ranking

algorithm. We have already seen the list ranking algorithm which runs in order of log n

time using n processors on EREW PRAM. We can use the same algorithm here and after

finding the ranks of the vertices, I can take the least significant bit of the ranks. So, for

this list, if you rank the list from the left end you will be given ranks 0 1 2 3 4 and 5. So,



if you take the least significant bit, you will get 0 1 0 1 0 1 which is the first colouring, a

bit flip of this will give us the second colouring. 

So, a 2 vertex colouring of a linked list can be achieved using a list ranking algorithm

and this can be done in order of log n time using n processors on EREW PRAM. But

today we are going to see a much faster algorithm, I shall show that a vertex the vertex

colouring of linked list can be achieved in order of log star n times where log start is a

extremely slow growing function provided if we allow one more colour that is instead of

2 vertex colouring we will be 3 vertex colouring. 
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First let me define this function that is called log star of n. For an integer n log star of n is

defined as the smallest i so, that when logarithm is taken i times over n we get a value

less than or equal to 2. Log star of n were n is an integer use the smallest i so, that when

n is taken when log is taken n time i times on n, we get a value less than or equal to 2.

For example, let us consider the number 2 power 65536. If you take logarithm of this

number ones you get 65536 you take logarithm once again you get 16, you take one

more logarithm you get 4, you take another logarithm you get 2. 

So, when you take logarithm 1 2 3 and 4 times over 2 power 65536 we get a value of 2

therefore, log star of 2 power 6 5 5 3 6 is 4. Even for a number as large as 2 power 65536

log star is only 4 and how big is 2 power 65536? 
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This is 2 power 2 power 16, which is far greater than 10 power 80 and 10 power 80 is

approximately the number of atoms in the universe. So, the number that we are talking

about 2 power 6 5 5 3 6 is extremely large indeed. 

So,  even  for  numbers  which  are  extremely  large,  so,  large  that  we  are  unlikely  to

encounter  them  in  real  life,  even  for  such  numbers  the  log  star  value  is  utmost  4.

Therefore, for all numbers that we encounter on reality log star is less than or equal to 4

which shows that log star n is a very slow growing function indeed. So, slow growing

that it is particularly a constant. So, we are going to show an algorithm that runs in order

of log star n time, using n processors on the EREW PRAM. The only thing is that for this

we have  to  pay a  price  in  colours  instead  of  2  colouring,  now I  will  be  using  a  3

colouring. So, now let us see how the algorithm proceeds.
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We begin with an initial colouring. In the initial colouring we give every vertex a unique

colour; the purpose was to give every vertex is unique colour. We can give every vertex a

unique colour if every vertex is coloured with its index. So, the colour is the same as the

physical index. That is in the physical representation we have all the notes given an array

these  notes  are  numbered  from  the  left  end  in  this  fashion  they  are  numbered

consecutively. 

So, they are all going to get a unique number of course, we will start the colouring from

0 so, if we have 6 notes we will be colouring in this fashion. So, in general if we have n

notes, the colours will range from 0 to n minus 1. So, the number of bits required to

represent these colours would be ceiling of log n. The initial colours can be represented

using ceiling of log n bits.

So, these are the initial colours every vertex has got a unique colouring therefore, we can

say that the colouring is valid that is 2 adjacent vertices will not have the same colour.

Now the algorithm proceeds in a number of iterations. 
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So, let me specify an iteration now, so, in an iteration what we do is this. For each vertex

in the list we do in parallel the following. For vertex S suppose S of x is the successor of

x and S of S of x is the successors successor. And let us assume that C is the present

colour function that is C of x is the present colour of x and C of S of x is the present

colour of the successor of x. 

So, with these assumptions what we do is this. Let i be the least significant bit at which x

and S of x differ; then the new colour C of x is defined as i concatenated with that is a

binary representation of i concatenated with C i of x which is the ith bit of the present

colour of x. 

So, we take the binary representation of i, where i is the least significant bit at which C

of x and C of x of x differ we look at the colour of x and the colour of the successor of x.

We consider  the least  significant  bit  at  which  the  colour  of  x  and the  colour  of  the

successor  of  x  differ  and  then  form the  new colour  in  this  fashion  take  the  binary

representation of i and then take the ith bit of C of x and concatenate that with the binary

representation of i. This is how we formed the new colour, this we do for every vertex in

parallel and then we keep doing this again and again. This is what one iteration is we

continue with the iteration until the colouring converges. 

