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Lecture – 26
Sorting, Offline routing on a 2D mesh

Welcome to the 26th lecture of the MOOC on Parallel Algorithms, continuing with the

algorithm that we were discussing in the previous class, we wanted to find a 3 root N

plus small o root N time algorithm for sorting N items on a root N by root N mesh.

(Refer Slide Time: 00:42)
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The items had to be sorted in a snake like order, we use the shear sort algorithm that we

saw in a previous class as a subroutine here.

(Refer Slide Time: 00:52)

The algorithm proceeds in this fashion when we are given a root N by root N mesh in

which every processor holds an item that is to be sorted. We divide the mesh into square

blocks. Thus, the squares are of size N by N power 3 by 8 by N power 3 by 8. So, you

have N power 1 by 4 blocks on the whole.



(Refer Slide Time: 01:14)

And then we sort each of these blocks in snake like order using shear sort. This sorting

will take order of N power 3 by 8 times log N time. Vertical slice is a sequence of blocks

stacked one over above, a top to bottom and a horizontal slice is a similar set of blocks

that are arranged horizontally from the left to the right.

(Refer Slide Time: 01:36)

Then in the second step, we do an unshuffle operation. That is we consider the vertical

slices, we take the contents of a vertical slice imagine that this is a deck of cards and then



distribute these cards namely the columns over the vertical slices that is; we assign each

card to a vertical slice. This we do with every single vertical slice.

(Refer Slide Time: 02:00)

So, this unshuffle operation essentially involves routing the data items. So, every data

item or the processes sitting on the data item statically calculates the destination at which

the data item has to be sent. And, once every data item knows the destination where it

should  be  going  then  all  the  data  items  can  walk  in  lockstep  until  they  reach  the

destination and fall in place.

(Refer Slide Time: 02:22)



So, this will require root N plus small o root N time.

(Refer Slide Time: 02:27)

And then in the third step we sort each block in a snake like fashion, again using shear

sort this takes order of N power 3 by 8 times log N time. So, so far the second step is the

dominating step.

(Refer Slide Time: 02:39)

So, at this point we would have established that there are at most 2 dirty rows in every

horizontal slice. This is because when we unshuffle the vertical slices in every horizontal

slice when we considered two blocks what we understand is that when one,  but one



block of a horizontal slice is unshuffled over the various blocks of the horizontal slice.

The maximum gain that one block can get over another in the number of 1’s is 1 and

when this is summed over all the blocks of the horizontal slice we get N power 1 by 8.

So, there are at most N power 1 by 8 elements N power 1 by 8 extra 1’s in any block of

the horizontal slice over another block of the same horizontal slice. This ensures that

there are at most 2 dirty rows in every horizontal slice because, the width of a block is N

power 3 by 8 which is far more than the N power 1 by 8 that we were talking about.

(Refer Slide Time: 03:36)

So, the horizontal slice is now look like they look almost clean with 1 kink then each

block of each horizontal slice and these kinks are happening in 2 consecutive rows. So,

every horizontal slice has 2 dirty rows.



(Refer Slide Time: 03:51)

And then in step 4, we sort every column this is akin to letting the 1’s fall down in every

column. So, now, the 1’s settle at the bottom and the 0’s are at the top.

(Refer Slide Time: 04:04)

So, if you imagine that the 1’s are buildings and the 0’s from the sky then, the skyline of

the dirty rows will occupy a very small band. They occupy a small band of size at most

N power and by 8; that is because 2 columns of a vertical slice differ by at most N power

1 by 8 in the number of 1’s. This is clear from the previous picture at the end of the third

phase when you take 2 columns belonging to the same vertical slice they have almost the



same number of 1’s,  the 2 columns will  differ  by at  most  one in each block of this

vertical slice. Therefore, now we have a skyline which is very narrow compared to the

width of the sky as well as the width of the buildings that is the number of 1’s and the

number of 0’s.

The dirty band is of size at most N power 1 by 8, in a vertical slice each block has a

height of N power 3 by 8. Therefore, this dirty band should be entirely within a block or

it should span at most 2 blocks. So, it will be one of these two cases.

