
Parallel Algorithms
Prof. Sajith Gopalan

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture - 32
Butterfly, CCC and Benes Networks

Welcome to the thirty second lecture of the MOOC on Parallel Algorithms. Today, we

shall see some more results on a wrap butterfly and Cube Connected Cycles. A wrap

butterfly and in consequence a butterfly and will as well as a cube connected cycle are

quite versatile networks.

(Refer Slide Time: 00:52)

The result that we are going to show is that any general network, interconnection

network of a constant vertex degree can be simulated on a wrap butterfly at a low cost.

We shall see what the low cost is. So, we assume that we are given a general

interconnection network.

(Refer Slide Time: 01:10)

Let us say we have a network of N nodes where N is r times 2 power r for some r or N is

less than r equal to that. Let us take a wrap butterfly of r times 2 power r nodes and we

want to simulate the algorithm that is given for the network on the wrap butterfly. So, we

have a generic network and we have some algorithm given on this generate network. We

want to simulate this algorithm on a wrap butterfly; that is the problem at hand.

(Refer Slide Time: 01:51)

So, the first thing that we do is to map the nodes of the network. Let me call the network

G onto the wrap butterfly 1-1. This 1-1 mapping could be anything. So, what we do is to

map the vertices of the given network on to the vertices of the wrap butterfly anyhow;

the only requirement is that it has to be a 1-1 mapping. And then consider a step of the

given algorithm. This given algorithm runs on G. So, let me call it the G-algorithm.

(Refer Slide Time: 02:25)

So, we consider a simple step of the G-algorithm as is customary in all interconnection

networks what we assume is that in a step each node of G communicates to all its

neighbors. A node has a constant number of neighbors; let us say the vertex degree of G

is d, the maximum vertex degree in G is d which means a node can have at most d

neighbors. So, in every step of the algorithm, a node may have to communicate with all

its d neighbors. So, a node has d messages to send and d messages to receive for each

node. So, that is the constraint we have. These many messages have to be transferred.

Once we have a way of transferring all these messages, then we can say that the step is

similar to neighbors because we have mapped the nodes 1-1. We have one processor for

every node of G. So, the internal computations can be done by the assigned processor,

but once the messages are handled, then we would have achieved the simulation.

(Refer Slide Time: 03:22)

So, the second step was to colour the edges of G using d plus 1 colours. The given graph

G, it is a generic graph. So, we do not know the minimum number of colours required to

edge colour the graph. But in any case for a d degree graph, it is possible to edge colour

the graph with d plus 1 colours. So, that is what we are going to do, we will colour the

edges of G using d plus 1 colours.

Now, this colouring is done one once and only once. So, this is an offline operation.

Therefore, we could do this sequentially. So, we are not going to count this in the cost of

our parallel algorithm we somehow edge colour this network g using d plus one colours

and then consider edge colour class separately. A colour class is the set of all edges

belonging to the same colour. So, in particular if we consider all edges of colour one, this

form; they form the colour class one and we know that they form a matching; no two of

them can be adjacent. So, each colour class forms a matching.

(Refer Slide Time: 04:33)

So, our idea is to simulate the message passing step using d-phases. In each phase, we

handle one colour class; in each phase, we handle one colour class. So, there are d-

phases. So, when I consider one particular colour class, we find a matching. So, the

edges of the matching could be like this. So, if the vertices are labeled in this fashion,

what it means is that; a has a message to send to b and possibly b has a message to send

to a. So, the messages between a and b will be exchanged in this phase. At the same time

the messages between c and d will be exchanged in this phase and so on. So, all these

edges are of the same colour. Therefore, the messages that should pass through these

edges will be handled in the first phase. This let us assume as colour class one.

When we consider another colour class of course, no two of them could be adjacent. So,

blue is another colour class here. This possibly could be the second colour class. So,

these edges could be considered in the second phase. So, in the second phase we will

exchange the messages that are between b and e, c and f, d and i and h and j. So, in this

manner, we will consider all the colour classes. Once all the colour classes are

considered, we would have consider all the edges. So, all the messages that are just

trying to be delivered by every single edge would be delivered at the end of the

simulation. So, we have d-phases to the simulation.

