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Welcome to the 7th lecture of the NPTEL MOOC on Parallel Algorithms. In the previous

couple of lectures, we have been seeing various algorithm design techniques. Today, we

shall discuss an algorithm design technique that we shall call Accelerated Crowding. In

this design technique, we have a problem instance, the size of which shrinks through

steps, but the number of processors remain the same.

So, as the problem proceeds through the steps, as the algorithm proceeds through its

steps, we find that the same number of processors are crowding over smaller and smaller

problem instances and therefore, these smaller problem instances can be solved faster.

(Refer Slide Time: 01:14)

A crucial notion here is what is called the processor advantage. The processor advantage

of  an  algorithmic  instance  is  the  ratio  of  the  number  of  processors  available  to  the

problem size. Let us say we have an input of size n and we try to solve this input of size

n using p processors. In that case, we say that the processor advantage is p by n. You

have p processors to solve an instance of size n, therefore the processor advantage is the

ratio p by n, the number of processors available to the problem size.



(Refer Slide Time: 02:13)

In  the  algorithm  design  technique  that  we  call  accelerated  crowding,  suppose  for  a

problem p,  we have a super fast  algorithm. But,  let  us say those algorithm is  rather

wasteful in processors let us say we want to design a moderately fast, but economic in

processors  algorithm.  A solution  can  be  found  usually  by  iteratively  reducing  the

problem  size  so  that  the  processor  advantage  of  the  new  instances  increases

exponentially through the iterations.
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We will consider an example. Let us say we want to find the minimum of n elements; for

example, given an array of size let us say 4, we want to find the minimum of the array

which is in this case 1.

So, we assume, we are given an array of size n, but let us assume that we have n squared

processors, for a problem size of n. So, in this case, n squared equal to 16, we have 16

processors  let  us  say.  Using  these  16  processors,  what  we  do  is  this  we  take  a  2

dimensional array a 4 by 4 array along the columns, we have along the rows, we have

these values 4, 3, 1, 2 and along the columns also we have these values 4, 3, 1, 2. At each

cell of the 2 dimensional array, we compare the row value with the column value. If the

row value is greater than the column value, then we write a 1 in the cell; otherwise, we

write a 0 in the cell.

At the diagonal positions, we will have 0’s because when 4 is compared with 4 we have

equality not a greater than sign. So, at all the diagonal positions we have a 0. For a row

value of 3 and a column value of 4, we have a result of 0 because a 1 will happen only

when the row value is greater than the column value. For the same reason, the value here

will be 1; for a 1, 4, we have 0; for a 4, 1, we have a 1; for a 2, 4, we have a 0; for a 4, 2,

we have a 1; for a 3, 1, we have a 1 but for 1, 3, we have a 0. For 3, 2, we have a 1 but

for 2, 3, we have a 0; for 2, 1, we have a 1 but for 1, 2, we have a 0.

So, the array is filled in this fashion. For each location of the array for every ordered pair

i,  j,  the array location will be filled.  If the row value happens to be greater than the

column value, then the array location will get a 1; otherwise we will get a 0. So, when

the array is filled in this fashion, let us see for each of the rows, we take the minimum,

we will take the OR of the bits in that row. So, in the topmost row, we have 0 1 1 1. So,

the OR of these 4 bits is 1. In the second row, we have 0 0 1 1, again the OR is 1. In the

third  row, we  have  double  0,  double  0,  the  OR of  these  four  is  1,  it  is  0.  In  the

bottommost row, once again we have 1.

So, we find that 0 happens exactly for the smallest element in the array because this is

the element  which will  be adjudged less than or equal to every single column value

including itself. Therefore, for this particular element every single entry in the row is

going to be 0 and this will be the only row for which the OR value will be 0. So, when



we look at  the OR results,  the value for which the answer is  0 will  be the smallest

element in the array.
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So, the algorithm that we have just seen works like this. We are given an array of size n,

we  want  to  find  the  minimum of  this  array. First  what  we do is  this,  we take  a  2

dimensional array and then for each location i, j we fill the location with the Boolean

value a i greater than a j that is if a i is greater than a j, the location will get 1; otherwise

the location will get a 0. So, this is what we have done here, in the 2 dimensional array,

we have filled the logical values after every comparison. Since, we are doing this in

parallel for every ordered pair i j, we will require n squared processors because the 2

dimensional array which is an n by n array has n squared locations and for each location

we will have to dedicate a processor.