(Refer Slide Time: 05:05)
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To handle these two cases what we do is to pair off the blocks belonging to a vertical

slice and then sort each pair in a snake like fashion using our previous algorithm; the

shear sort algorithm which runs in order of N power 3 by 8 times log N time. Since we

do not know which pair of blocks the dirty band would overlap. It could overlap an even

odd pair or an odd even pair. We consider both the pairs, first we consider odd even pairs

that is 1 is paired with 2, 3 is paired with 4 and so on and within each pair we perform a

sort. Now every pair is sorted, but then the dirty band could be spanning an even odd

pair. To take care of that eventuality we consider the even odd pairs as well.

(Refer Slide Time: 05:49)
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In step 6, we consider pairings of the sort and sort every pair. This will ensure that every

vertical slices clean.

(Refer Slide Time: 06:01)

Now, there are; there is at most 1 dirty row in each vertical slice. This is wrong I should

say there is at most 1 dirty row in each vertical slice, the vertical slice has just been

cleaned up. So, every vertical slice has exactly 1 dirty row now.

(Refer Slide Time: 06:20)

So, at the end of step 2, two blocks of the same horizontal slice differed by at most N

power 1 by 8 in the number of 1’s.  So, if  you aggregate over vertical  slices,  this is



tantamount to saying that two horizontal slices; two vertical slices differ by at most N

power 1 by 4 in  the number of 1’s present  in  them. This  condition holds even now

because after step 2, in steps 3, 4, 5 and 6 we did not have any data moving between the

columns between vertical slices.

(Refer Slide Time: 06:52)

Therefore,  this condition holds good even now and the width of a vertical  slice is N

power 3 by 8, since 2 vertical slices differ by at most N power 1 by 4 in the number of

1’s they have; there could be at most 2 dirty rows in the whole mesh right now.

(Refer Slide Time: 07:10)



So, this is where we had stopped in the previous lecture. So now, the mesh looks almost

sorted; all it all that is necessary is to clean up the remaining 2 dirty rows.

(Refer Slide Time: 07:20)

In step 7, we sort every row, the odd rows are sorted from the left to the right and the

even rows are sorted from right to the left. This is the standard order that we have.

So, in step 7 we perform the sorting. Once this is done, we would have solved the case

where there is exactly 1 dirty row. Had it been the case that there is exactly 1 dirty row at

the end of step 6, then that would be fixed by now, but then there is also the possibility

that there could be 2 dirty rows that is the case to be handled now.



(Refer Slide Time: 08:09)

But we know that when we consider two vertical slices. The number of 1’s in them differ

by at most N power 1 by 4; the number of 1’s in them differ by at most N power 1 by 4.

(Refer Slide Time: 08:58)

Therefore, in the whole of the array in the entire mesh. Now, when I have sorted the rows

consider a dirty row that has been sorted now. Suppose the in a vertical slice the between

two vertical slices we have at most N power 1 by 4 1’s in other words when you take two

vertical slices the number of 1’s in one could be at most N power 1 by 4 more than the

number of 1’s in the other.



(Refer Slide Time: 09:30)

Therefore, if you consider the entire mesh now we know that there are 2 dirty rows, there

are 2 adjacent rows that are both dirty. Therefore if you take a vertical slice, it should be

that the kink in that is happening rather late that is why it is spilling over into the next

row. This is because the kinks can span a position range of size at most N power 1 by 4

whereas, the width of a vertical slices N power 3 by 8 much larger than N power 1 by 4. 

Therefore, if the there are 2 dirty rows, then the kink in the vertical slice is happening

rather late in all the vertical slices. What this means is that the number of dirty, the size

of the dirty window is quite small with respect to the size of the vertical slice. Or, in

other  words when you get  the entire  row sorted when the entire  dirty  row is  sorted

assuming that we are sorting them in this order. Assume arbitrarily that the top row is

sorted from the left to right and that the bottom row is odd from the right to the left, it

could just be the other way around.



(Refer Slide Time: 10:49)

If this is the case then this range is at most N power 3 by 8 in size aggregating over all

the vertical slices. Similarly, this is also at most N power 3 by 8 in size which means the

dirty window overall is of size twice N power 3 by 8, this is a graph of a bound. The

maximum size of the dirty window is twice N power 3 by 8.