(Refer Slide Time: 05:59)

So, now let us consider any single phase; in particular consider the 1st phase in which we

consider colour-class-1. What matters is that we have a matching; no two edges of the

same colour are adjacent. So, this forms a matching. So, let us consider the edges of

colour-class1, the messages on these edges have to be delivered, but how would we

deliver them. In our example, we find that a and b belong to colour class 1. So, do e f, c

d, g h and i j. These edges all belong to the same colour class; let us say colour class 1.

So, these edges are active at the moment, but a and b are adjacent in graph g, but that

does not necessarily mean that the vertices that are mapped to a and b in the butterfly

network or the wrap butterfly network are adjacent to each other. Because what we did

initially was to map the vertices of G anyhow to the vertices of the wrap butterfly; a wrap

butterfly with at least as many vertices.

So, it is not necessary that a and b are adjacent in wrap butterfly, but we still have to send

a message from a to b. How do we do this? So, now, if you consider a wrap butterfly; if I

do not draw the edges, what we find is that there are 2 power r rows and r columns. Now

the situation that we have is this, we have a message sitting at each vertex. If this is a and

this happens to be b, their excess an edge between these two in graph g, but this edge is

not present in the butterfly network.

Now, we have a message from a that should be going to message b. So, we have

essentially a routing problem on the butterfly network on the wrap butterfly off dammed

of size 2 power r by r, we have a routing problem. Every node in the wrap butterfly

network holds a message in this every message has a unique destination. So, the question

is how do you deliver the messages. Looking at the nodes of the wrap butterfly gives us

an idea. When we look at the notes the wrap butterfly we find that they are arranged

much the same way as the nodes of a mesh 2 power r by r mesh would have the nodes

arranged exactly the same way only that the edge sets would be different.

But then there is some similarity in the edge sets too because the horizontal edges in a

wrap butterfly are exactly the way, they are in a mesh. Except in that there is a feedback,

the last node is connected to the first node except in that a wrap butterfly is very similar

to a mesh. But then the cross edges here are quite different from the vertical edges of the

mesh. In a mesh, we have edges which are vertical. For example, we have edges of this

sort in the mesh, these edges are missing a wrap butterfly. So, we have an arrangement of

the processes that is very similar to that of a mesh, but the vertical connections are

missing instead of the vertical connections what we have are the cross connections. Now

the question is using these cross connections can we actually managed to transmit the

messages using the messages vertically.

(Refer Slide Time: 09: 28)

Let us consider recall the algorithm for transmitting messages on the mesh. This mesh

routing algorithm had some offline computation which was not to be executed in parallel

necessarily. So, the offline computation would be executed sequentially too. So, we are

not going to delve on that. The online computation involved essentially transmitting

messages along the rows followed by transmitting messages along the columns and then

again along the rows. So, the mesh routing algorithm had three phases. In the first phase

we transmitted a message along the rows, in the second phase we transmitted the

messages along the columns and in the third phase we again with transmitted the

message along the rows.

Now, we find that here transmitting messages along the rows is easy enough because

every row has connection using straight edges.

(Refer Slide Time: 10:21)

We have a connection of the sort exactly as in the case of a mesh. So, steps 1 and 3 can

be executed exactly as it is these executions will take order of r time.

(Refer Slide Time: 10:37)

What remains is the vertical communication along the columns. If we had vertical

connections of the sort that is had our network been, but 2 power r by r mesh instead of a

wrap butterfly as it is now, then it would have taken 2 power r steps to do the vertical

communications. But then if N equals r times 2 power r; then r is theta of log N and 2

power r is theta of N by log N.

Therefore the time taken would have been order of N by log N we would have had only

an order of N by log N time simulation of every single step which is not good enough.

That is why we are not attempting the simulation using a 2 power r by r mesh. Instead we

are considering a 2 power r by r wrap butterfly which is an r dimensional wrap butterfly.

So, now the question is this, how do we achieve the vertical communication along the

columns. In particular let us consider the 0th column.

