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Welcome to the 31st lecture of the MOOC on Parallel Algorithms. In the previous lecture

we  were  seeing  some  interconnection  networks  that  are  related  to  hypercubes.  In

particular we had started with the butterfly network. Let us see some nice properties of

the butterfly networks today.

(Refer Slide Time: 00:46)

The butterfly network has some nice recursive properties. For example, let us consider 2

dimensional butterfly; a 2 dimensional butterfly has 3 columns, in each column we have

4 vertices, that is there are 4 rows. We have interconnections, cross connections of this

sort; between the first 2 columns and between the last 2 columns we have edges of this

sort, and then there are the straight edges. Now let me take an identical copy of this, and

in disperse it with the original copy.

So, we have connections made like this and then let us say we add one more row here.

And  then  let  us  add  connections  of  the  sort.  So,  what  we  have  seen  is  that,  a  3

dimensional butterfly can be realized out of 2 copies of 2 dimensional butterflies. Within

the first 3 columns, the red vertices in the red edges define one copy of the 2 dimensional



butterfly. The blue vertices and the blue called blue edges define another copy of a 2

dimensional butterfly. When we add another column of vertices to that and add edges as

we see between the third and the fourth columns, we realize a 3 dimensional butterfly.

So, what this means is that, if we take an r dimensional butterfly and remove the last

column, we get 2 copies of 2 dimensional butterfly, the red copy as well as the blue copy.

This is one way of recovering an r minus 1 dimensional butterfly, out of an r dimensional

butterfly. You remove the last column of vertices as well as the edges which are incident

to  these  vertices.  Another  way of  getting  to  r  minus  1  dimensional  butterflies  is  to

remove the first column. If we remove the first column as well as the edges that are

incident to it, first column and all the edges that are incident to it, we find that we have 2

copies  of  r  minus  1  dimensional  butterflies.  So,  an  r  dimensional  butterfly  can  be

decomposed into 2 r minus 1 dimensional butterflies in this fashion.

So, this is one 2 dimensional butterfly and this is another 2 dimensional butterfly. You

either remove the 0th column or you remove the rth column, what you get is 1 copy of an

r minus 1 dimensional butterfly. So, that is a nice recursive property of a butterfly.

(Refer Slide Time: 05:11)

Now, let us see a related network of butterfly, what we call wrapped butterfly. A wrap

butterfly is obtained by fusing the 0th row, 0th column and the rth column. In a butterfly

we have a straight edges that define the rows, in a regular butterfly the straight edges

defined the rows. In a wrap butterfly every row is converted into a cycle by fusing the



first column and the last column. The remaining edges remain are the exactly. The same

the 0th row and the rth row are fused into 1; therefore, all the straight edges will now

defined a cycle.

So, there are 2 power r cycles, each cycle corresponds to a vertex in the hypercube. You

would remember that, in our butterfly with the rows collapsed gives a hypercube.

(Refer Slide Time: 06:32)

In a wrap butterfly every hypercube vertex is replaced by a ring of size r and then the

remaining cross edges are there. A wrap butterfly has some nice properties that even a

butterfly does not have; a wrap butterfly for example, is Hamiltonian.



(Refer Slide Time: 07:32)

Another related network is a cube connected cycle. A cube connected cycle is obtained

from a hypercube in this fashion. Let us take the case of a 3 dimensional hypercube, but

the 3 dimensional hypercube has 8 nodes, as you know. To convert a 3 dimensional hyper

tube into a 3 dimensional CCC, what we do is this.

We remove  every  single  vertex  of  the  hypercube,  every  node  of  the  hypercube  is

removed and then these nodes are replaced by cycles. At each of these frayed ends we

introduce a vertex. There is a missing edge here, and all these newly introduced vertices

which are blue in color are connected using cycles. What we get is a 3 dimensional cube

connected circle.



 (Refer Slide Time: 10:01)

So, in general for an r dimensional case what we do is this, replace every hypercube node

with a cycle of r nodes that is each hyper node hypercube node is replace with the cycle

of size r, the hypercube edges remain, but now these edges are between vertices of the

cycles. 