With n squared processors, since what we have is a common CRCW PRAM, concurrent

reads  are  permitted.  Therefore,  multiple  processors  can  read  the  same  input  value

simultaneously that is a i can be read by several processes simultaneously for each i and

therefore, b i j can be filled in order 1 time. So, the array is filled in order 1 time. There

in the second step, we have several parallel executions; one parallel execution for each

row, what we do is to invoke the OR algorithm for common CRCW PRAM that we have

studied in the earlier lectures on each row independently and in parallel. The result of the

OR will be kept in C i that is for the result of row i will be kept in C i.



If C i happens to be 0, we know that exactly one row will have a 0 value. If the minimum

is unique, then the corresponding row value A i will be returned as the smallest element.

What if there are multiple minima? Then corresponding to all those elements, we will

have a 0 value and all of them will be attempting to return the corresponding row values.

But all these row values are identical therefore, on a common CRCW PRAM, we will

have a concurrent right where every process are attempting to write will be writing the

same value which is a valid right therefore, the right we will go through. The algorithm

works correctly.

So, we find that there are only three steps. Each of the steps of the algorithm will work in

unit time. So, we have an order 1 time we have an, we have now order 1 time algorithm

using  n  squared  processes,  to  solve  an  instance  of  size  n.  Therefore,  the  processor

advantages n squared by n, the number of processors divided by the problem size which

is  n.  So,  here we find that  the  problem size as  well  as  the processor  advantage  are

identical which is n.

(Refer Slide Time: 09:44)

So, what we know now is that the problem of finding the minimum of n elements can be

solved in order 1 time on common CRCW PRAM using a processor advantage which is

equal  to  the  problem size.  Please take a  look at  the algorithm specification  here the

processor allocation has not been made explicit here. In the first step, all I say is that for



all possible ordered pairs i j, b i j has to be filled according to the specification, but then

which processor should do the copying of which i j is not specified. 

So, that allocation is unspecified here. So, hereafter in algorithm descriptions the pardo

variable will not always represent processor indices, but will still  be indicative of the

parallelism.  The allocation will  not always be explicitly  stated but in each case,  you

would be able to figure out the processor allocation easily now.

(Refer Slide Time: 10:43)

So, this algorithm runs in order 1 time with n squared processes. This is a bit super fast

algorithm, but it is very wasteful in processes. It is a non optimal algorithm to find the

minimum of n integers, all you require is order n time sequentially therefore, we would

expect an algorithm to run in order n cost, but this is very wasteful this algorithm runs in

order one time using n squared processors.

 So, for the cost of the algorithm is order of n squared. Now, suppose we want to design

an algorithm that uses n r processors where r is less than n, that is the initial process

advantages are instead of n that we have just seen. So, what we do is this.
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We divide the given array into a number of segments. Each segment is of size r. So, the

segments can be numbered like this. The leftmost segment is called the first segment and

the rightmost segment is called the n by r th segment. To each segment we allocate r

squared  processors.  So,  the  total  number  of  processors  allocated  is  r  squared  is  the

number of processors are located per segment and n by r is the number of segments. So,

the product is n r which is indeed the number of processors that we have and the number

of elements in all the segments put together is r into n by r which is n.

So,  as  you can  see  the  processor  advantages  are  initially  and the  problem has  been

divided in this fashion. Now, each of the segments can be solved in order 1 time because

the segment has the size of r and there are r squared processors allocated to the segment.

Using the algorithm that we have just seen where the processor advantage is equal to the

size  of  the  problem,  the  problem can  be  solved  in  order  1  time.  So,  each  of  these

segments can be solved in order 1 time; that means, we find the minimum within each

segment. How will we find the global minimum now?

We have obtained the local minima of the segments. If you take the minimum of all these

minima, then you would get the global minimum. Let me take an example.
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Let us say we have an array of size 12 A and B are hexa decimal 10 and 11 respectively.

So, let us say this is the given array. Suppose, we divide this array into segments of size 3

each, our goal is to find the minimum in the entire array. We divide this into several local

problems and solve each local problem.

The smallest  element within the first segment which is 5, 8 and 2 is 2. The smallest

element in the second segment which contains 4, 9 and 3 is 3. The smallest element in

the third segment which contains 1, A and B is 1 and the smallest element in the fourth

segment is 0.

