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Lecture – 35
Circuit Value Problem is P-complete for NC-reductions

Welcome to the 35th lecture of the MOOC on Parallel Algorithms. Today we shall see

the first P complete problem for NC reductions this is the Circuit Value Problem.

(Refer Slide Time: 00:45)

So,  let  us  begin  with  the  definition  of  the  Circuit  Value  Problem.  The circuit  value

problem takes an instance of a circuit, where each g i is an input or is g j and g k the end

of two previous gates or g j or g k or negation of g j for j k less than i.

So, an order tuple of this form is called an instance of the circuit value problem. What is

required in the problem is to evaluate the circuit.



(Refer Slide Time: 01:38).

So, we define the circuit value problem as the set of all ordered pairs g 1 through g n

such that g n evaluates to 1. We shall show that CVP is P complete for NC reductions,

from the definition of P completeness for NC reductions we know that a language is P

complete for NC reductions, if it belongs to P and then every language in P, NC reduces

to this language.

(Refer Slide Time: 02:24)

So, for C V P to be P complete for NC reductions we must first show that C V P belongs

to P, but this is easy to show. When we are given a circuit of this form where each g i is



either an input or an AND OR or negation of previous gates, then you can evaluate this

circuit going left to right. Here, g 1 is necessarily an input, g 2 is an input if it is not a

negation of g 1 unless g 2 is the negation of g 1.

(Refer Slide Time: 03:11)

So, this will form the basis and then going from left to right, when we come to i that is

when we look at gate g i. If g i is g j or g k or g j or g j and g k or negation of g j, then g j

and g k where, j and k are less than i are already evaluated because we are going from

the left to the right. Therefore, g i can be evaluated, the only other possibility is the g i is

an input itself in which case g i is readily available.

So, either way when we move from the left to the right the gates can be evaluated one at

a time. So, when we reach the right end g n would be evaluated.



(Refer Slide Time: 04:05)

So, all that is necessary is to evaluate g n once g n is evaluated, we know if the circuit

belongs  to  cvt  or  not.  If  the  circuit  belongs  to  CVP then the  circuit  evaluates  to  1,

otherwise the circuit evaluates to 0.

So, the evaluation of the circuit can be done in order of n time sequentially, which means

there is a polynomial time algorithm for CVP. In other words, CVP belongs to P. So, the

first requirement is met, for CVP to be P complete for NC reductions it has to be in P

first of all that is satisfied.

(Refer Slide Time: 04:53)



So, now what remains to show is that, for every language L belonging to P, L NC reduces

to C V P. But then how do we show that? Let us say we take an arbitrary language L in P.

So, L is  an arbitrary language in  P, but then P is  the class  of all  languages  that  are

solvable in polynomial time use in a deterministic turing machine. Therefore, we can

assume that  L has  a  deterministic  turing machine,  without  loss  of  generality  we can

assume that this machine is a 1 tape turing machine. Because always a multi tape turing

machine can be simulated on a 1 tape turing machine. So, let us assume that, L has a 1

tape turing machine.

(Refer Slide Time: 05:39)

So, let us say M is made up of these tuples Q is the set of states, sigma is the alphabet,

delta is the transition table, q 1 is the start state and f is the set of final states. Let us say

the set Q is made up of s states.

The state space has a size of s let us say and let us say sigma is a 1 through a m this mod

sigma is m. So, s and m are constants of the machine.
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And then let us say we are given an input W. We can construct a circuit, from W in poly

logarithmic time, using polynomial number of processes so that W will belong to L. if it

only if C belongs to CVP. So, what we are going to show is that given an arbitrary

language L and an arbitrary input W to L, we can construct a circuit C from W in poly

logarithmic time using a polynomial number of processors.

So, that W will belong to, if and only if C will belong to CVP. Therefore, if we have an

algorithm for checking membership in CVP, then that algorithm can be use for checking

membership in L of W. So, this is what we need to show, to establish that CVP is P

complete for NC reductions. So, how do we do this?