(Refer Slide Time: 10:51)

In particular, if node w and node w prime differ exactly in the ith bit. Then the ith vertex

of cycle w; w has been replaced with a cycle. The cycle also we would call w. So, the ith

vertex of cycle w and the ith vertex of a cycle w prime are adjacent. 



(Refer Slide Time: 11:50)

In other words, there is an edge from wi to w prime i where w and w prime, differ in the

ith bit. And only in the ith bit, this edges the hypercube edge.

So, the cube connected cycle will have 2 kinds of edges, there are the hypercube edges

and there are the cycle edges. The hypercube edges are of the sort, then the cycle edges

are like this; 2 vertices of the same cycle wi and wi prime are adjacent if and only if i

minus i prime equal to 1 mode r, that is either i equal to i plus 1 mod r or i prime equal to

i plus ir, i prime equal to i plus 1 mod r. These edges are called the cycle edges. So,

consequently we find that each vertex has a degree of 3.



(Refer Slide Time: 13:24)

We increase  the  number  of  vertices  extrinsically  over  the  number  of  vertices  in  the

hypercube, but then now the guarantee that we have is that the every vertex has a degree

of 3.

So, you can readily see that every hypercube algorithm, the transcend T steps can be

simulated,  on  a  CCC of  the  same dimensions.  So,  let  us  say  we  are  considering  a

hypercube of dimension r. So, every rD hypercube algorithm, the transcend T steps can

be simulated on a CCC of dimension r, in order of T r steps. That is because every single

node of the hypercube has been replaced by a cycle of size r.

So, now, the information which is within 1 node of the hypercube has to be broadcast

over a cycle of length r. Therefore, the single step of the hypercube algorithm can be

simulated in order of our steps on the CCC. Therefore, an algorithm which runs in T

steps can be simulated in order of Tr steps. 



(Refer Slide Time: 15:15)

But then surprisingly, there is a close relationship between a CCC and a wrap butterfly.

Looking at the diagram of the 2 networks it they would not appear similar, but then if

you look closely you find that  they are essentially  the same. In a CCC as well  as a

butterfly a hypercube node is replaced by a cycle. Every row of a butterfly corresponds

to node of the hypercube. From a butterfly we go to a wrap butterfly by pasting the row

end to end. So, the row becomes 1 cycle here.

So, corresponding to every hypercube node, now we have a cycle the same as the case

with the CCC. The only difference is that the hypercube edges in CCC do not correspond

exactly to the cross edges of a butterfly, but still these 2 networks can simulate each other

very easily. For example, in a CCC as we have seen, a node wi and a node w prime i,

where w and w prime differ in exactly the ith bit are adjacent and w prime i is adjacent to

w prime i plus 1 in particular and wi is adjacent to wi plus 1, through cycle edges.

So, when you consider these 4 nodes. Wi, w prime i, wi plus 1, w prime i plus 1. The

interconnection amongst the 4 is in this fashion. Whereas, in a wrap butterfly, wi and wi

plus 1 our vertices of the same row similarly w prime i and w prime i plus 1 are also in

the same row, but the connection between them is of the sort.

So, what we find is that the locality that is defined by Wi, w prime i, wi plus 1 and w

prime i plus 1 can be transposed to into a locality of the sort. If you do that for every



possible 4 tuple of vertices of the sort, then a CCC converts into wrap butterfly or in

other words.

(Refer Slide Time: 18:24)

An algorithm that runs in T steps on CCC or respectively wrap butterfly can be run in

asymptotically the same amount of time. On the other model, that is an algorithm on

CCC can be simulated on wrap butterfly and an algorithm on a wrap butterfly can be

simulated on CCC. So, these 2 models are capable of simulating each other at an order 1

factor.

So, these 2 models are very close to each other indeed.



