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Welcome to the 28h lecture of the MOOC on parallel algorithms. In the last few lectures

we have been studying algorithms designed on multi dimensional measures. Today we

shall see some architectures that are richer than measures. The first one that we see is the

mesh of trees.

(Refer Slide Time: 00:49)

So, let us begin with the 2 dimensional mesh of trees. In a 2 dimensional mesh of trees

we have an N by N mesh of processors. These processors are called the leaf processors.



(Refer Slide Time: 01:03)

They are  arranged  exactly  as  in  a  mesh in  2  dimensions.  The difference  is  that  the

connection among them is different in this case. Instead of having linear connections

along the rows and columns here we have binary trees on each row and each column. So,

we can assume that N equal to 2 power K a power of 2 because we are going to construct

a binary tree over N elements.

(Refer Slide Time: 02:06)

So, to take an example; let us consider a 4 by 4 mesh. In a 4 by 4 mesh we have one 16

processes arranged in 4 rows. And then on top of these we construct binary trees. So, for



every row we construct a binary tree. We will denote the row tree using red lines and red

vertices. So, we take extra vertices to construct these binary trees. So, that is the first row

tree. Similarly, we have the second row tree constructed like this. It is the third row tree.

So, every row has a tree constructed in this fashion and then every column also has tree

constructed. We will draw the column trees using green links and green notes. Such a

connection is called a 2 dimensional mesh of trees. In particular, this is a 4 by 4 mesh. In

general, this can be extended to any N by N mesh where N is a power of 2.

(Refer Slide Time: 04:30)

So, in this case we find that the leaf processors there are N squared of them. They all

have a degree of 2. Every leaf processor belongs to a column as well as a row. Therefore,

it belongs to a column tree as well as a row tree. It was a leaf in both of these trees. It has

a pair and a unique pair and in both of these trees. So, all these leaf processors have

exactly 2 parents, one in the row tree in which it belongs in one in the column tree in

which it belongs. Therefore, all of them have a degree of exactly to the root processors.

How many of them are there? There are 2 N root processors. For every row there is a tree

which has a root and for every column there is a tree which has a root. Therefore, we

have one root processor for every column and every row.

So, there are 2 N root processors. For example, this is a root processor this is a root

processor. And this is a root processor and so on. So, there are 4 row roots similarly there

are 4 column roots the green roots. So, on the whole there are 8 root processors in this



figure. So, in general for an N by N mesh we have 2 N root processors. All of them have

a degree of 2 each. Every other processor are of degree 3.

Now, what is the total number of processors in this arrangement. We have a N squared

leaf  processors.  For  every  row  we  have  a  tree  a  binary  tree.  This  binary  tree  is

constructed on top of N leaves. Therefore, the binary tree constructed on a row will have

N minus 1 nodes. For example, here each red tree has N minus 1 nodes N is 4 here. So,

there are 3 nodes in each of the trees apart from the leaves.

So, there are N minus 1 nodes in every single row tree. Similarly, there are N minus 1

nodes in every single column tree. Therefore, the total number of other nodes is twice N

into N minus 1.

(Refer Slide Time: 07:29)

Which means the total number of nodes here is the number of nodes in an N by N mesh

of trees is N squared leaf processors plus 2 N into N minus 1, which is 3 N squared

minus 2 N.

The number of nodes in an N by N mesh of trees was 3 N squared minus 2 N. And what

is the number of edges? To calculate the number of edges in a graph we can add up the

total degree of all the vertices. This will be twice the number of edges because when you

take the sum of degrees in a graph, we are counting every edge twice. One at this end



and once at the other end. Therefore, the sum of degrees of the vertices of a graph will be

exactly twice the number of edges in the graph.