So, the entire mesh is now clean except for a small dirty window that appears over 2

adjacent rows and the size of this dirty window is twice N power 3 by 8; everything

above is 0 and everything below is 1. And, even within these rows prior to the dirty

window all the elements are clean and after the dirty window all the elements are clean.

So, now, all that is necessary is to get these dirty elements cleaned up. How do we get

them cleaned up? That is where the next step comes in.



(Refer Slide Time: 12:24)

In step 8, we apply twice N power 3 by 8 steps of odd even transposition sort onto the

snake,  that  is  the  mesh  is  now thought  of  as  a  linear  array  ignoring  the  remaining

connections that is we use the vertical connections only when we turn at the right and left

N’s,  otherwise we use only the horizontal  connections.  This snake like order can be

thought of as a linear array this is a sub graph of the two dimensional mesh that we are

dealing with. 

So, in this we find that the dirty window happens to be somewhere, this dirty window

has a size of at most twice N power 3 by 8. So, if you run the odd even transposition sort

for twice N power 3 by 8 steps we end up cleaning those window, this window is all that

that is to be cleaned up the rest of the meshes already clean. Therefore, now the sorting is

accomplished, the mesh is now sorted.



(Refer Slide Time: 13:44)

So, this establishes that every 0 1 sequence can be correctly sorted which means that, on

any sequence run from a linearly ordered set this algorithm will work correctly. So, to do

a recap what this algorithm does is to divide the mesh into several squares, sort each

square in a snake like fashion and then unshuffle the vertical  slices over the vertical

slices. After that sort this twice once again and then sort every column linearly top to

bottom and then pair of the blocks of every vertical slice initially 1, 2, 3, 4, 5, 6 etcetera. 

And, then leaving out 1, 2, 3, 4, 5, 6, 7 etcetera even odd; in each of these pairings we

sort the pairs in snake like order using shear sort, after this we sort each row linearly in

the appropriate order. And finally, all that we have to do is to execute 2 N power 3 by 8

steps of odd even transposition sort. That would ensure that the original sequences in

sorted order.



(Refer Slide Time: 15:12)

Now, what is the time complexity of this? Steps 1, 3, 5 and 6 as we have seen run in

order of N power 3 by 8 times log N steps, step 2 runs in root N steps, steps 4 and 7 also

run in root N steps, step 8 runs in twice N power 3 by 8 steps. So, summing all this

together we find that the total time taken is 3 root N plus small o root N steps. 

The remaining terms these are all small o root N; the time taken by steps 1, 3, 5, 6 and 8

are all small o root N. The dominating steps are 2, 4 and 7 these steps take root N time

each. So, the total time taken is 3 root N plus small o root N. So, compare this with the

lower bound that we saw in the last class.



(Refer Slide Time: 16:22)

We established lower bound of 3 root N minus small o root N for sorting N items on a

root N by root N mesh and we have found a 3 root N plus small o root N algorithm

which very closely matches this lower bound ok. Now, we will see another algorithm on

a 2 dimensional mesh.

(Refer Slide Time: 16:55)

This is an offline routing problem, in this we assume that we are given an N by s mesh

you given let us say an N by M mesh. There are N rows and M columns, we are given an

N by M mesh in which each processor holds a packet, holds exactly 1 packet.



(Refer Slide Time: 17:54)

And along with the packet  is the destination of the packet.  So, we assume that each

packet knows its destination. And let us also assume that, each destination is to receive

exactly one packet. We want to route the packets to their destinations as fast as possible.

This is the problem we want to solve. Let us take an example first.

(Refer Slide Time: 18:48)

So, we have a mesh, we have a 3 by 3 mesh. So, the processes of the mesh are numbered

like this 1 1, 1 2, 1 3 this is the first row so 1 2 belongs to the first row and the second

column then 2 1, 2 2 and 2 3, then 3 1, 3 2 and 3 3 and let us say the packets are held by



the processors. Let us assume that processor 1 1 holds a packet that must be sent to 2 3, 1

2 holds a packet that must be sent to 3 3, 1 3 holds a packet that must be sent to 1 2 and

so on.