So, let us see how many iterations we will have to execute. First let us take an example.
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So, let us say these are the 2 colours this is the colour of x and this is the colour of the

successor of x. So, in this case we find that the least significant bit at which they differ is

this. So, if we number the bit positions starting from 0 in this fashion, we find that there

are differing at the fifth position. The binary representation for 5 is 101; when that is

concatenated with the bit value of C of x at position 5 which in this case happens to be 0,

this is what is to be the new colour for x. 

So, without the commas and the angular bracket it would read like this. So, 1 0 1 0 is

going to be the new colour of vertex x. So, as you can see this method shrinks the size of

the colour  substantially. So,  this  is  what  we are going to  do in the algorithm;  in  an

iteration every vertex participates we do this in parallel  for every single vertex, what

each vertex does is it takes its own colour and its successors colour. So, every vertex

should know its own colour and its successors colour, then it finds the least significant

bit at which these 2 colours differ. 

Suppose this happens at position i, we take the binary representation of i and then the bit

of C of x at that position. When these two are concatenated we get the new colour for

vertex x. At the same time the successor of x is also redefining its colour it would be

looking at S of x and itself it takes those 2 colours that a C of S of x and C of f of S of x

and then it finds the least significant bit at which those two differ that concatenated by

the bit at that position of C of S of x will form the new colour of S of x. 



So,  in  this  fashion every  vertex  redefines  its  colour. When this  iteration  is  repeated

several times, we would be reducing the number of colours used in the list substantially.

Remember we had begun with an initial colouring of ceiling log n bits that is we had n

minus n colours used every vertex has a unique colouring to begin with. So, in the initial

colouring  we  had  n  colours  as  this  process  proceeds  the  number  of  colours  will

substantially reduce. So, we shall see by how far we will achieve this reduction and let us

also see how this reduction could be achieved. 
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So, first let us show that after every iteration. The colouring remains valid after each

iteration if it was valid before the iteration, we want to claim that the colouring remains

valid  after  each iteration  if  it  was  valid  before the iteration.  So, to  claim this  let  us

consider 3 vertices x S of x and S of S of x and C is the present colour I mean present

colour function which means C of x is the present colour of x. So, let us say x and S of x

that differ in the ith bit that is i is the least significant bit at which the colours of x and S

of x differ. That is C of x and C of S of x differ at the ith least ith least significant

position and they agree on or less a significant positions and let us say j is the lsb at

which C of S of x and C of S of S of x differ sorry in the previous line I used S twice I

should have used it only once.

So,  here  let  me  change  like  this.  So,  vertex  x  is  colouring  itself  with  the  binary

representation of i, where i is the least significant bit at which C of x and C of S of x



differ and then it also uses the bit of C of x at that position. Whereas, S of x is colouring

itself with the least significant j at which C of S of x and C of S of S of x differ and it

concatenates that j with its own bit at that position now what I want to claim is that? X

and S of x are going to get different colours. 
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That is C of x and C of S of x are different. So, how do I claim this? Suppose is not equal

to j that is C of x and C of S of x are differ only at the ith position or lesser significant

positions are the same for them and C of S of x and C of S of S of x differ in the j th

position and all less significant positions are the same for them and let us say i and j are

not the same therefore, any ordered pair of this form is not the same as any ordered pair

of this form because they differ in the first component. 

Therefore, the new colours of x and S of x would certainly be different, but as i is equal

to j then the 2 ordered pairs of starting with the same first component, but I claim that

they would still  be different;  that  is  because x is  going to  use its  own bit  at  the ith

position. So, here it would be using C i of x to form its new colour.

So, the new colour of x would be i C i of x whereas, the new colour of S of x would be I

concatenated with C i of S of S of x sorry C i of S of x. So, what it means is that, the new

colours  of C of x the new colours of accent  S of x are  still  different  even after  the

iteration, which means the iteration would keep the colouring valid, provided that the

previous colouring was valid. So, the first colouring that we started with in which we



gave a unique colour to every vertex was a valid one therefore, the colouring that we

obtain  after  every  iteration  will  be  valid  therefore,  we  are  finding  valid  colourings

through the algorithm. 

Now there are a couple of loose ends to be tied one is the last vertex, the logically last

vertex in the list this vertex, does not have a successor, but then in the algorithm every

vertex is supposed to look at the successor and take the least significant bit at which its

colour and the successors colour differ. Since this vertex does not have a successor where

would it look? Therefore, we should provide it with a successor. So, for the purpose of

colouring we would assume that the first vertex is its successor. 

So, we would make the last vertex point to the first vertex thereby making the list is

circular one, but this is only for the purpose of finding the colouring. After finding the

colouring for the other vertices of the list we can again remove this link. So, for the

purpose of colouring we would make the last vertex point to the first vertex. Now the

question is how do we find all those? That is in each iteration we are supposed to find for

each vertex the least significant bit at which 2 colours differ. 