(Refer Slide Time: 07:35)

So, we have the input w; consider the execution of this machine on w. So, let us assume

that w is, given left justified on M’s tape. So, w is the input to M and that is given left

justified in the tape. If this is the tape then w is given at the left end, the rest of it is we as

assumed to be blank. The rest of the tape is assumed to be blank. So, the input is given at

the left end of the tape and we assume that the machine starts at the leftmost cell.

So, M starts in state q 1, with the head on cell 1. We assume that the cells are numbered

consecutively from the left end so the leftmost cell is number 1.

(Refer Slide Time: 08:31)



Now, we are going to construct a circuit C; to construct C, we will establish a number of

signal points. These signal points are denoted like this; we have signal points of the form

H i t, we have signal points of the form C i j t, and we have signal points of the form S k

t. Here; i varies from 1 to T of n, t varies from 0 to T of n, and k varies from 1 to S.

(Refer Slide Time: 09:23)

So, you can see that there are order of T square such signal points, T square of n signal

points, where T of n is the time bound of the machine. That is when M is given an input

of length n, we have a guarantee that M will come to a halt in T of n steps. And we also

know that T of n is a polynomial in n that is because M is a polynomial time bounded

machine. So, we have established order of T squared of n which is also a polynomial in n

signal points.

 (Refer Slide Time: 10:00)



So, let us see what these signal points mean. H of i t is going to be 1, if and only if the

head of the machine is on cell i, at the tth time instant. H of i t is going to be 1, if and

only if the head of the machine is going to be on cell i at the tth time instant. Similarly C

i j is going to be 1 if and only if cell i contains simple a j at the tth time instant.

(Refer Slide Time: 10:29)

So, now you can imagine what S k t is going to be. This is going to be 1 if and only if the

state of the machine is q k at time t. So, we have order of T squared of n signal points of

the sort and we are going to connect these signal points using gates to obtain a circuit.
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To obtain the circuit at the lowest level we have H i 0’s, C i j 0’s and S k 0’s. So, these

are the signal points corresponding to time 0 and then at the next level we have H i 1’s, C

i j 1’s and S k 1’s. And going all the way we come to H i, T n the algorithm is going to

halt within T of n steps. So, we do not have to consider time that is beyond T of n.

So, we have now established signal points of the sort,  now all that is necessary is to

connect up these signal points using logic gates. And then we will have the entire circuit

laid out.  And now what is  the circuit  that we want? We want  the circuit  which will

evaluate to 1, if and only if the string is accepted by the language. Now, let us assume a

convention that, when the turing machine halts, if it is going to accept the input it will

write 1 in the first cell. If it is going to reject the string it is going to write a 0 in the first

cell.

So, all we have to do is to check whether the cell, the leftmost cell is going to contain a 1

at the time the algorithm halts. Which is at time T of n cell 1 should contain a 1.
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This is precisely the case where C 1, which is cell 1 contains a 1. So, a 1 will be denoted

using 1 again, T of n happens to be 1. This is if and only if W belongs to L. So, if you

manage to connect up the signal points in such a way that the signals all will satisfy the

intended meaning then we only have to check whether C 1, 1 T of n is 1 ok. Now, let us

see how the circuit can be laid out.

(Refer Slide Time: 13:10)

So, first of all we have to define, the inputs to the circuit. So, H i 0 is 1, if i equal to 1, 0

otherwise. What it means is that at time 0 that is when the machine starts up, the head is



it the leftmost cell with the leftmost cell is numbered 1 therefore, H of i 0 is 1, if i equal

to 1 and 0 otherwise. So, it says that H of 1 0 is true, and H of i 0 is false, for every i

other than 1.

In other words the head is on cell 1. So, if we set H i 0 to 1, if and only if i equal to 1

then we have the intended purpose. The H 0 values are all appropriately set. Then let us

consider C i j 0’s, that is we want to assert that at the beginning of the machine cell i

contains symbol a j, but then at the beginning of the machine which cell contains what is

decided by the input therefore, cell i will contain a j precisely if the ith symbol of the

input happens to be a j.