So, the value written outside is the address of the processor, every processor is addressed

using two numbers the row number and the column number and the value inside the node

is the destination of the packet that is processor 2 2 is holding a packet which must be

sent to processor 1 1. So, we want to perform these routings simultaneously and as fast

as possible.

(Refer Slide Time: 20:14)

To this end what we do is to construct a bipartite graph. A bipartite graph is a graph that

has 2 vertex sets V and U. So, that every edge in the graph is between these two vertices

these two vertex sets. So, we have from the vertex set V and the vertex set U and every

edge in the graph is between these two vertex sets. 

The graph cannot have an edge between two vertices belonging to the same set that is

two  vertices  belonging  to  V  cannot  have  an  edge  between  them  and  two  vertices

belonging to U cannot have an edge between them. So, such a graph is a bipartite graph.



(Refer Slide Time: 21:07)

So, let  us construct a  bipartite  graph. In the bipartite  graph I  take 1 vertex for each

column of  the  mesh.  So,  these  represent  the  columns,  on  the  other  side  also  I  take

vertices corresponding to the columns. Now when we look at the mesh we find that we

have a packet going from 1 1 to 2 3. So, this is the packet that is traveling from column 1

to column 3. 1 1 is a node in the first column and 2 3 is a node in this third column. So,

this is a packet which is traveling from 1 1 to first column to the third column. Therefore,

we will draw an edge from 1 to 3 and then we have a packet which is going from 1 2 to 3

3 this is from the second column to the third column.

So, we draw an edge from node 2 on the left side to node 3 on the right side. So, likewise

when we complete the graph, we find that we have edges of the sort. So, there could be

multiple edges between a pair of nodes if there are multiple packets going between the

corresponding columns here you find that there are 3 packets going from column 3 to

column 2 which can be seen here, packet 1 3 is going to 1 2. So, that is a packet going

from column 3 to column 2. Similarly, packet there is a packet going from 2 3 to 2 2 that

is again from 3 to 2 and then 3 3 to 3 2 that is again another packet from 3 to 2. So, there

are 3 packets going from column 3 to column 2. 

So, accordingly we construct a graph this is a bipartite graph there is no edge between

two vertices belonging to the same side and then a well known graph theoretic fact is



that, every bipartite graph in which the maximum vertex degree is delta can be edged

colored using delta colors.

(Refer Slide Time: 23:09)

Edge coloring of a graph is the process of assigning colors to the edges of the graph so

that no to adjacent with the same vertex get the same color. So, what this graph theoretic

result says is that in every bipartite graph in which the maximum vertex degree is delta

we can color the edges of the graph using at most delta colors. We will prove this result

in a moment, but for now you assume the result.

(Refer Slide Time: 24:26)



So, if this result is true, then we could color our bipartite graph using delta colors. Now

we are doing this offline. Offline in the sense that, suppose we have to solve the same

routing problem again and again that is we have the same mesh and we have the same

source destination pairs which means, we have let us say the same mapping. And, we

have to send packet after packet from these same sources to same destinations in other

words there is a stream of packets that are going from packet 1 2 to 3 3 for example.

So, this source destination mapping is to be repeated time and again, if that is the case

then we can do some offline calculations on the basis of this source destination mapping.

That calculation in this case involves forming a bipartite graph and coloring it with delta

colors.  So,  we do not go into the complexity of this delta  coloring because this  is  a

onetime operation. But once this delta coloring is available then we can use it to quickly

route any number of packets. So, assume that this delta coloring is available and let us

see how fast we can route one set of packets.

(Refer Slide Time: 26:06)

So, let us say that colors are 1 to N, where N is the number of rows. This is because the

degree of the bipartite graph that we have formed is N we are given an N by M mesh. So,

we  have  m columns,  the  columns  can  be  numbered  from 1  to  m  the  rows  can  be

numbered from 1 to N and then when we form the bipartite graph we take one vertex for

each column on either side and then we draw edges for the packets out of every column

we have N packets going out in every column we have N processors so every processor



has 1 packet going out. So, there are N packets going out of every single processor,

which means the bipartite graph that we have formed is of degree N, it is an N regular

bipartite graph. A regular graph is one in which the vertex degree of every node is the

same. So, here the degree of every single node is the same N. So, what we have is an N

regular bipartite graph what we do is to edge color this bipartite graph using N colors.