So, if you calculate the total number of degrees, we will get the twice the number of

edges. So, there are N square leaf processors and there are 2 N root processors. So, that is

N square plus 2 N. Then the others would be 3 N squared minus 2 N minus these N

squared plus 2 N. So, there are 2 N squared minus 4 N nodes of degree 3, N squared plus

2 N nodes of degree 2. Therefore, the sum of degrees is twice N squared plus 2 N plus

thrice it would be 2 N squared minus 4 N. Which is 8 and squared minus 8 N therefore,

the number of edges in the graph is 4 N squared minus 4 N half the sum of degrees. So,

in an N minus N mesh of trees there are 3 N squared minus 2 N vertices and 4 and

squared minus 4 in edges.

(Refer Slide Time: 09:55)

Now, let us see some nice properties of a 2 dimensional mesh of trees of N by N leaf

nodes. Let us first estimate the diameter. The diameter of this is 4 log N. The diameter of

an  N minus  N dimensional  mesh of  trees  is  4  log  N that  is  because  the  maximum

distance between any 2 nodes can be shown to be at most 4 log N.

So, let us see how this can be shown. First consider a node in the ith column tree and a

node in the jth row tree. Let us say we want to go from a node in the ith column tree to a

node in the jth row tree. For example, we have a column tree we started some node in the

column tree and we want to go to some node in row tree. We want to start from the ith



column tree which is shown in green here and the jth row tree which is shown in red

here. And let us say we want to start from some vertex in the green tree and go to the

mark vertex in the red tree or visa versa.

So, what could be the maximum distance here. So, we are considering the ith column

tree and the jth row tree. These 2 trees are going to have one common leaf. They have

one common leaf processor. In the mesh of the leaf processors if you take the jth row and

the ith column, we get the leaf processor which is common to these 2 trees. So, that is

one vertex which is common to these 2 trees. Therefore, if you want to start from a node

in this tree and want to go to that node in that tree then you could use this common leaf

node which happens to be here.

So, to go from the chosen source to the chosen destination you could first travel to the

common node. But then how do you go to the common node? You could go all the way

to the root, and then come down to the common node. Again go all the way to the root if

necessary and then come down to the chosen node. You may not have to go all the way

to the root in the second case, you may only have to go to the least common ancestor of

the j ith leaf processor and the chosen node. Similarly, for the first half 2, but even if you

have to do this that is if  the least  common ancestor of the chosen node and the leaf

processor happens to be the root. Even then you have to travel at most to login distance

in the first tree and to login distance in the second tree.

So, we find that the maximum distance between 2 such nodeses for log N at the most. If

you take  a  node in  the  ith  column tree  and a  node in  the  jth  row tree  we find  the

maximum  distance  between  these  2  nodses  at  most  for  log  N.  That  is  because  the

distance we are breaking down into 2. First we move to the common vertex of these 2

trees. To move to the common vertex, you have to rise from your source all the way to

the root of the column tree and then come down to the common vertex in the worst case.

Or strictly speaking you have to go from start from the source go to the least common

ancestor of the source and the common vertex i j j i and then come down to vertex j i this

will take at most to log N steps. Then similarly in the other tree you have to rise from the

common least common ancestor of the jth leaf processor and the chosen destination and

then come down to the chosen destination which will again take a most to log in steps. In

the worst case the root is the least common ancestor.



So, in at most 4 log in steps you can go from any node in the ith column tree to any node

in the jth column jth row tree.

(Refer Slide Time: 14:30)

Instead let us say we want to move from one column tree to another. We have some

vertex in this column tree and we want to go to some vertex in this column tree let us

say. What we do is this consider the levels of these 2 nodes. The height of the tree is log

N. Let us say the level of the source is r and the level of the destination is s. So, without

loss of generality let me assume that r is greater than or equal to s. Otherwise we will

swap the source and the destination. That is if we managed to find the path from there to

here we can use the same path to go from here to there as well.

So, in discovering this path, we will assume that r is greater than or equal to s. Now what

we want is this here we have the ith column tree and here we have the jth column tree.

We want to start from a node that a certain level r in the right column tree and go to a

node which is at level s in the jet column tree. We assume that the root is at level 0. Now

what we do is this, we start from the source and go to some leaf in the subtree which is

rooted at the source.