So,  this  is  if  and only if  the ith  cell  contains  a  j,  this  will  be 0 otherwise.  So,  you

remember that here i varies from 1 to T of n, that is because a turing machine which is T

of n time bounded, cannot use any more space than T of n. The machine in the worst case

will be using 1 cell in, 1 new cell in every single step. Therefore, if the machine halts in

steps it will use at most T of n cells, and we are accounting for all these T of n cells.

Initially the input is written left justified on this tape the input has a length of n, if n

happens to be less than T of n, then there will be some extra space that is use by the

machine.

So, initially the machine will mark out these extra space, with blanks blank symbols and

the input will be kept in the first n symbols. So, we have initialized C i j values for such

T of n i values.
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So, C i j values are also appropriately set for time 0. And then S k 0 will be 1 if and only

if k equal to 1 that is the state is supposed to be q 1when the machine starts up, it is 0

otherwise. So, these settings will form the basis and the settings are all appropriate the H

i values C i j values and S k values at time 0 all represent the position of the head, the

contents of the cell and the state at the beginning of the execution. So, this will form the

basis.

(Refer Slide Time: 16:14)



Now, let us see how H i t plus 1, C i j t plus 1 and S k t plus 1, can be obtained from the

H values at time t, the C values at time t and the S values at time t. So, using these values

we will be able to establish the t plus 1 values for H C and S.

(Refer Slide Time: 16:51)

So, first let us consider H i t plus 1. For this let me define I R as this set. I R is defined as

all ordered pairs k j. So, that delta of q k a j is a tuple of this form. Here the star denotes a

wild card, it does not matter what it is.

So, I R is defined to be the set of all ordered pairs k j so that when the state of the

machine is q k and the symbols can this a j. The machine has a transition of the sort, it

will we do not care which state it enters and what is the new symbol that it is written, but

we insist that the head should be moving right. So, these are essentially all k j ordered

pairs which will cause the machine to have a right moment.

So, these are the k j pairs or state symbol pairs that cause the machine to move right,

there is a read write head to move right. So, the machine has a rightward moment, when

1 such a ordered pair happens. Similarly let us define I L as the set of all k j pairs that

cause left movements. So, here delta of q k a j must be a tuple of this form.
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So, with these definitions, we can now define H of i t plus 1 that is why we want to assert

that at time t plus 1 the head of the read write head; the read write head is going to be on

cell i.

Now, this is possible, if either in the previous time instant the head was at position i

minus 1. And the machine had a rightward moment. So, let us see what it says, this term

asserts that at time t the head was on the i minus first cell, not only that for some k j

belonging to i R, that is for some state symbol pair which causes the machine to move

right. The i minus first cell contained a j, in the previous time instant and also the state of

the machine was q k in the previous time instant.

So, in the previous time, time instant we had the composition of q k and a j, the state was

q k and the cells can contained a j. Now this pair is a right movement inducing pair

therefore, the machine would have moved right. So, what we are asserting is that in the

previous instant the head was on the i minus first cell and that i minus first cell contain

some a j and the state happened to be some q k. And this q k and a j were so, that they

would have induced a right  movement  in  the machine.  So,  the machine  would have

moved to the next cell which is the ith cell. That is how the head came to be in cell i in

the t plus first step.

Now, this is one possibility, that is the head could have come to the ith cell through a

right moment, but then the head could have come to the ith cell through a left moment as



well. So, that is the other possibility. So, either this could have happened or it could be

that in the previous instant, the head was on the i plus first cell and there existed some

left movement causing k j pair. So, that this was the k j pair that was prevalent in the tth

time instance,  if  either  of this  happens then the head would end up being in the ith

position in step number T.

Now, if you have these signal points we know H i minus 1 t, H i plus 1 t and let us say

we know C i minus 1 j t, S k t, C i minus 1 j t and S k t we have all these signal points for

every k j belonging to I R and for every k j belonging to I L. Then we can construct a

Boolean Circuit for H i t plus 1 using AND, OR and NOT gates. In fact, we do not need a

NOT gate here, we need only and AND, OR gates.