(Refer Slide Time: 11:40)

So, in the 0th column we have 2 power r nodes and each of these nodes hold some

messages and these messages have to be communicated vertically. How would we do

this? If we had our a Benes network instead of a wrap butterfly network. As we saw in

the last class given any permutation pi of the input values Benes network will allow us to

communicate; to realize this permutation using edge disjoint paths. So, that is the

technique we would use here. So, if we had a Benes network instead of a wrap butterfly,

we would be able to place exactly these packets here. The packets belonging to the 0th

row as inputs to the Benes network and then with an appropriate configuration, we would

be able to deliver them here after 2 r steps.

So, given these permutations, we would be able to compute the necessary configurations

of all the switches here. So, if you assume that every Benes network switch is a

reconfigurable switch, then we would be able to compute the reconfigurable the

reconfiguration necessary for the switches so that the transmission could be achieved in 2

r steps. This is what we saw in the last class. So, for any fixed by there is one

reconfiguration and this reconfiguration could be computed and implemented. Once it is

implemented, the delivery of the inputs would be achieved in 2 r steps.

So, now we have 2 power r packages back packets that are to be delivered to the same

nodes, but then we do not have a Benes network all that we have a wrap butterfly.

(Refer Slide Time: 13:31)

But then a Benes network is nothing, but 2 butterflies pasted back to back. So, in a wrap

butterfly if I start with the 0th column; suppose this is the 0th column. If I send the

messages forward until they come to the 0th column; again which also happens to be the

last column and then allow the messages to be sent back in the reverse order. Until they

come back to the 0th column, we would have achieved the effect of a Benes network. All

that we have to do is to reconfigure the switches accordingly.

So, we take the Benes network the imagined Benes network that is necessary for

delivering the messages with the permutation realized. Divide the Benes network into

two see that there are different configurations. So, this is config 1 and this is config 2.

Configure the switches according to config 1 and then send the messages forward until

they complete one full revolution and then change all the configurations to the second

what second set and then send the messages back. We would have achieved the same

result as we would have sent the messages through a Benes network.

So, we are essentially simulating a Benes network using a wrap butterfly network. In a

wrap butterfly, every message going clockwise once and then counterclockwise once will

have the effect of passing them through a Benes network.

(Refer Slide Time: 15:03)

So, using the result of the previous class, we will be able to make sure that every

message of the 0th column is delivered to the correct destination.

(Refer Slide Time: 15:18)

Now, you should remember that a wrap butterfly is in fact, a rather tall cylinder. It has a

height of 2 power r whereas, this is only r. Therefore, the time taken for two revolutions

is order of r. In order of r steps we managed to send all messages which are in column 1

to their correct destination. So, we managed to permute this column in order of r steps.

So, there are 2 power r nodes here. They get permuted, the way we want in order of r

steps. So, in a mesh what would have taken 2 power r steps is achieved in order of r steps

here, but then this will ensure the permutation only of column 0. But then what about the

remaining columns? Columns 1 to r also have to be permuted the same way. How would

we handle them?

(Refer Slide Time: 16:29)

To handle these columns, we use pipelining exactly analogous to column 0 column 1 also

can be permuted this way. You will start from column 1 and do two revolutions; let us

say this is column 1 and this is column 0. I will use two different colours to explain what

is happening to column 1. Column 1 makes one full revolution and then goes back. Once

this is done, column 1 would have been permuted. Column 0 can be handled as we said

before from column 0 we do one full revolution and then go back to make sure that

column 1 0 is permuted.

So, we can compute the configurations that are necessary for the column 0 permutation

as well as the column one permutation and by extension for every single column. But

then what we find is that the rotation for column 1 is one step ahead of the rotation for

column 0. Therefore, when column 0 is configured using the configuration requirements

necessary for revolving the column 0 elements. Column 1 could be configured the way it

is necessary for permuting the column 1 elements.

So, we have several permutations going on at the same time. We have precomputed all

the configurations that are necessary to achieve each of these permutations and then we

interleave them appropriately. That is the first step of all these configurations are picked

up; picked out and these configurations are adopted throughout the cylinder.