So, how do we find the least significant bit at which 2 colours differ? So, let us say a and

b are 2 colours, let us say we want to find the least significant bit at which a and b differ. 
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We want to find this in order of one time so, that each iteration of our algorithm will run

in order of one time. So, what we do is this? Let me explain this through an example let

me take 2 integers a and b. So, let us say these are the 2 integers a and b. Let me take the

bitwise exclusive are of a and b. If I take the least bitwise exclusive of a and b I will get a

0 here, I will get a 0 here I will get a 0 here, get a 0 here and here I will get a 1. 

So, the first one from the right end is at the position that we want. So, if you count from

the right end 0 1 2 3 4 at the fourth position the 2 integers differ and the 1 that appears

the first one from the right end appears it at position 4. So, we have to extract 4 out of

this number. So, let us see how to do this let this integer be called C, now let me subtract

1 from C which I call d. 

So, C minus 1 is what I call d. So, if I take C minus 1 what I get is this. Position 4 has a 1

in C and every lesser significant bit is 0 therefore, when I subtract 1 from C, these lesser

significant positions will all flip to 1 and position willful will flip to 0 and the remaining

positions will remain what they were. Now let me take the exclusive or of C and d, I will

get a 0 at all these positions, but I will get 1 at all these positions.

So, we find that there are 5 ones in the result in the binary representation of C exclusive

of d, we have 5 once at the least significant bit positions and every other position is 0. 
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This is nothing, but the unary representation of number 4. In unary representation we

represent 0 using 1, 1 using 1 1, 2 using triple 1, 3 using double 1 double 1, 4 using 1

double 1 double 1 or in general we will represent n using n plus 1 consecutive ones. 

So, you find that the unary representation of a number is much larger than its binary

representation. Now what we have done here is to find the unary representation of the

number that we want. That is to find the least significant bit at which 2 colours differ; we

should take the bitwise exclusive or of them and then subtract  one from the bitwise

exclusive or and then take the exclusive or of the numbers C and d and what we get

would be the unary representation of the number that we want. 

Now we should convert the unary representation into the binary representation; that is if

you consider the binary representations here the binary representation of 0 is 1 of 1 is 1

and of 2 is 1 0, here it is 1 1, here it is 1 double 0 and so on. So, what we need is a

conversion from the unary representation to the binary representation, we will do this

using what is called a table look up. 
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Since we are dealing with colours in the range 0 to n minus 1, we require log n bit

positions,  each  bit  position  can  be  represented  using  log  n  bits  so,  there  are  log  n

positions at the most. 



So, we might want to convert numbers in the range 0 to log n from unary to binary. So,

let us see for this purpose we construct a dictionary. So, in the dictionary what we do is

this, we will form the unary representations and the corresponding binary representations

and store them at the appropriate positions. So, at what positions will be stored them this

is the question. Now one is the binary representation of 1, 1 1 is the binary representation

of 3, 1 1 1 is the binary representation of 7 and so on. 

So, we can take an array in which we store these positions store these this dictionary. In

the first position I will store the mapping from 1 to 0, in the third position I will store the

mapping from 1 1 to 1, in the 7th position I will store the mapping from triple 1 to 1 0

and so, on. Now once I have stored the values in this fashion I can treat this array as an

associative array. So, the dictionary is stored in an array of size n, but even though we

have taken an array of size n we would be using only some locations of the array, we

would be using in particular log n locations of the array. And once the array has been

formed we can keep reusing this; however, many times that we want. 

So, once a dictionary is formed we can keep reusing it as many times as we want and

using  the  dictionary  once  requires  only  order  one  time  as  we  have  seen  here.  For

example, if you want to find the binary representation of 1 1 1 1 all we need to do is to

look at position 15 of the array where the value 1 1 will be stored, 1 1 is the binary

representation  of  the  unary  number  double  1  double  1  which  stands  for  3.  So,  the

dictionary can be used in order of 1 time once it is formed.

Therefore, we do not consider the cost of forming the dictionary here, because that is a

one-time operation and once it is formed we can keep reusing it as many times as we

want for every execution of our algorithm. So, we rely on the fact that this dictionary is

available and the dictionary can be looked up in order one time. Therefore, we now find

the iteration that we specified earlier can be executed in order one time for every vertex.