So, the original instance of size 12 has now reduced to an instance of size 4. If you find

the smallest of these four elements, you would have the answer for the global problem.

The smallest element in the array in any case would have been a local minimum as well.

Therefore, when we find the local minima this certainly would be selected. Therefore, in

the reduced problem instance, the smallest element will be present and this indeed is the

global minimum therefore, it will be smaller than any other selected elements selected

from the other segments.

Therefore, when we take the minimum of these elements, you will indeed be returning

the global minimum as the value. Therefore, the idea of algorithm is correct.
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So, now, let us see how the algorithm proceeds. If n equal to r, that is the processor

advantages identical to the size of the problem, we invoke the previous algorithm which

runs in order 1 time. Otherwise, we divide the array into r segments, the segments of size

r. So, there are n by r segments for each segment in parallel,  we invoke the previous

algorithm using r squared processors, then we invoke minimum two recursively using

this reduced array. The new array is given in b and it has n by r elements. On these n by r

elements, we would invoke min 2 recursively using a processor advantage of r squared.

Why is the processor advantage r squared now?
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Initially, we had a problem size of n,  the number of processes n r  which means the

processor advantage is r. Now, after one invocation, the new problem instance has a size

of n by r; that is because we have one element coming out of every single segment and

there are n by r segments. So, the new problem size is n by r, the number of processors is

the same, we still have n r processors.

Therefore, the processor advantage is n r divided by n pi r, the number of process divided

by the new problem size which is r squared, that is the new problem sizes n by r and the

new processor advantages r squared. This allows us to write a recurrence relation.

(Refer Slide Time: 18:05)

T of n r that is when we invoke the algorithm with a problem size of n and the processor

advantage of r, we find that after spending order one time we managed to  reduce the

problem size to n by r and increase the processor advantage to r squared.

Therefore, the recurrence relation will be like this. If we continue with this now, the new

problem instance is n by r and the processor advantages r squared. Therefore, now we

will be dividing the array the remnant array of size n by r into segments of size r squared

each. Therefore, we will have n by r divided by r squared which is n by r cubed; these

many segments and we will have one element coming out of each segment. So, the new

problem  size  will  be  n  by  r  cubed  and  the  number  of  processors  remain  identical.

Therefore, the processor advantage will be n r divided by n by r cubed which is r power



4. Therefore, the recurrence relation that we have is this t of n r is t of n by r r squared

plus c.

So, when we unroll this once more, what we get is now the new problem instance is n by

r  cubed  and  there  are  n  r  processes  still  for  a  processor  advantage  of  r  power  4.

Therefore, at the next level of recursion, we would be dividing the remnant array into

segments r segments of size r power 4. So, there will be n by r power 7 segments now.

Therefore, the next iteration will have a problem instance of size n by r power 7 and

therefore, the processor advantage would be r power 8. So, if you continue like this, now

the pattern is clear. If you continue like this for s steps, you would have 1, 3 and 7 are all

1 less than a power of 2.

So, you can write this as 2 power s minus 1. The processor advantage now would be r

power 2 power s this will be the situation after s levels of recursion and you would have

spent a total of s c step s c time until then. When would the recursion stop?

(Refer Slide Time: 20:35)

The recursion stops when the problem size is equal to the processor advantage, that is

because when the problem size is equal to the processor advantage, we can invoke the

first minimum algorithm that we saw that runs in order of 1 time.

So, after s steps, if we were to invoke that algorithm that would mean the number of

elements is equal to the processor advantage, which means this implies that n is equal to



r power 2 power s into r power 2 power s minus 1 or r power 2 power s plus 1 minus 1; n

is equal to this. If you take logarithm on both sides logarithm to the base of r, you would

get 2 power s plus 1 minus 1 on the right hand side, which means log of n to the base r

plus 1.

(Refer Slide Time: 21:57)

It is the same as 2 power s plus 1. If you take logarithm once again, you have logarithm

to the base 2 of log n to the base r plus 1 is equal to s plus 1. That tells you after how

many steps the recursion would stop; that is s is equal to logarithm to the base 2 of

logarithm to the base r of n plus 1 the whole minus 1 or which is order of log 2 log r of n.