So, when column 0 is adopting, the configuration that is necessary for column 0

permutation column 1 is adopting the configurations that are necessary for the first step

of the column 1 permutation and so on. After that, these configurations will slide by one

position column 0 permutation will move on to column 1 while column 1 permutation

will move on to column 2 and accordingly we will pick the permutations. So, all these

permutations are rotating simultaneously. So, when column 0 completes one full

revolution, column 1 also would have completed one full revolution. Only that the

column 1 revolution will always be one column ahead of column 0, but then the

completion of the revolution happens exactly at the same time

So, what happens is that all these permutations are rotating simultaneously, complete the

revolution simultaneously and then rotate back simultaneously. So, when two revolutions

are complete, we would have achieved the permutation of every single column.

(Refer Slide Time: 19:34)

So, in order of r steps using pipelining as I explained just now, all permutations can be

executed.

(Refer Slide Time: 20:04)

So, now putting it all together what we find is that the routing problem on the wrap

butterfly runs in r plus order of r plus r steps which is a which is order of r steps, but then

remember we have an N node wrap butterfly. Therefore the dimension of this wrap

butterfly is order of log N. Therefore, this routing problem executes in order of log N

time. Now this routing problem was the key to sending the messages. We are now

considering one particular colour class of the original interconnection network. So, all

the messages of this one single colour class can be delivered in order of log N time.

(Refer Slide Time: 21:17)

Then consider all the colour classes; we have d colour classes. Therefore, in order of d

log N steps which is order of log N if these order of 1. All messages of the step are

delivered. So, once the messages are delivered to complete the step all that is necessary

is to do their internal computations. Since we have exactly as many processes in the wrap

butterfly as there are in the given network; the internal computations call or can all be

done in order of one time.

(Refer Slide Time: 22:10)

Therefore one step of G can be simulated in order of log N steps in the wrap butterfly of

dimensions log N. In other words a G-algorithm that runs in T steps; runs in order of T

log N steps on our wrap butterfly of the same number of nodes. So, this establishes that

the wrap butterfly is a pretty generic network.

(Refer Slide Time: 23:17)

And by extension if a wrap butterfly can do this, a butterfly can do this and also a CCC

can do this. All these networks we have seen are quite similar to each other therefore,

what we do in one can be simulated on the other in order one extra time. Therefore, in all

these models G-algorithm that runs in T steps can be simulator order of T log N steps.

So, all these are pretty versatile models and they also have the additional advantage that

the maximum vertex degree of an orders are constant it is either 3 or 4. In comparison a

hypercube has vertex degrees that are quite large on a hypercube of N nodes, the vertex

degree this log V. So, that is the advantage of these networks over a hypercube.

Now, we shall see another network which is also closely related to a hypercube and has

several nice properties.

(Refer Slide Time: 24:28)

This is a shuffle exchange graph. In a shuffle exchange graph of dimensions r has 2

power r nodes. We assume that the nodes are numbered consecutively using binary

strings starting from all zeroes to all ones. So, there are 2 power r binary strings of this

sort. So, the nodes are labeled in this fashion and using these labels we can define the

adjacency of a shuffle exchange graph. There are two kinds of edges in a shuffle

exchange graph.

(Refer Slide Time: 25:07)

There are exchange edges an exchange edges between a vertex of this form and the

vertex of this form. There is a vertex is adjacent to a vertex whose label is identical to

every bit except the least significant one. So, if two nodes differ exactly in the least

significant bit, then they would be adjacent using an edge called an exchange edge.

(Refer Slide Time: 25:49)

The second kind of edge is called a shuffle edge. A shuffle edge is where we cyclically

rotate the representation u 1 through u r is adjacent to u 2 through u r and u 1 and by

extension, it should also be adjacent to u 1 through u r minus 1 and then u r coming in

the beginning. We are now right shifting the bits. So, this is the right shift and this is the

left shift. So, from a node, there could be two such shuffle edges.

(Refer Slide Time: 26:35)

Let us consider a three dimensional shuffle exchange graph. In a three dimension shuffle

exchange graph, we have adjacencies of the sort. The dotted line represents an exchange

edge. A three dimensional shuffle exchange graph looks like this. So, this is an exchange

edge between triple 0 and double 0 1 and this is also an exchange edge between 110 and

111. This is an exchange edge between 0 1 0 and 0 1 1 1 double 0 and 1 0 1 are also

connected using an exchange edge.