So, in this binary tree let me consider some subtree which is rooted at this node. I go to

some leaf of that the distance I have to travel is log in minus r. This node is at level are

the maximum height of the tree is log N. Therefore, I have to travel a distance of log in

minus r to come to the leaf. Let us say this leaf happens to be in the kth row. So, what I



now do is this I start from the source and go to one descendant of the source in the

column tree to which it belongs, suppose this descendant happens to be this descendant

leaf happens to be in the kth row.

So, after reaching the descendant node, since I know that it is in the kth row I also know

that it belongs to the kth row tree. It is a leaf of the kth row tree. Now I use the kth row

tree in the kth tree I will travel from this leaf node to the leaf node of the kth row tree

which belongs to the jth column. That is now I am in leaf node i k or other k i, I am in

leaf node k i after descending from my source and then I will travel to leaf node k j. Both

of which are leaf nodes of the same row tree. This I can do by going all the way up to the

root and then descending to the required leaf node. That is, I will go for all the way from

here to the root and then descend to the required leaf node. I could do this in 2 log N

steps at the most. Once I have done this now to reach the destination node all I have to

do is to climb up the tree and then climb down again.

So, I may have to go all the way to the root and then come down to my destination, but

then the distance from the root to the destination is at most s. Therefore, the distance I

have traveled totally  is from here from the source to the leaf node I have traveled a

distance of log N minus r. Then from the leaf node to leaf node K i to go to leaf node K j,

I require to log in steps and then to go from leaf node page a to destination I will require

an additional login plus f steps. For a total of 4 log N minus r plus s, but since Rs greater

than or equal to s this is less than or equal to 4 log N.

Which establishes that the maximum distance between any 2 nodes in this mesh is 4 log

N. Or in other words the diameter of a an N by N 2 dimensional mesh of trees is 4 log N

which is a rather low diameter.
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Now, coming to the bisection width; the bisection width of an N by N mesh of trees is

theta  of  N.  And  stayed  this  without  proof  we do not  have  time  for  the  proof  here.

Therefore, you take it from me without proof, you can find the proof in the references.

So, the bisection width of an N by N mesh of trees is theta of n. So, this network has a

high bisection width and a low diameter. What it means is that for the problem of sorting

once again the lower bound is omega of N not much better than an N by N mesh, but

since  the  diameter  is  low certain  problems  can  be  solved  faster  on  this  model.  For

example, let us consider the problem of routing; routing of packets..
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Of course, if we have a N squared packets, one with each processor, each with a unique

destination. If these N squared tractor packets have to be routed simultaneously, then we

have a total traffic of N squad. If we ensure that for any bisection the packets which are

destined to the other side are kept on the side and vice versa then all these packets will

have to cross the bisection.

Now, we know that the bisection with this theta of N. Therefore, the packets will take at

least omega N time to cross the bisection. Therefore, this routing problem will have a

lower bound of omega of N. Which is not much better than the 2 dimensional N by N

mesh, but then there is a routing problem which can be solved faster on the mesh of

trees. For example, let us say we have N packets.
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One with each row root and let us say the packet is destined to a unique column root. In

other words, packet i goes from the ith row root to the p ith column root. The ith packet

goes from the ith root ith row root to the pth column root. And let us say this is the

routing problem that we want to solve.

(Refer Slide Time: 22:37)

So, let us look at the ith packet. Let us root the ith packet from the root of the ith row

tree. So, packet i is held by the root of the ith row tree. Let us say we send this down to

the pth leaf processor of this row tree. So, the coordinates of this processor would be i p i



it is in the ith row and in the pth column. So, let us send the packet down to the node.

This would take log N steps. This transportation is entirely within the ith row. There is

only one packet within the ith tree therefore, this packet can be delivered without any

conflicts  to  the  i  p  i  labeled  leaf  processor.  Now  this  leaf  processor  is  also  a  leaf

processor of the pth column tree the root of the pth column tree is our destination.