So, the algorithm would run in order of logarithm to the base 2 of logarithm to the base r

of n using n r processors. So, let us see what this entails for different values of r.
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If you take r as n power epsilon, that is the number of processes p is n r which is n power

1 plus epsilon for a small constant epsilon, we find that log r is epsilon log n, that is log n

by log r which is the same as log n to the base r. This is 1 by epsilon.

(Refer Slide Time: 24:18)

Therefore, the running time of the algorithm would be which is order of log to the base 2

of log n to the base r. This would be the logarithm of 1 by epsilon, which is order of 1.

So, the algorithm would run in order 1 time using n power 1 plus epsilon processors on

the same model.



So, this is an improvement. The first algorithm that we had run in order 1 time using in

squad processors, this new algorithm also runs in order 1 time but uses n power 1 plus

epsilon processors. The only difference is that the constant factor involved is larger here

because here the actual running time is order of 1 by epsilon. The smaller epsilon is the

larger 1 by epsilon is therefore, log of 1 by epsilon is an increasing function in epsilon in

1 by epsilon. 

Therefore,  the  constant  factor  here  is  larger  than  the  constant  factor  in  the  earlier

algorithm that we saw, but the number of processors used is substantially less from n

squared we have reduced the number of processors to n power 1 plus epsilon that is if

you have r equal to n power epsilon.

(Refer Slide Time: 25:59)

Let us try another value of r. If n is equal to 2, then the running time is order of log to the

base 2 of log to the base 2 of n and the number of processors 2 n that is if the processor

advantage is to then the number of processes 2 n and the running time is log of log n; log

of  log  n  is  an  extremely  slow growing  function  it  is  a  logarithm  of  the  logarithm.

Therefore, even for a number of the size of 2 power 6 5 5 3 6, log of log this would be

log of 65536.

So, 16 therefore, for all practical values of n, you could say log of log n is less than or

equal to 16. So, this algorithm is indeed very fast. If you have an algorithm that runs in

order of log of log n time using 2 n processors, then since the model is self simulating,



we can simulate the same algorithm using n processors for the same time complexity.

You  have  the  number  of  processors  the  running  time  doubles  but  even  that  with  a

doubling of the running time, we still have order of log of log n running time and we

have now used n processors. 

The algorithm is still not optimal the cost of the algorithm is order of n times log of log n

whereas,  finding  the  minimum  of  n  elements  sequentially  takes  only  order  n  cost.

Therefore, the algorithm is still not optimal. This is a suboptimal algorithm, but it is a

very fast algorithm indeed it runs in order of log of log n time.

(Refer Slide Time: 28:17)

So, to summarize the algorithm for a constant epsilon where epsilon is between 0 and 1

runs in order of 1 time with n power 1 plus epsilon processors, instead if we let r equal to

2, then the running time of the algorithm is order of double log in, that is the minimum of

n numbers can be found in order of double log n time with n processors. This is an

example  of  the  algorithm  design  technique  called  accelerated  crowding.  The  next

algorithm design technique that we are going to study is one that is familiar to you from

the sequential algorithm setting, it is called Divide and Conquer.

So, in this case, given instance of the problem is divided into multiple problem instances

of smaller size. We solve each of the smaller instances independently and then combine

the  results  to  form a solution  for  the  global  instance.  We would consider  a  familiar

problem.
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For example that of prefix sums. What we do is this. Suppose we are given an array of

size n of which we want to find the prefix. Let us say we divide the array into two halves.

We solve the prefix sum in each half independently, then the rightmost element in the left

instance. This will be the sum of all the values in the left half, but when the right side of

the division was solved, the elements to the left were not considered.

The prefix sums were computed starting from the point of division. To get the correct

prefix sums in the right half what is needed is to add the sum on the left side to every

single element on the right side; which means this sum value must be added to every

single element on the right side. So, this is the recursive algorithm for finding prefix

sums. Let us work out an example.
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You are given an array of size 8, this is the same example that we saw before, we divide

this in the middle. So, we have now two problem instances of size four each. To solve the

left instance which is 4 8 1 5, we again divide this into two problem instances of size two

each. To solve this instance of size two, we again divide it into two instances of size one

each. The solution of an instance of size one is clear enough. The values are identical to

the given values, when we have an instance of size one the problem has a trivial solution.