So, for every vertex in parallel we can compare the colours C of x and C of S of x and

extract the least significant bit at which these 2 differ. Now the next step is to find the bit

position of C of x at this position. So, we know that I can be found in order one time

what is remaining is to find the bit of C of x at position i; for this purpose we can form

what are called masks. 
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For each bit position let us say we have a mask, in particular for the 3rd position I have a

mask like this. So, this is corresponding to the 3rd position. So, for each position I will

keep a masks, I will prepare a mask in advance. So, that is done offline again like a

dictionary and these masks again could be kept in a dictionary. So, to find extract the

third number the third bit of a binary number, for example, is what we do is to take the

bitwise and of this with the mask, which will give us.

 And then if the numerical value of the result is 0, then the bit at that position is 0, if the

numerical values not 0 then the bit at that position is 1. So, that is how we check how

what the bit position at a particular position of an integer what the bit at a particular

position of an integer is. So, combining all this we can execute an iteration in order of

one  time.  And  we  have  used  only  an  EREW  PRAM  because  there  is  never  any

concurrent read anywhere. Vertices need to look at their successors, but then every vertex

will first access its own colour then they will access their successors colour.

So, when x is accessing the colour of S of x, S of x is accessing the colour of S of S of x

so, again there is no read conflict. So, the iterations can be executed on EREW PRAM

now let us see how many times the iterations have to be executed. 
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The initial colours had a length of L 1 equals ceiling of log n that is the colours range

from 0 to n minus 1, each colour could be represented using ceiling log n bits. Therefore,

the initial colours had a length of ceiling log n and then the second set of colours were

formed by taking these bit positions the binary representations of these bit positions and

concatenating  them with  1 bit.  Therefore,  we needed to represent  the  positions  0 to

ceiling log n minus 1, this range we have to represent in binary that would require ceiling

of log of log n bit positions. 

So, the new colours the second set of colours required these many bits plus 1 because we

are concatenating them with one extra bit. Therefore, the exact length of the second set

of colours each colour would be ceiling of log of ceiling of log n plus 1 bits, but then this

is nothing, but ceiling of log of log n plus 1 bit positions that is because for every real

number ceiling of log of ceiling of x is the same as ceiling of log x. 

So, you can prove this as an exercise am not going to prove it here, but I will be using it

here using this  equality  we write  L 2 as ceiling  of log of log n plus 1.  And if  n is

sufficiently large, I can say this is less than or equal to 2 of 2 times ceiling of double log

n. So, we find that L 2 is utmost twice double log n, these are the colours that we have

after the first iteration or at the beginning of the second iteration.
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Now, in the second iteration continuing in the same fashion we find that L 3 is atmost

ceiling of log of ceiling of 2 log of log n this ceiling is not needed, which is equal to

ceiling of log of log of log n which is triple log n plus 2, which you can write as utmost

twice triple log n if n is sufficiently large. So, for a large enough n you can write L 3 in

this fashion. 

So, continuing like this, we find that L K is less than or equal to twice log k of n that is

logarithm applied k times on n, provided that n is sufficiently large, if n is not large

enough for the algorithm to proceed for k iteration. So, much the better the algorithm

would terminate earlier. So, in the worst case n is very large and the algorithm proceeds

for k steps in that case the colours the colours that we use will have a length of utmost

this much, now let us say we continue the algorithm for log star n iterations. 
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So, if k equals log star n we find that LK is less than or equal to twice log k n, but log k n

by the definition of log star n is less than or equal to 2 therefore, this is less than or equal

to 4.

So, if you continue the algorithm for log star n iterations, the length of the colours would

reduce to 4. If you repeat the algorithm for one more step, we would be forming 3 bit

colours that is because now we have 4 colours after log star n steps we are left with 4

colours the 4 bit colours. So, the big positions can be represented using 0 1 2 and 3. So,

there are 4 bit positions to represent these can be represented using binary representation

0 0 0 1 1 0 and 1 1. So, you require 2 bits to represent the position numbers and then you

concatenate 1 bit in the end. 

So,  you require  a  total  of  3  bits  to  represent  the new colours.  So,  if  you repeat  the

iteration, we will be left with 3 colours 3 bit colours; 3 bit colours mean 8 colours. So,

now, we have reduce the initial n colouring of the linked list to an 8 colouring of the list.

So, to recap we run the algorithm for log star n iterations, when we put k equal to log star

n we find that the length of the colours that are left would be utmost 4. So, now, we are

left with 4 bit colours; 4 bit colours entail 16 colouring. If you repeat the algorithm once

the number of bits would reduce by 1 again. So, we will be left with 3 bit colours; 3 bit

colours entail 8 colours let us see what happens if we repeat the colouring once again. 
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So, right now we have 3 bit colours so, the big positions are 0 1 and 2 there are only 3

positions the binary representation would be 0 0 0 1 and 1 0 therefore, if we repeat once

again the log star n plus second iteration, will cause us to have colours of this form 0 0

with 1 bit concatenated 0 means 1 with bit concatenated 1 0 with 1 bit concatenated.