Now, the packet is already delivered to the correct column tree. All we require now is to

root  this  packet  from the leaf  at  which it  is  delivered  to  the root of the tree,  which

requires sending the packet of the tree. Now this transportation is entirely within one

single column tree. What we have said is that all destinations are unique. So, there is

only one packet reaching this column. Therefore, this packet can reach it is destination in

log N steps again. So, you will require an additional log N steps to deliver the packet the

total time taken as to log N steps.

So, this  routing problem can be solved in order login time,  but this  routing problem

cannot be solved in order login time on an N by N mesh. If every row had a packet

which had to be delivered to an appropriate column, then depending on the source and

the destination, the maximum distance that a packet has to travel could be theta of N in

an N by N mesh. Therefore, this problem could take theta of N omega of N time on a 2

dimensional mesh of size N by N. On a mesh of trees of size N by N this takes only order

log N time.

So,  there  are  certain  problems  for  which  mesh  of  trees  are  more  powerful  than  2

dimensional measures. 2 dimensional mesh of trees can be used to simulate KNN the

complete bipartite graph KNN.
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K N N is the complete bipartite graph on 2 vertex sets of size N. KNN can be used to

denote  an  interconnection  between  all  processes.  When  you  have  N  processors,  for

example, when N equal to 5 we may want to interconnect all the 5 processors that is if

every  processor  has  to  be  connected  to  every  processor  then  we  may  want  a

configuration of the sort. This is the richest possible interconnection network. Once we

have a connection of the sort then every processor can communicate with every other

processor in every single step.

So, this is the richest possible connection that you can imagine.  Essentially the same

connection can also be achieved using a bipartite graph. If you have 4 processors and 4

memory units, we could connect every processor to every memory unit. In this fashion

so, this is as good as connecting every processor to every processor. If a processor wants

to send a message to another of it is processes all it has to do is to write in it is own

memory bank at a designated place, then every processor can read every memory bank.

Therefore, the value returned could be read off by the other processors.

So, effectively we are creating the complete graph situation.  That is if in a complete

graph we have every processor connected to a every processor. Here we are achieving

the same result using a KNN architecture, but then KNN has a close relation with a 2-

dimensional mesh of trees. In particular, let us consider this K 4 4. In K 4 4 we have 2

vertex sets of size for each every edge in the graph is between the 2 vertex sets. There is



no edge between 2 vertices  belonging to the same vertex set. So, this  is  a  complete

bipartite graph on 4 vertices on either side.

(Refer Slide Time: 28:06)

Let us modify this graph in this fashion. We take 16 vertices of the sort and label them in

this fashion. This vertex 00 this is 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33. And

then let us say we take 4 vertices that we draw these vertices as big circles. So, we have

now numbered the nodes as if they are nodes of the leaf processors of an N by N mesh of

trees, a 4 by 4 mesh of trees. In a 4 by 4 mesh of trees we have 4 rows and 4 columns and

the processors are numbered from 00 to 33.

So, in a similar manner we have now numbered them. And then we interconnect nodes in

those fashions. Here we take 2 nodes within this big node and interconnect nodes in this

manner. So, on the right side we have connections made like this. So, here the big circles

correspond to the nodes in the right vertex set of the K 4 4. So, we are transforming K 4

4 in this manner. Every vertex on the right side here is replaced with a super vertex.

Within the super vertex we introduce a binary tree.

So, there are 4 edges coming into the super vertex. On each of these edges we place a

vertex, one of the leaf processors. And these vertices are then interconnect are connected

to the leaves of the binary tree that we have formed. So, each super vertex transforms

into a 4 leaf binary tree. And the leaves of these are the new leaf processors that we have



introduced.  On  the  other  side  similarly  we  take  2  vertex  per  super  vertex  and then

connect them in this fashion.