(Refer Slide Time: 21:14)

But  then  such  a  circuit  can  be  obtained,  in  order  of  1  time  using  T squared  of  n

processors. So, what we say is that from the signal points at level t. So, these signal

points involved the H signals, C signals and the S signals from all of these we can obtain

the H signal points by appropriately setting up circuits from the tth level to the t plus first

level.

Each box we will contain a set of and or gates and the depth of the circuit is going to be

order 1, as you can see this circuit this Boolean expression has only a constant depth. It is

a disjunction where each disjunct is a where each term is a conjunct and so on. So, there

is a constant depth to this Boolean circuit. So, the Boolean circuit can be established in



order 1 time, using T squared of n processes that is, drawing off a setting up of this

circuit will require only order of 1 time using T squared of n processors.

So, we know that all the H signals at level t plus 1 can be connected up to the signal

points at the previous level using Boolean circuits in order 1 time. T squared of n is a

polynomial because T of n is a polynomial. So, we know that this can be established in

NC.

(Refer Slide Time: 22:46)

Now, let us come to the C i j t plus 1 signals. C i j t plus 1, wants to assert that cell i

contains symbol j at time t plus 1.

Now, this is possible if the cell that the machine scanned in the previous step that is in

the tth step was not i and cell i  contained symbol j.  What it means so the head was

elsewhere. The head was not in the vicinity the head the head was not on cell i. If the

head was not on cell i, the machine would not have been able to change the content of

cell i in step t. And if cell i contained a j in step t and the head was elsewhere, then the

content of cell i would continue to be symbol a j in the t plus first step as well.

So, this is one possibility this is one way, how cell i could contain symbol a j in the t plus

first step. Another way is for the machine to actually change the cell to get a j in cell i in

step t plus 1. That is possible only if the head was on the ith cell in the previous step and

we take a disjunction over all ordered pairs k j prime, of C i j prime t and S k t. Thus we



want to say that there x is an ordered pair k j prime so, that q k, a j prime is an a j writing

move, that is if the state the previous state happened to be q k and this scanned cell

contained a j in that case then the machine would have written a j in the cells scanned.

So, such a q k, such a q k a j prime was in contention in the previous step, in that case if

the cell  scanned was i and the cell  contained a j prime and the state was q k in the

previous step that is time t then the machine would have rewritten the content of cell i to

a j. Because that was a j writing a j writing step so, this is how we can synthesize C i j t

plus 1. So, you can see that it uses only H C and S signals of time t, it uses negation

AND and OR, and the depth of this Boolean expression is only a constant.

(Refer Slide Time: 25:51)

Therefore we see that C i j t plus 1 can also be that is circuits computing C i j t plus 1

from H C and S values at t can be established in order 1 time, using T squared of n

processors on any pair.
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Now, finally, we come to signals of the form S k t plus 1. For this we need to define a set

I k. I k is defined as the set of all ordered pairs k prime j. So, that delta of q k prime a j

happens to be q k with wild cards. So, I k is the set of all state symbol pairs q k prime a j

so, that when such an ordered pair happens, the machine switches into state q k. So, these

are ordered pairs which induce state q k.

Now, with I k we can write the expression for S k t plus 1, we want to say that the

machine is in state q k at time t plus 1, this is possible if so what does it say? There

access an I ranging from 1 to T of n, that is there access some cell on the tape the tape is

going to use T of n cells. So, there is some cell on the tape so that, there is a q k switch

inducing pair k prime j so that the state was q k prime in the previous step the head was

on the ith cell the so, the head was on some cell and this cell contained a j. Where a j is

the other half in this q k inducing pair, if that is the case then the state of the machine

should be q k in step t plus 1 as indeed would be the case.