So, you can see that in all the exchange edges, the two N nodes differ by exactly the least

significant bit. In shuffle exchange in shuffle edges, we perform cyclic rotations. When

we perform, left rotations 0 0 1 becomes 0 1 0 and when we rotate again we get 1 0 0

which we rotate again to get double 0 one. So, when we cyclically rotate to the left, we

will be going through this cycle double 0 1 0 1 0 and 1 double 0. Similarly or in a mirror

image situation when we start from 0 double 1 and do a left shift, we will be going to

double 1 0, another left will left shift will take us to 1 0 1, another left the left shift will

take us back to 0 double 1; right shifts will take us through the cycle in the opposite

direction.

Now, 1 double 1 when is subjected to a cyclic rotation will give us 1 double 1 again. So,

there is a shuffle edge from triple 1 to itself and also a shuffle edge from triple 0 to itself.

So, this is a three dimensional shuffle exchange graph. This graph also has several nice

properties; in particular it has a small diameter.

(Refer Slide Time: 28:58)

Let us say we want to go from u 1 through u r to v 1 through v r on the shuffle exchange

graph. There could be several such paths, but we would demonstrate one such path which

is of length order of log N.

So, we start from u 1 through u r; let us say we do a shuffle which will take us to u 2

through u r and u 1. So, a shuffle edge will take us from u 1 through u r to u 2 though u r

u 1 and then we take an exchange edge to go to u 2 through u r v 1. This exchange edge

is optional. If u 1 is identical to v 1, then we do not have to take this exchange edge. If u

1 is identical to v 1, then these two vertices u 2 through u r u 1 and u 2 through u r v 1

are identical. So, we do not have to take the exchange edge.

So, this exchange edge is optional in our path. So, using this exchange edge, if necessary

we have now reached u two through u r v 1. If we perform another shuffle, we will come

to u through u 3 through u r v 1 u 2. Then again let us take an exchange edge to come to

u 3 through u r v 1 v 2. This exchange edge is also optional, then again we will take a

shuffle edge to go to u 4 through u r v 1 v 2 u 3 and so on.

Finally with an optional exchange edge, we will end up converting every bit to the vs

that is starting from u 1 through u r, we will end up reaching v 1 through v r. So, if you

take shuffle on the exchange edges in this manner, we will we will be able to go from

any vertex u 1 through u r to v 1 through v r. In the worst case we will have to take an

exchange edge for every single step.

(Refer Slide Time: 31:18)

So, even if we take the exchange edge in every single step, the path has a length of 2 log

N; 2 r in this case. Since r equal 2 log N the length of the path is 2 log N. So, with a

shuffle edge and an exchange edge we are fixing every single; fixing a single bit. So,

with 2 log N steps, we will be able to fix every single bit. We will be able to transform

the label from u 1 though u r to v 1 through v r.

So, in particular if v i is it is the complement of u i for all i, then 2 log N steps are

necessary to achieve this transformation. But that is the worse that can be therefore, from

every vertex in the graph to; from you, you can go from any vertex to any vertex using at

most 2 log N steps. And the maximum will be taken when the source and the destination

are bit wise complements of each other. For example, here if you want to go from double

0 to triple 1, you can change the bits one at a time, you perform a shuffle edge, you take

a shuffle edge, come back to double 0 triple 0 and then take an exchange edge.

So, you will start from triple 0 the shuffle edge will take us to triple 0 again, then

exchanges edge will take us to double 0 1, then 1 shuffle will take us to 0 1 0, exchange

will take us to 0 1 1 and then another shuffle will take us to 1 1 0 and then an exchange

will take us to 1 1 1. So, this is a path of length 6 from triple 0 to triple 1.

You can see that this path is not necessarily the shortest possible path in the graph, but

such a path certainly exists. So, what we demonstrate is that for any vertex u 1 through u

r and v 1 through v r, there is a path of length at most 2 log N between these two vertices.

(Refer Slide Time: 33:35)

In other words the diameter of a shuffle exchange graph or when we consider a shuffle

exchange graph of N nodes; the diameter is theta log N; that establishes that the diameter

of a shuffle exchange graph is low indeed. We shall see more properties of a shuffle

exchange graph in the next lecture; that is it from this lecture. Hope to see you in the

next.

Thank you.