So, of the 2 nodes in the first super vertex the first node is connected to 0 0 and 1 0 and

the second node is connected to 2 0 and 3 0. And here in the second super vertex the first

node is connected to 0 1 & 1 1. And the second node is connected to 2 1 & 3 1 and so on

and then we add an extra vertex in the super vertex and make it the root of the binary

trees. Then what we find is that this is exactly the layout that a mesh of trees provide us.

The 2 super vertices on either side correspond to the row trees and the column trees

within each super vertex, we have constructed a binary tree. And these correspond to

exactly the row trees and column trees of our N by N mesh of trees.

So, strictly speaking the transformation is this you take an N by N mesh of trees and then

on you take a KNN to convert this into and N by N mesh of trees what we do is this on

every edge of this N by N click we introduce a processor. These processors will form the

leaf processors of our mesh of trees. And then each vertex of KNN is converted into a

binary tree. A binary tree with N leaves these N leaves have to find side with the leaf

processors. So, in each of these we have N minus 1 nodes.

So, you can see that the total number of nodes is N into N minus 1 into 2. When you

account for all the super vertices and then there are the original N squared processors,

which is 3 N squared minus 2 N. And then when you check the interconnections you find

that they are exactly what they are in the mesh of trees. So, this graph that we have laid

out is nothing but a different drawing of an N by N mesh of trees.
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Therefore, what we have established as this a KNN can be transformed into an N by N

mesh of trees. So, that a step on KNN can be simulated on the mesh of trees in to log N

steps. Why to log N that is because in KNN when 2 neighbors exchanged a message in

one single step, to pass the same message in this case where is if you had a message

going from here to here. To pass the same message now we have to assume that the

message originates at the root of this binary tree and it is designed to the root of this

binary tree. To transport this message, you have to climb down the binary tree, come to

the leaf node and then climb up the other binary tree to reach the corresponding root.

So, this amounts to a distance of to log N. Therefore, every single step on KNN can be

simulated in to login steps on a mesh of trees.
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Or in other words an algorithm which runs in t steps runs in order of T log N steps on an

N by N mesh of trees. But an N by N mesh of trees of course, has to use order of N

squared processes to achieve this. In addition to that the cost of the algorithm therefore,

is order of N squared log N. In a KNN we have N plus N 2 equal to 2 N processors

executing the algorithm in t steps. Therefore, the cost of the original algorithm was order

of N into t, but the simulation takes order of N squared t log N steps N squared t login

cost.

So, the simulation is rather expensive in terms of cost, but still what it establishes is that

the mesh of trees is a versatile architecture. We shall see architectures which are more

versatile  than mesh of  trees  as  we go by, but then this  is  certainly  a  more versatile

architecture than a 2 dimensional mesh.
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The next architecture we shall see is a hypercube. We talked about a hypercube in an

earlier class. A hypercube of one dimension is made up of just two nodes. And here the

nodes are labeled in this fashion. One node is labeled 0 and the other node is labeled 1.

To form a hypercube of 2 dimensions we take 2 identical  copies of one dimensional

hyper cubes and number them exactly as we did before.

Now,  we  connect  the  corresponding  nodes  that  the  0’s  in  the  two  copies  will  be

connected together and the 1’s in the two copies will be connected together. This is a 2

dimensional  hypercube.  Further  when  we go  on to  the  third  dimensional  hypercube

which is a H 3.
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We take  2  copies  a  2  dimensional  hyper  cube  with  the  appropriate  numbering.  The

numbering is enhanced in this manner. We add a 0 on the left side for the first copy and

one on the  left  side  for  the  second copy. So,  that  all  4  4  vertices  will  have  unique

numbering.

So, we have taken two such copies. And then we connect the corresponding nodes. And

now the numbering has to be enhanced we add one more bit. In the first copy we add a 0

or to the left side in the second copy we add a one to the left side. That ensures that all

the vertices are distinguished. 
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Now when we go on to the 4th dimensional hypercube we take 2 copies of 3 dimensional

hyper  cubes,  and  connect  the  corresponding  vertices.  For  example,  these  2  vertices

correspond we connect them these 2 vertices current correspond we connect them. And

these two correspond these two correspond we connect up the vertices in this 4 manner

to form the 4 dimensional hypercube. 