Now, after N coloring them what we know is that, at every vertex no to incident edges

have the same color the edge coloring is valid. Therefore, going back to our example we

find that the 3 edges going out of vertex 1 have got different colors. For example, let us

say this is 1, this is 2 and this is 3 or in other words going back to the mesh the first

columns packets have got colors let us say 1, 2 and 3. The 3 packets of the first column

have got three different colors and then what we are planning to do is to send these

packets along the rows that are numbered with its color.

So, the packet which is originating at 2 1 has got a color 1 therefore, this packet should

be traveling in the first row. The packet which is originating at 1 1 has got a color of 2

therefore, this should be traveling in the second row and the packet which is originating

at 3 1 has got a color of 3, therefore, this should be traveling at the third row. So, now

after  the  offline  coloring  is  made  available,  the  first  step  of  the  algorithm  that  we

performance this send all the packets to their appropriate row, the appropriate row is the

1 which is numbered the same as the color of the packet. Now corresponding to each

packet we have an edge in the bipartite graph, the color that is given to the edge is the

same as the color that is given to the packet, this color is used to route the packet to the

correct row. 

In other words the packet which is originating at 1 1 is an edge in the bipartite graph this

edge has got a color of 2 and therefore, this packet will be routed to the second row of

the; second row of the mesh. So, this packet is going to travel along the second row. Now

how can this routing happen this involves sending the packets along packets up or down

along the column.
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In other words this is realizing of a permutation of the packets. Every packet has got the

unique color, the color is the same as the number of some row. So, all that the packet has

to do is to go to the correct row within that column within its own column, but then how

can this be achieved this is exactly similar to the second step of the previous algorithm

we  saw. In  that  we  had  the  unshuffle  operations  where  the  packets  travel  to  their

destinations in lockstep the same thing will be done here. We have a number of packets

all of them have already calculated their destinations within their columns and then they

only have to go up or down along their columns.

So, at every processor we assume that there is one incoming message from each of its

neighbors. So, there is one message coming down from the top and one message going

up from the bottom the processor has to accept these two messages decide; if one of

them is designed to itself if it is, then it is taken out of the queue otherwise the messages

have to be sent along the way the message which came from the bottom has to be send

up and the message which came from above has to be send down. So, this can be done in

N steps. This is moving data within a column the column has the size of N so the moving

of the packets can be achieved in N steps.
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Now the packets have all reached their correct rows, each packet has identified along

which row it wants to travel and then in step 2, send the packets to their destination

columns. Every packet knows its column, then all the packets have to do is to go and join

their destination columns. There could be multiple packets reaching the same column,

but that does not matter, when at any point in time only one packet will be reaching a

column at one particular  node.  And once they reach the column,  they have to travel

towards their destination node and then in step 3, this is done in continuation to step 2 as

a packet reaches its destination column, it travels towards its destination row. 

The destination row need not be the same as the one along which it travels. The row that

it has got to travel along is the color that has been given to the packet. So, once it reaches

the destination column, it  has to then travel towards the destination row. Now at the

receiving column also we have at most one packet of a color coming to it. So, there can

be at most one packet coming to a column along each row. Therefore, once the packets

are  collected  at  the  columns  at  the  end  of  step  2,  they  can  be  send  along  to  their

destination row in step 3. So, step 2 we can see involves moving the packets along their

rows so this will take M steps and this will take N steps again.
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So, the total time taken is 2 N plus M steps to route all the packets. This is optimal

because it could be that a packet has to travel a distance of N plus M in any case. Now it

remains to show that, every bipartite graph of a maximum degree delta can be indeed

delta colored row when we deal with edge colors.

(Refer Slide Time: 34:41)

Every delta degree bipartite graph can be delta edge colored.
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To prove this, consider a graph G equal to V, E which is a bipartite graph so let me call it

G equal to V, U, E there are two vertex sets V and U and E is the edge set. So, the

maximum vertex degree of the graph is let us say delta. The first thing that we do is to

add a vertex to G and make it adjacent to every odd degree vertex.