Then, the rightmost value of the left solution which in this case happens to be 4, this is to

be added to every value on the right. The left value will remain as it is, but the value on

the right will have to get this 4 added to it. Therefore, the right value will now be 12.

So, the solution for the array of size two, namely 2 8, 4 8 this is 4 12. Now, let  us

consider the instance 1, 5. This was divided into instances of size 1 each; their solutions

would be 1 and 5. You take the solution of the sum of the left side which is the last value

on the left side which in this case happens to be 1. This 1 has to be added to every value

on the right, there is only 1 value on the right which is 5. So, 5 plus 1 is 6. On the left

side, we have 1.

So, the solution for the instance 1, 5 is 1, 6. Then combining the solutions 4, 12 and 1, 6

we take the rightmost sum on the left side, which is 12 and this 12 is added to every

value on the right side. Therefore, we have 13 and 18 here and on the left side we have 4

and 12 remaining as it is. So, the instance 4 8 1 5 has the solution 4 12 13 and 18 as you



can see the solution is correct. Similarly, for the instance 2 7 3 6 we form the solution 2 9

12 18.

So, now the problem on the left side as well as the problem on the right side have been

independently solved. To find the global solution, once again we look at the rightmost

sum on the left side which in this case happens to be 18. And add this to every value on

the right  side.  Therefore,  the final  answer would be;  on the left  side,  the values  are

written as it is.

So, 4, 12, 13 and 18 and on the right side, we have 18 added to these values 18 plus 2,

20, 18 plus 9, 27; 18 plus 12, 30 and 18 plus 18, 36. So, the final prefix values are prefix

sum values are 4, 12, 13, 18, 20, 27, 30 and 36 which you can see are correct.

(Refer Slide Time: 34:32)

So, in general, the algorithm proceeds in this fashion. Given an array of size n where we

assume that n is a power of 2, the algorithm proceeds like this. If n equal to 1, return the

array as it is, that is if the input is an array of size 1, nothing is to be done. The array is

returned as it is.

Otherwise, for i varying from 0 to 1, that is there are two instances; i equal to 0 and i

equal to 1; these two instances are to be executed in parallel pardo for 0 less than or

equal to i less than or equal to 1. Two instances to be executed in parallel, we solve 2

instances when i equal to 0. We are invoking prefix sums 2 recursively on a 1 2 a n by 2



when i equal to 1, we are invoking the algorithm recursively on values a n by 2 plus 1 to

n. So, the two halves are solved independently and in parallel the corresponding results

are stored in the b array. And then, for every element on the right side, there are n by 2

elements on the right side.

So, for i varying from 1 to n by 2, we do this in parallel. The content of n by 2 plus i will

be enhanced by the content of b n by 2; b n by 2 is the leftmost element,  rightmost

element on the left side. This is added to every single element on the right side and then

the array b is returned. So, this is the recursive specification of prefix sums 2. So, let us

see what is the time complexity of the algorithm.

(Refer Slide Time: 36:04)

We find that the time complexity is like this. When we are given an instance of size n, we

form two instances of size n by 2 each and solve these two instances independently and

in parallel. And then combining the results, we spent another order 1 time. We take the

rightmost element on the left side and add this to every single element on the right side.

If we use a CRAW PRAM, then this value can be read by every single processor on the

right side simultaneously and the addition will take only order 1 time. Therefore, C 1

here is a constant. So, the recurrence relation is T of n equals T of n by 2 plus C 1. You

can see that the solution for this recurrence relation is order log n that is because T of n is

p of n by 2 plus C 1. If you unroll this recurrence, we find that this is T of n by 4 plus C 1

plus C 1 which is 2 C 1. If we unroll once again, we have T of n by 8 plus 3 C 1. So, in



general if you unroll k times, we have T of n by 2 power k plus k C 1. If you put k equal

to log n in particular, this becomes T of 1 plus C 1 log n. But when there is only 1

element in the array, the array is returned as it is without doing anything.

So, the algorithm would take order 1 time. Therefore, this is order of log n that is why

the time complexity is order of log n. But the cost of the algorithm is governed by this

recurrence relation. The cost on an instance of size n is twice the cost of the invocations

on size n by 2 each. That is we invoke the algorithm on the left side as well as the right

side. The cost of both the invocations would count. So, we have a term two times c of n

by 2. And then for combining them, we would require n by 2 processes on the right side

to be active. All these processes will have to read the rightmost value on the left side and

add this value to their own values.