Like  this we can go on to  construct  higher  dimensional  hyper  cubes.  In  general,  to

construct  H r  from H r  minus  1,  we take  2  copies  of  Hr  minus  1  and  connect  the

corresponding nodes. Now the nodes are numbered in this manner once the nodes of the

2 copies of H r minus 1 are recursively numbered, we add one more bit to the left. We

add a most significant bit to the numbering all the vertices of one copy will get a most

significant bit of 0. Whereas, all the vertices of the other copy will get a most significant

bit of 1, this will ensure that the newly constructed Hr will have a unique number for

every  single  vertex. So,  this  is  how  we  number  the  vertices  of  a  hypercube.  Now

hypercube has some interesting properties.
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One is that every vertex of an r dimensional hypercube has r neighbors. For example, in

a 3 dimensional hypercube a node 1 0 1 has got three neighbors along dimension one we

have 1 0 0 where the least significant bit is flipped. Along dimension 2 we have 1 1 0

where the second bit is flipped and along the third dimension we have 0 0 1 where the

third bit is flipped. So, given a vertex we can find the neighbors of the vertex from the

binary representation of the label of the vertex. All you have to do is to flip the bits one

by one. When you flip one bit you get one neighbor when you flip another bit you get

another neighbor and so on.

So, there are r dimensions in the hypercube. Then there are r bits in the label of each

node. There are r bits to flip when you flip each of them we get one of the r neighbors.
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This enables us to determine the diameter of a hypercube. Let us say we start with some

vertex,  u if  we keep on flipping the bits,  we can come to the diametrically  opposite

vertex of the source. So, let us say we start with vertex u and travel along dimension 1 by

flipping the first bit let u 1 denote the binary representation that you obtain by flipping

only the last bit.

So, when the last bit of u is complemented, we get u 1. When the second last bit of u is

crumbly u 1 is complemented we get u 1 to; u 1 2 is a binary string that is obtained from

you by complementing the 2 least significant bits. When you complement the third bit

you get u 1 2 3 and so on. Finally, when all  the bits  are complemented u reach the

diametrically opposite point. So, the maximum distance you have the distance you have

traveled when you go from U to u power 1 2 3 up to r the exact complement of it is r.

Let us you have to travels one edge along each dimension to complete this travels. What

does establishes is that  the diameter  of a hypercube H r is  r. In particular, when we

consider a hypercube of N vertices, it is diameter is log N. H log N has N vertices it is

diameter is log N what is the bisection width.
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Let us consider a 3 dimensional hypercube. Let us say the red lines represent dimension

1.  The  green  lines  represent  the  vertical  dimension.  And  let  us  say  the  blue  lines

represent into the both dimension.

So, I have drawn the edges of the hypercube using 3 different colors for each dimension I

have used a different color. So, when you find that when you look at this coloring you

find  that  edges  of  any one  dimension  form a  perfect  matching.  In  particular,  if  you

consider all edges of color red you find that they form a vertex matching, the horizontal

edges in this case they form a perfect matching. If you cut all these in particular, in this

case let us say we cut the red edges. If these edges are disconnected, then the hypercube

divides into 2 equal halves. 

This is true for any single dimension. Instead of the red edges if you cut all the blue

edges then we will again get 2 hyper cubes one in the front and one in the back we will

get to 2 dimensional hyper cubes or if you cut the green edges. We will get one upper

hyper  cube  and  the  lower  hypercube  and  this  argument  can  be  extended  to  any

dimension.
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So,  what  this  establishes  is  that  the  bisection  width  of  a  hypercube  is  N  by  2.  So,

hypercube indeed has high bisection width and a low diameter. A hypercube has several

other nice graph theoretic properties.