(Refer Slide Time: 19:20)

A butterfly network has some other nice properties too. Coming back to the butterfly

networks, consider a node belonging to the 0th column. So, we denote this as w 0. This

node belongs to the wth row and the 0th column let us say and let us consider a node in

the rth column, let us denote it as w prime r.

So, we are picking the wth node of the 0th column and the w prime th node of the rth

column. The butterfly network provides a unique path from this node to that node that is

the network allows you to go from w 0 to w prime r, for any choice of w and w prime

using a unique path. How do you find this path? If w and w prime agree on the ith bit,

then take the straight edge between columns i and i plus 1, if they do not agree on the ith

bit, then take the cross edge.

So, that is all the algorithm to find the unique path that connects w 0 to w prime r for any

choice of w and w prime you start with w 0, if w and w prime agree on the 0th bit. Then

take the straight edge if they do not agree then take the cross edge. Now you are in the

first column and the node at which at which you are suppose that is w 1 0, w 1 0 has the

property that w 1 agrees with w prime in the 0th bit and it agrees with w on every other

bit. Now what we have done is to fix the first bit of W, by taking either the straight edge

if w and w prime agree on the 0th bit and taking the cross edge, if w and w prime differ

on the 0th bit what we have done is to the reach and no w 1, so that w 1 agrees with w on



the  0th  bit  and  agrees  with  w  prime  on  every  other  bit  which  means,  now we  are

morphing w into w prime and have gone through the first step of the morphing.

So, if you continue this process of taking straight edges or cross edges accordingly we

will end up reaching w prime, that is w will morph into w prime by the time we come to

the rth column, we would have reached w prime r. So, the algorithm is this take a straight

edge, if the ith bit of w and w prime agree when you are between columns i and i plus 1

or take the cross edge. So, this is one nice property of the butterfly network.

(Refer Slide Time: 22:48)

What this establishes is that the diameter of a butterfly an r dimensional butterfly is order

of r. Since, you can go from any node in the first 0th column to any node in the rth

column in r steps. The maximum distance between any 2 nodes in the network is order of

r. For example, if you take 2 nodes belonging to the 0th column to go from 1 node to the

other  even though there  is  no direct  edge  between them you can  start  from the  0th

column  grow  to  an  arbitrary  node  in  the  rth  column  and  then  come  back  to  the

destination node in the 0th column.

So, the total distance taken would be 2 r. So, the diameter of an r dimensional butterfly is

order r. Then the bisection width of a log in dimensional butterfly is theta of n by log n,

we will not prove this here, and stating it without proof, but what it establishes is that a

butterfly network has a small diameter and a large bisection with. Both of which are

desirable properties, these are quite similar to a hypercube. So, a butterfly network as



well  as a cube connected cycle  possess,  many of the nice properties  of a hypercube

architecture,  but  they  have  the  additional  advantage  that  the  vertex  degree  of  every

vertex is a constant. 

(Refer Slide Time: 24:42)

In the case of a cube connected cycle  that  is  3,  in the case of a wrap butterfly  or a

butterfly it is 4. Now let us see a network which is obtained from a butterfly and has

some nice reconfigurable properties this is called a Benes network. A banes network is

obtained by pasting two butterflies back to back. What we do is this, we take 1 copy of a

butterfly  with  r  columns  and  we  take  another  copy  of  a  butterfly  of  the  same

dimensionality with again r plus 1 columns and fuse the rth columns of the 2 butterflies

together. So, on the whole the total number of columns here would be 2 r plus 1.

So, let us see how a Benes network would look like.



(Refer Slide Time: 26:10)

In  the  case  of  a  2  dimensional  Benes  network,  we  take  2  copies  of  2  dimensional

butterflies.  This  is  1,  2  dimensional  butterfly.  Then  you  take  another  2  dimensional

butterfly, but make sure that the last columns of the 2 are fused together. What we get is a

2 dimensional Benes network. So, in general an r dimensional Benes network is obtained

by pasting to r dimensional butterfly networks back to back,

(Refer Slide Time: 27:26)

 By fusing the rth column of the 2 together we get an r dimensional Benes network a

banished network has certain nice properties, 1 being that it is a rearrangeable network. A



network  with  the  n  inputs  and  n  outputs  is  a  rearrangeable  network.  If  for  any

permutation pi of the set 1 to n, we can construct edge disjoint paths, that connect input i

to output pi i for every i. 1 less than or equal to i less than or equal to n.