If there is some cell i which contained a j in the previous step and in the previous step the

state had been k prime and this k prime a j k prime j pair happens to be a q k state

inducing pair. In that case then in step t plus 1 the state has to be q k. Now, this is a much

larger  Boolean  expression  than  the  previous  one  because  there  are  many  more

disjunctions here.
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But still  using a sequence of a AND OR gates of length T of n, S k t plus 1 can be

obtained from H C and S signals  at  level  k  at  level  t.  And such a  sequence can be

generated, in order of log of T n which is order of log n time using T of n processes.

(Refer Slide Time: 29:14)

Using T square of n processes, what it means is that the entire circuit, the circuit with

gates between the levels. So, we have T of n such levels, for times varying from 0 to T of

n there are T of n plus 1 such levels. These levels can be interconnected with a separate



set of processors for each adjacent pairs of levels, in poly log time using a polynomial

number of processors. So, the circuit itself can be drawn up.
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The circuit can be written out visualizing the circuit and writing it out in this form, are

essentially the same as you can figure out, in NC. That is in poly logarithmic time using

a polynomial number of processors which means when we are given an input W which is

a potential input for the language L, using the transition table of the turing machine for

this language L we can write out a circuit so that the circuit will evaluate 1, that is there

is 1 signal point in this circuit, which will evaluate 1 if and only if W belongs to L which

is that signal point it is C 1,1 T of n. That is, when the machine comes to a halt the T of n

step, the first cell should contain a 1, a 1 let us assume is symbol 1.

So, in that case W should belong to L and only in that case will W belong to L. So,

evaluating this circuit can essentially check the membership of L. So, this establishes that

C V P is P complete for NC reductions. Whereas, we have just now shown that any

arbitrary language L in P is NC reducible to C V P. C V P is at least as hard as all these

languages.  In  addition  C  V P also  belongs  to  P. So,  C  V P is  P complete  for  NC

reductions. So, there is indeed a language which is P complete for NC reductions.
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But then what it means is that if C V P has an NC algorithm, then every language in P

has an NC algorithm. How do we show this?

(Refer Slide Time: 31:42)

Suppose this is the hypothesized NC algo for C V P of course, no such algorithm is

known. Suppose this runs in order of log n power k 1 time, using n power k 2 processors.

And then let us consider an L to C V P translator which we have seen just now. This will

take an input a potential input to L and will produce a circuit.



Suppose this translator, since this is an NC translator this should run in log n power k 2

time or log l power l, l 1 time using n power l 2 processors, then by the juxtaposition of

these 2 algorithms. We will have an NC algorithm when we juxtapose them we have to

use Brent’s scheduling principle. Each of these individual components of the algorithm

are poly logarithmic time algorithms and each has a polynomial cost. So, the total cost is

polynomial as well and then the larger of these 2 time bounds can be used for finding the

number of processes that should be used in Brent’s scheduling principle.

Such an execution of this juxtaposition will be an NC execution. Therefore, we have

established  that  if  CVP has  an  NC algorithm,  then  every  language  in  P has  an  NC

algorithm.  And  this  is  assumed  to  be  unlikely  today,  because  even  after  several

investigations we still have not been able to find a P algorithm for any of the find an NC

algorithm for any of the P complete languages for NC reductions. And nor have we been

able to show that NC is not equal to P.
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So, this question remains an opened one, exactly the way same way as this question

remained, we do not know whether P equal to NP. Similarly we do not know whether NC

equal  to  P. In  the  next  class  we  shall  see,  some  reductions  from  some  commonly

encountered problems like; a depth first search etcetera to the circuit value problem and

that will establish that some of the very common very easy problem the easy to solve

sequentially problems are hard for parallelization.



For example, depth first search has a very easy sequential algorithm, but it does not have

an efficient parallel  algorithm as of now and it is rather unlikely to have an efficient

parallel algorithm. Since, we do not know whether NC equal to P, if NC is not equal to P,

then DFS will not have a poly logarithmic time polynomial processes solution. So, this

we shall see in the next class. So, that is it from this lecture hope to see you in the next.

Thank you.
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