(Refer Slide Time: 35:57)

For example when we have a graph of the sort; when we have a graph of the sort we find

that the degree of the vertices is when we calculate the vertex has a degree of 2, this has

a degree of 2, this has a degree of 1, this has a degree of 2, this has a degree of 1 and this



has degree of 2. So, there are exactly 2 vertices of odd degree. We take one extra vertex

which does not belong to either V or U and then make it adjacent to the odd degree

vertex on either side. The resultant graph will not be bipartite anymore, but that does not

matter.

So, we enhance the graph in this manner. Once we do this, what we are ensuring is that

the vertex degree of every node in the resultant graph is even that is because in every

graph, the sum of vertex degrees is twice the number of edges. Therefore, the sum of

vertex degrees is even because that is twice the number of edges. So, if the degrees of all

the vertices put together has to be even, then the number of the odd degree vertices in the

graph also has to be even because they should sum to an even value.

So,  an  even  number  of  odd  numbers  added  together  will  give  us  an  even  value.

Therefore, this graph has an even number of odd degree vertices. When we add this new

vertex and make it adjacent to all the odd degree vertices, then all the odd degree vertices

will become of even degree now because they are getting one extra edge, the blue edge is

adding to the red edges that it already had. So, the vertex degree of all the odd degree

vertices will now be even the degree of the blue vertexes also going to be even that is

because there is an even number of odd degree vertices in the original graph.

So, this graph now is an Euler graph. Therefore, we can find an Euler tour of it that is we

can start at the vertex visit every single edge and come back to the same vertex without

visiting any edge twice.
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So, let us say when we do an Euler tour G prime is the enhanced graph. Let us say in the

Euler tour of G prime we label the edges 0 and 1 alternately, that is when we come into a

vertex through an edge labeled 0. We go out through an edge labeled 1 that is as we go

through the Euler tour we label the edges 0 and 1 alternately. Therefore, when I look at

the vertex I find that the number of 0 labeled edges at that node is exactly half, the vertex

is come in to several times and is gone out several times whenever you come into a

vertex you trace an edge of a particular label, when you go out you will be tracing an

edge of a different label. One of them is of label 0. 

So, these two cancel each other let us say then every edge that is incident at the vertex

has a pair of the complement label. Therefore, the number of edges of label 0 at every

vertex has to be exactly half. So, in this case that will be ceiling of delta by 2, at every

single vertex in the graph in the enhanced graph G prime there are at most a, there are

exactly ceiling of delta by 2 edges of label 0 and ceiling of delta by 2 edges of label 1 at

every single vertex. That is assuming that the original graph was delta regular, then let us

discard the new vertex which is the blue vertex in the figure and discard the new edges. 

So, we are going back to the original graph and then let us tare the graph into 2 which

means we are making two copies of the graph we will have the same set of vertices in

both the copies, but then edges of label 0 will be in one copy and edges of label one will



be in the other copy. So, the graph is split vertically the set of vertices are maintained in

both the copies, but an edge will belong either to this copy or to this copy.

(Refer Slide Time: 40:20)

So, imagine that these two graphs are one above the other, at the upper level let us say

we have edges that are labeled 0, at the lower level we have edges that are labeled 1. So,

when you consider these two graphs, we find that both the graphs are of degree sealing

delta by 2 then, let us recursively assume that they can be ceiling delta by 2 edge colored.

Let us we consider the 2 graphs induced by the edges of label 0 and the edges of label 1

both our ceiling delta by 2 degree graphs so they can be ceiling delta by 2 edge colored.

And, then when we put the colorings together  assuming that these two colorings are

exclusive in the sense that a color which is used at the lower level is not present in the

top level and vice versa.
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Therefore when we put the edges together to reconstruct the original graph, we would

have obtained a ceiling delta by 2 plus ceiling delta by 2 which is less than or equal to

delta plus 1 edge coloring of G. This will be fine if ceiling of delta by 2, if delta is even;

if delta is even then ceiling of delta by 2 is the same as delta by 2. Therefore the sum of

the 2 colors would be delta by delta. Therefore, now we would have delta edge colored

the original graph, but if delta is odd then we have one extra color, we have now delta

plus one edge colored the graph for induction to hold good we should get rid of this one

extra color. 