So, if this can be done for every single pi, then we say that a network is a rearrangeable

network. In other words it is capable of any 1 to 1 mapping of the inputs to the outputs.

So, what we claim is that a Benes network is a rearrangeable network.

 (Refer Slide Time: 29:16)

So, let us now try to prove this. Let us take a Benes network and ensure that every node

is a reconfigurable switch, what I mean is this.



(Refer Slide Time: 30:03)

Consider a node of the Benes network. Assume that this node has 2 inputs and 2 outputs

the node has 2 inputs and 2 outputs. Let us say the node has 2 possible configurations, it

could have a straight configuration. In a straight configuration input a is connected to

output a and input b is connected to output b.

So, what is in input a will appear on output a and what is on input b will appear on output

b, as opposed to this there is the cross connection. In a cross connection input a will

appear on output b and input b will appear on output a.

So, let us say we replace every node of a Benes network, using reconfigurable switches

of the sort. That can take on either a straight configuration or a cross configuration. Then

an r dimensional Benes network, has 2 r inputs that is because when you consider the 0th

row of this network.



(Refer Slide Time: 31:08)

. There are 2 power r nodes here each 1 will have 2 inputs, sorry this is 2 power and r

dimensional  Benes  network  has  2  power  r  plus  1  inputs.  Similarly  the  rth  column,

column number r will have to outputs each. So, this is a Benes network of 2 power r plus

1  inputs  and  2  power  r  plus  1  outputs.  What  we  want  to  claim  is  that,  this  is  a

rearrangeable network. The proof is by induction.

(Refer Slide Time: 32:18)

The basis is where r equal to 1 or where r equal to 0, when r equal to 0 we have exactly 1

node in the Benes network and there are 2 inputs and there are 2 outputs. This is indeed a



rearrangeable network, if you use a straight connection, you realize the permutation a b

that is input a will be connected to output a and input b will be connected to output b. If

you use the cross configuration, then we will be realizing the permutation b a, when you

have only 2 inputs there are only 2 permutations possible.

So,  when r  equal  to  0,  every possible  permutation  is  realizable  by reconfiguring  the

nodes of the network. So, there is an edge disjoint path that between every pair of inputs

and outputs for any permutation that we choose therefore, the network is rearrangeable,

when r equal to 0. So, this forms the basis.

(Refer Slide Time: 33:41)

Now,  the  hypothesis  assumes  that  every  r  minus  1  dimensional  Benes  network  is

rearrangeable. So, this is r hypothesis.



(Refer Slide Time: 34:16)

Now, coming  to  the  induction  step,  let  me  demonstrate  the  induction  step  using  an

example first and then we will generalize the example. Let us say we want to realize one

particular pi, pi is defined like this. Let us say this is the permutation that we want to

realize  in  this  permutation  input  1  is  to  be  connected  to  output  6,  input  2  is  to  be

connected to output 4 and so on.

(Refer Slide Time: 35:02)

To realize  this  permutation,  what  we  do  is  this  we  consider  the  Benes  network  of

dimension 2. Let us consider the connection between the first column and the second



column.  Similarly  we  have  and  exactly  analog  as  connections  between  the  last  2

columns. And then every node in the last column has 2 outputs and every node in the

first column has 2 inputs. Let us number the inputs in this fashion 1, 2, 3, 4, 5, 6, 7 and 8

and the outputs are also numbered like this. Now let us see because let me draw the

remaining edges as well.

So,  you  can  see  here  that  when  we  consider  columns,  1,  2  and  3,  the  columns  is

numbered starting from 0. When you consider columns 1, 2 and 3, the edges are all either

in  the  upper  half  or  in  the  lower  half.  This  has  certain  significance  the  certain

significance. Now look at the permutation once again, input 1 has to be connected to

output 6.