So, there are n by 2 processors operating for one step which is a cost of order of n

Therefore, the recurrence relation is C of n equals 2 times C of n by 2 plus C 2 of n. This

is  the  recurrence  relation  that  is  familiar  to  you.  This  is  identical  to  the  recurrence

relation for merge sort.  So, you know that the solution for this recurrence relation is

order of n log n.

So, the algorithm runs in order of n log n cost in order of log n time. As you can see this

is worse than the previous prefix sums algorithm that we have seen and the way the

algorithm is specified branch scheduling principle will not apply directly. That is because

the  algorithm is  a  recursively  specified  one.  But  of  course,  it  uses  a  very  different

algorithm design technique. It uses divide and conquer whereas, the previous prefix sums

algorithm that we have seen was a balanced tree algorithm.

Now, can we apply branch scheduling principle on this algorithm? On the face of it, it

cannot be. But every recursive algorithm can be converted into an iterative algorithm and

if you convert this algorithm into an iterative one, you would find that branch scheduling

principle will be applicable. And therefore, the cost of the algorithm can be reduced from

order of n log n 2 order of n. That would be possible only on the iterative version of this

algorithm.  As  another  example  of  divide  and conquer,  we would  design  an  optimal

algorithm for finding the minimum of n numbers on common CRPW PRAM.
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While ago we have seen an order double log in time algorithm for a cost of order of n

times double log n. This is the second minimum algorithm we saw, using n processors

that algorithm ran in order of double log n time. Let us say we want to convert this

algorithm into an optimal algorithm. For doing this, what we do is this.

(Refer Slide Time: 41:01)

Given an array of size n where we have only n by double log n processors, we divide this

array into segments of size double log n each. The size of each segment is double log n.



So, the number of segments would be n by double log n. And we assume we have n by

double log n processors. That is we have 1 processor per segment.

So, we can assign 1 processor per segment. Using these processors, sequentially, we can

solve each segment. That is the first processor will scan the elements in the first segment

sequentially and find out the minimum and output the minimum. The second processor

does the same in parallel and simultaneously and so does every single processor. 

Since, the size of the segment is double log n, this would take order of double log n time.

So, this is an order of since each segment is of a size double log n with one processor per

segment, the minimum within the segment can be found in order of double log n time.

Now, to find the global minimum all that we need to do is to find the minimum among

these minimum, among the local minima.

So, we have n by double log n local minima. Now, the solution should be obvious to you,

there are n by double log n local minima the minimum of which is the answer that we

seek and we have n by double log n processors. So, to solve this problem, we can invoke

the  previous  algorithm  that  is  the  second  minimum  algorithm.  So,  this  is  our  third

minimum algorithm.  So,  to  summarize  this  algorithm proceeds  in  this  fashion.  This

algorithm assumes n by double log n processors. It takes an array of size n, divides it into

several segments of size double log n each.

So, there are n by double log n segments, we depute one processor to each segment, the

processor will solve the segment sequentially. Since the segment has the size of double

log  n  the  sequential  solution  will  take  order  of  double  log  n  time.  So,  out  of  each

segment, we pick out one minimum. 

Since there are n by double log n segments we have a total of n by double log n local

minima. The minimum among these local minimum is the global minimum that we seek.

But since, we have n by double log n processors, we can solve this in order of double log

n time, the number of processors identical to the number of elements we have.
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Therefore, this can be solved now in strictly speaking double log of n by double log n.

This is the problem size now. So, when it is solved like this, since n by double log n is

less than n you can see this is order of double log n. So, invocation of minimum 2 will

take order of double log n time.  This  is  in addition to  the time we spent  within the

segments.  Within  each segment,  we spent  order  of  double  log  n time.  Since  all  the

segments were solved in parallel, the total time taken is still order of double log n and we

have used only n by double log and processors.

Therefore, this is an optimal algorithm; the cost of the algorithm is order n and the model

that  we have used is  common CRCW PRAM. So, this  is  an optimal  algorithm. You

cannot be expecting to asymptotically improve on this. So, the problem of finding the

minimum n numbers on common CRCW PRAM can be solved in order of double log n

time for a cost of order n which is optimum ok. That is it from the 7th lecture. Hope to

see you in the next lecture.

Thank you. 