So, what we do is to remove all vertices all edges of this extra color that is every edge of

color delta plus 1 is removed from the graph and then we add these edges one by one to

the remaining graph. So, at any point when we add an edge of color delta plus one into

the remaining graph this edges deemed uncolored. So, we have the situation where the

graph has exactly one uncolored edge, but the remaining edges are all colored.
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So, we have one uncolored edge, the rest of the graph are all colored. What is needed is

to find a color for this edge. We are seeking to do a delta coloring if there are delta colors

at either end if there is at least one free color at either end and this free color happens to

be the same there should be one free color at either end. Because, the maximum vertex

degree of a node is delta and the other neighbors all put together can be at most delta

minus 1 in number. 

Therefore, there is one free color at these two vertices at each of these vertices, if that

free color happens to be the same. In other words if there is no edge of color alpha here

and there is no edge of color alpha here then we can safely give color alpha to this edge.

It will not conflict with any of these edges of any of these edges then the problem is

solved, but if  there is  no edge of no color is  free,  no same color is free at  both the

vertices then we have an issue. So, let us see what we will do in that case.
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So, let us consider an uncolored edge. So, that at its two different end points the same

color is not free. So, let us say color green is free here and color red is free here. Then let

me start with the edge of color red here that will take it take us to some node from that

node let me take the edge of color green that will take me to some other node. So, what I

do is this at this end point green is free, but red is present, if red is absent since red is

here I would be able to color this red and the problem would be solved. 

So, let me assume that red is not free, if red is not free then there is an edge of color red

here. So, let me move along that edge I come to some other vertex, at this vertex if green

is free, well and good. If green is not free, then there is an edge of color green there I will

travel along that vertex the travel along that edge to come to some vertex. At this vertex

if there is an edge of color red I will take it and then from there if there is an edge of

color green I will take it and I keep going like this through edges of colored red and

green alternately until I come to a dead end.

So, I come to a vertex from which I cannot extend this red, green play any further that is

this vertex does not have an edge of color red then, when I look at this path of colors red

and green alternating in it I find that this is an island of red and green in a sea of different

colors every vertex can have at most one edge of a particular color in the edge coloring

problem because, no two edges adjacent at incident at the vertex can have the same color.

Therefore, this path is surrounded by a sea of different colors, those colors do not mind if



colors red and green are swapped within this path. Therefore I can now safely swap the

colors change this to green, this to red, this to green and this to red. If I do this then I

would have ensured that green is not free here, but red is free instead then, red is free

here as well I would be able to give red to this edge.

This would be the case if only we do not end up getting to this vertex I would be in

trouble if this process of taking red and green vertices had taken me to the other vertex.

If this were the case then when I swap red and green along this path I would only be

exchanging one trouble for the other then red would be free here and green would be free

here.  And  this  edge  would  still  be  uncolored,  but  I  claim  that  this  will  not  happen

because if this were to happen then, these edges together will form an odd cycle, but then

a bipartite graph cannot have an odd cycle. 

Therefore, I would certainly not get this condition, I would come to a dead end before we

reach here. Therefore, I will be able to swap red and green in the resultant path without

affecting the surroundings which means at  this  node then red would be free and the

uncolored edge could be given the red color. So, that would resolve one uncolored edge.

Likewise, if I put all the uncolored edges back into the graph and assimilate them into the

coloring that, already exist the entire graph would be colored.

So, this concludes the recursion. The basis of the recursion is where you finally, end up

with chains and cycles that is you keep on splitting the graph into graphs of smaller

degrees. This recursion would end when we have degree two graphs in which case we

have chains and cycles but, since a bipartite graph cannot have odd cycles we have only

even cycles  we would have chains  and even cycles.  A graph that  comprises  only of

chains  and even cycles  is  a  degree  two graph and it  can  be  two colored,  two edge

colored. That is when I have the graph of the sort this can be two edge colored where 0

and 1 are the colors. So, this would be the basis of the recursion.
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So, that establishes that every bipartite graph of a maximum vertex degree of delta can

indeed be edge colored with delta colors. So, that shows that the routing can indeed be

done in 2 N plus M steps in the N by M mesh as we intended.

We shall see an application of this routing later in the course. So, that is it from this

lecture hope to see you in the next.

Thank you.