So, let us arbitrarily choose a straight configuration for this one switch. The switch to

which input 1 is connected. So, this ensures that input 1 is transmitted to on this line and

comes to the first node of the first column, input 1 is to be connected to the 6th output.

Now input 1 is going to the upper half of the network, that is columns 1, 2 and 3 have an

upper half and a lower half, every edges in the in the network is either in the upper half

or in the lower half. 

Now you find that input 1 is going into the upper half therefore, it will have to come out

of the upper half. That is when it comes out of column 3, it is coming out of the upper

half and it has to go to node 6. Therefore, node 6 will have to receive a value from the

upper half, in other words node 6 will be able to receive a value from the upper half only

if the switch which is connected to output 6 is not cross configuration.

So, 6 is in now in cross configuration, which means output 6 will have to be received

from here. What it means is that output 5 in turn will have to be received from here.

Output 5 is coming from the lower half. Now let us look at the permutation once again.

Output 5 is input 3; input 3 has to appear on output 5. 

So, output five is to be received from the lower half, which means input 3 has to be sent

to the lower half. Which means this switch will have to be in cross configuration. Then

that forces, so we have 5 coming here that says that 3 will have to be coming from it

should be going into the lower half that ensures that 4 will be going into the upper half

we will have 4 coming on this line at this point.



So, 4 is going input 4 is going into the upper half from our permutation we say that see

that input 4 is to be connected to output 8. So, output 8 has to be coming from in has to

be connected to input 4, which is going into the upper half. Therefore, this which will

also have to be in cross configuration, it will be appearing here. Which means that 7 will

be going to the lower half and 7 will be appearing here, since 7 is appearing here output

7 is connected to input 3. So, input 3 output 7 is connected to input 8 sorry, output 7 is

connected to input 3, output 7 is coming to the lower half which means input 8 will have

to go into the lower half. This which will have to be in a straight configuration, so 8

appears here and 7 appears here.

So, 7 is going into the upper half and input 7 is to be connected to output 3. So, output 3

has to receive its value from the upper half which means this which will have to be in the

straight configuration. So, 3 will be coming in from here. Therefore, 4 will be going into

the lower half we will have 4 appearing here. Now where does output 4 comes from,

output 4 is coming from input 8. Sorry output 4 is coming from input 2. So, now we are

looping back, input 2 has to be therefore, connected to the lower half. Which is indeed

the case, input 2 is connected to the lower half by choosing to send 1 to the upper half,

we had decided to send 2 to the lower half and that is consistent with what we have

computed now we have looped back.

So, every switch in the first column in the 0th column and the 4th are not configured yet,

but we have configured some of them and we have looped. Then what we need to do is

to start with one of the remaining nodes. Let us consider then node 2 which inputs 5 and

6 are connected, if you choose to configure them in street then, we will have 5 appearing

here and 6 appearing in the lower half, 6 will go here.

So, 5 is going to the upper half, input 5 is connected to output 1. So, output 1 will have to

come from the upper half. Therefore, this switch will have to be straight. Which means 2

is going into the lower half and whereas, output to come from output 2 is to come from

input 6.

So, 2 is going to the lower half therefore, input 6 also will have to go into the lower half,

which is consistent with what we have already marked. Therefore, now we have entered

up configuring all the nodes of the 0th column as well as the 4th column. Now let us

focus on the upper and lower halves of the Benes network. This is the upper half and this



is the lower half. So, in the upper half and the lower half,  what we need to do is to

permute 1, 5, 4, 7 inputs 1, 5, 4, 7 into 1, 6, 3, 8.