So, we are again left with 3 bit colours, but then instead of 8 colouring now we have a 6

colouring. Because these 3 bits would represent only these combinations 0 0 0 1 and 1 0

therefore, the 2 initial bits would be representing only these 3 combinations. So, in effect

we have 6 colours. So, we have reduced from and n colouring to a 6 colouring, we have

reduced the list from an n colouring to a 6 colouring in order of log star n steps. But then

as I mentioned before log star n utmost 4 for all real values of n therefore, log star n plus

2 is utmost 6. So, for all real values of n this algorithm would execute utmost 6 steps, and

we would have come down to a 6 colouring. 

So, what we began with was n colouring and what we have now is a 6 colouring, but

what we want is a 3 colouring. So, on an EREW PRAM, we have managed to reduce n

colouring 2 or 6 colouring now we need to go and convert  this 6 colouring into a 3

colouring then we would be done. 
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What we do is this? Let us consider the list let us say we have some colouring. So, we

have a linked list that is 6 coloured we want to reduce this to a 3 coloured what we do is,

this initially we make every vertex sleep we will wake up only those vertices that have a

colour of 4. So, this vertex is woken up and this vertex is woken up. Every vertex that is

of colour 4 is now awake this vertices will look to both sides. 

So, this vertex looks to either side it finds that has a 2 1 one side and 5 on the other side

it does not have a 1. So, what this vertex does is to adopt the least colour which is not in

its  neighborhood,  every  vertex  that  is  woken  up  adopts  the  least  colour  not  in  its

neighborhood, but remember we have woken up vertices of colour 4 no 2 of them are

adjacent.

So, when they look around in the neighborhood they are not conflicting with each other

because there are 2 there are not too vert colour 4 vertices that are adjacent to each other.

So, in this example there are 2 colour 4 vertices when they look around, they find that

colour 1 is absent for both of them so, they will adopt colour 1 each. And next we wake

up every vertex of colour 5. So, in this examples there is only one vertex of colour 5 that

is  woken up when that  vertex looks around it  finds  that  it  has  only 1 colour  in  the

neighborhood which is 1 and it will adopt the least colour not in its neighborhood. 

What I mean is it the least valid colour. We are considering only colours in the range 1 2

3 these are the colours that we finally want. So, the vertices are looking for the least



colour least valid colour not in the neighborhood. So, vertex 5 finds that it has 1 in the

neighborhood and the least colour not in the neighborhood is 2 therefore, this will be

recoloured as 2. 

Now we come to vertices of colour 6. So, when I wake up vertex of colour 6 and it looks

around it finds that it has both the colours 1 and 2 in its neighborhood therefore, the least

colour which is not in its neighborhood is 3. It ends up adopting the third colour they will

always be a third colour because what we are considering as a linked list therefore, every

vertex  has  a  neighborhood  of  size  2.  So,  there  can  be  utmost  2  colours  in  the

neighborhood therefore, the will always be a third valid colour not in the neighborhood

so, every vertex has a colour to adopt. 

So, we are waking up the vertices so, that no 2 awake vertices are adjacent to each other.

So, in a sense the awake vertices will form an independent set and then they can all adopt

a new colour without conflicting with each other. Because no 2 of them are adjacent and

they will always be one free colour for them to adopt because every neighborhood has a

size of utmost 2. 

The size could  be 1 also when we considered  this  vertex  of  colour  5 it  had  only 1

neighbor. So, the size of the neighborhood is utmost 2 therefore, suddenly there is one

free colour as in the case of this vertex of colour 6 it has 2 neighbors of colours 1 and 2

each so, colour 3 is free. So, that is what this vertex adopts. So, we find that after doing

all this the list is now 3 colour. So, we have taken 3 additional steps we assume that

every vertex has a processor, with this assumption we can wake up any vertex that we

want. 

So,  we  wake  up  every  vertex  of  colour  4  simultaneously  all  of  them  will  act

simultaneously they will scan the neighborhood, the neighborhood has size of utmost 2

and then it will find the least column not in the neighborhood and adopt that colour. So,

this will take only order one time for each colour. So, we consider the 3 colours 4 5 and 6

so, a total of order one time is necessary to reduce the 6 colouring 2 or 3 colouring.



(Refer Slide Time: 52:49)

To summarize what we have got is that, in order of log star n time a linked list of n

vertices is 3 coloured on EREW PRAM that is it from this lecture hope to see you in the

next lecture.

Thank you. 