(Refer Slide Time: 45:32)

One is that it is Hamiltonian. What is the Hamiltonian graph? Graph G equal to V E is

Hamiltonian if G has a cycle of mode V vertices. In other words, it is possible to permute

the vertices so that this permutation forms a cycle within the graph. Or in other words it

is possible to start at a vertex and travel through every vertex exactly once and get back



to the starting vertex. If this property is satisfied by the graph, then we say that the graph

is Hamiltonian. So, to prove that a hypercube is Hamiltonian what we need is to start at

the vertex travel through every single vertex and come back to the original vertex. Every

vertex should be traversed exactly once.
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So, let us start with a 2 dimensional hypercube. We consider H 2 this forms the basis we

will prove this using induction. So, the basis of the induction will be provided by the 2

dimensional  hypercube.  A 2 dimensional  hypercube is  a cycle  indeed.  Therefore,  the

property  is  satisfied  here  trivially. You can  start  at  the  vertex  travel  to  every  vertex

exactly once and come back to the original vertex; the vertices of H to form a cycle.
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Now when you come to a higher dimensional hypercube, let us say we are considering H

r. So, let me hypothesize that H r minus 1 is Hamiltonian. Then we will be take two

identical copies of Hr minus 1. Find identical Hamiltonian circuits  in each. And then

consider 2 identical edges, let us say we have an edge from u to v in this H r minus 1 and

there is an edge u to v in this H r minus 1 as well. We find identical Hamiltonian cycles

in both the copies of H r minus 1. When we construct Hr from H r minus 1 what we do is

to take 2 copies and connect the corresponding nodes.

So, we have connections like this. The u here is connected to the you here and the v here

is connected to the v here. These are the arc dimensional connections and because of

these connections we also add an extra bit to distinguish these vertices. In other words,

what we have done is we have taken in H r and we have removed all dimension or edges.

Then we get 2 identical copies of H r minus 1 and we find the Hamiltonian cycle in the 2

of them. And then we now consider the dimension r connections. 

Using these dimension r connections I can stitch the 2 Hamiltonian cycles together into

one single Hamiltonian cycle; for example, if I disconnect this edge in this inch from the

2 respective Hamiltonian cycles and add the blue edges instead then the 2 cycles have

become stitched together into one single Hamiltonian cycle. So, let us see this working

in the case of a 3 dimensional and 2 dimensional cases.
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In the 2 dimensional case as we have seen just now, we take 2 copies of H 2 and then

connect in this manner, and delete these edges. So, this forms a Hamiltonian cycle of H

3. So, this forms a Hamiltonian cycle of H 3. From a Hamiltonian cycle of H 2 now we

have invented a Hamiltonian cycle for H 3. 
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Now when we go on to H 4 we take 2 copies of this. So, this is a Hamiltonian cycle of H

3 we take an identical copy. And then choose any particular corresponding pair of notes

and interconnect them. For example, if we choose this edge we could interconnect them



in this manner. And then delete the original pair  of edges. This forms a Hamiltonian

cycle of the 4 dimensional hypercube. In this manner we can extend the Hamiltonian

cycle of H r minus 1 into a Hamiltonian cycle of Hr. This establishes that by induction H

r is Hamiltonian. The immediate consequence of this is that, a linear array of size N is a

sub graph of H log N. 

A linear array is a chain of N nodes when you connect the last node to the first node we

have a cycle of size N, this can be embedded on a hypercube of N nodes, which will

have a dimensionality of log N. Therefore, any algorithm that you have designed for a

linear array of size N can run on a hypercube without any change. You consider the

embedding you activate only the connections of the embedding and ignore all the other

connections. Then a hypercube becomes a linear array with loop a feedback loop from

the last node to the first node.

So, any linear array algorithm can be run on a hypercube without any change. We shall

see more of the versatility of a hypercube in the next class. So, that is it from this lecture.

Thank you.