(Refer Slide Time: 42:38)

In particular; if I consider the upper half, here I have inputs 1, 5, 4, 7 coming in and I

have outputs 1, 6, 3, 8 coming in this order. Now let me rename these inputs and the

outputs. I rename 1 as 1 prime, 5 as 2 prime, 4 as 3 prime and 7 as 4 prime. And here

output 1 is renamed as output 1 prime, output 6 as renamed as output 2 prime, output 3 is

renamed as output 3 prime and output 8 is renamed as output 4 prime. So, now let us

consider the inputs 1 prime, 2 prime, 3 prime, and 4 prime and 1 prime, 2 prime, 3 prime

and 4 prime on the output side, how do you need to map the inputs to the outputs.

So, when you look at the permutation we find that, 1 prime has to be mapped to 2 prime.

That is because 1 has to be input, 1 has to be mapped to output 6. Similarly 2 prime has

to be mapped the 1 prime, that is because input 5 has to be mapped to output 1, input 5

has to be mapped to output 1. Similarly 3 prime has to be mapped to 4 prime and 4 prime

has to be mapped to 3 prime. That is because input 4 has to be mapped to 8 and input 7

has to be mapped to 3.

So, this is the permutation that we have to realize, which is 2 prime, 1 prime, 4 prime and

3 prime. So, on the upper half of this network we have to realize the permutation; we

have shown here 2 prime, 1 prime, 4 prime and 3 prime, but by are in depth induction

hypothesis. It is indeed possible we know how to configure these switches.



So, that the required permutation is realized. 

(Refer Slide Time: 44:37)

Similarly when we look at the lower half, we find that, the 4 inputs are 2, 6, 3 and 8 and

the 4 outputs are 2, 5, 4 and 7. If you rename them as 1 prime, 2 prime, 3 prime and 4

prime on the input side and similarly on the output side, we find that we have input 1

prime to be mapped to 3 prime, input 2 prime to be mapped to 1 prime, 3 prime to be

mapped to 2 prime and 4 prime to be mapped to 4 prime. In other words we have to

realize the permutation 3 prime, 1 Prime, 2 prime and 4 prime, which can be realized

again used by the induction hypothesis. So, now we have 2 recursive invocations, one on

the upper half and the lower half. Once these 2 are solved we would have reconfigured

every single switch in the network.

So, I will give you the solution which you can verify, this is one solution that will work,

that ensures that every input is connected to every output.



(Refer Slide Time: 46:13)

So, now in general The induction step to feet’s in this manner, start at any node on the

input side, say i is paired with i prime, i prime would be either i minus 1 or i plus 1.

Choose a  configuration  for  the  switch  to  which i  and i  prime are  connected,  in  our

example  the  first  i  that  we  chose  was  1  and  i  prime  was  two.  So,  we  chose  a

configuration  for  the  switch  to  each  1  and  inputs  1  and  2  were  connected.  So,  the

configuration chosen could be either straight or cross.

(Refer Slide Time: 47:21)



So,  depending  on  the  choice,  we  know  the  half  of  input  i,  output  pi,  i  should  be

connected to the same half. This gives us the configuration for the switch to which pi i is

connected.

(Refer Slide Time: 48:27)

Now we continue with the pair of pi I, in our example pi i was 6. So, the pair of pi i was

5 and then we have pi inverse of pi i prime, now pi i prime is the pair of pi i that is the

input which should be connected to pi i prime that will ensure the configuration for the

switch to which that is connected and so on. We continue until we loop, until we get back

to the switch to which i is connected input i is connected. Why would i loop back to i, I

would leave that for you to answer think of bipartite graphs and even cycles.
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So, we would indeed loop back consistently, but then when we loop back it may not be

guaranteed  that  every  switch  on  in  the  0th  column  as  well  as  the  rth  column  are

configured. If every switch is not configured we will begin with any switch that is not

configured yet and pick an input which is connected to that switch and continue. We

continue until every switch in the 0th column and the rth column are configured, at this

point we have 2 sub problems of dimension or minus 1, by induction hypothesis the

dimension r minus 1 problem can be solved. Because an r minus 1 dimensional Benes

network is rearrangeable, this establishes that even an r dimensional Benes network is

rearrangeable. That completes the induction. 

So, let us we will see some more nice properties of Benes networks in the next class

hope to see you in the next class.

Thank you. 


