Parallel Algorithms
Prof. Sajith Gopalan
Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture — 25
Sorting on a 2D mesh

Welcome to the 25 lecture of the MOOC on Parallel Algorithms in the previous lecture.
We saw a lower bound for sorting on two dimensional meshes the lower bound was 3
root N minus small o root open today, we shall see an algorithm which nearly matches

the lower boundary.

(Refer Slide Time: 00:50)

So, today we shall see an algorithm the transcend 3 root N plus smaller o root N steps for

sorting on a root N by root N mesh.

(Refer Slide Time: 01:22)

Inxfy medh.
N&L@W\MA'{C
Aﬂd@’\w e F@f IF%S;W
Sk Liks ;ov-m% —
g =

=

=

So, we assume that we have a root N by root N mesh, we have N elements distributed
one per processor. We want a snake like sorting in snake like sorting the rows are sorted
from left to right in odd rows. And the rows are sorted from the right to left in even rows

and the elements of a row are all smaller than the elements of the next row.

So, this is how the elements will be ordered. Therefore, we call it the snake like order.
So, on the two dimensional mesh we will want to arrange the elements in this order.

Finally, when the sorting is done the elements will have to be in the snake like order.

(Refer Slide Time: 02:47)

(wﬁg N#D Hins
M@b wh‘%
(E&im %YJC)

So, in the last class we all, we saw an algorithm that runs in the root N times log of N
plus one time this algorithm was called Shear Sort. So, in our algorithm of today shear

sort will be used as a subroutine; so this algorithm we saw in the last class.

(Refer Slide Time: 03:21)

SJLQ,TJ = Divids the M%

So, in the present algorithm what we do is this in step 1, we divide the mesh into square
blocks that is the root N by root N mesh is divided into square blocks. So, that the size of
each square is N power 3 by 8. So, we have N power 1 by 4 squares each blocks and N
power 3 by 8 by N power 3 by 8 square.

So, the mesh is divided into square blocks of the sort of course, dividing this does not
require any cost, because all that a processor has to do is some local computation to

decide in which block it belongs.

(Refer Slide Time: 04:50)

Umifiudl dice holie
_V_g‘!"ﬂ- | j L\M%MM QQMQ

L

I R

g b SO:JE@CL Lfeack .
i) e Sort wm

(" y)

- — —

Now, let me define a couple of terms I define what is called a vertical slice. Vertical slice
is a set of N power 1 by 8 blocks that appear one above the other. A vertical slice is a set

of blocks that appear like this.

Similarly, a horizontal slice is a set of blocks that appear consecutively horizontally. So,
we will use the short form h slice for a horizontal slice and v slice for a vertical slice. So,
in the first step, we have divided the array into square blocks of the sort. And then in the

second step hold on and then we also sort each block using shear sort.

We know that this takes order of N power 3 by 8 times log N that is from the analysis of
shear sort that we saw in the last class. In the last class, we saw an algorithm called shear
sort which sorts N elements distributed over a root N by root N mesh in root N times log
N plus 1 steps, but here instead of a root N by root N mesh. We are considering an N

power 3 by 8 by N power 3 by 8 mesh which is 1 square block.

So, all the square blocks are sorted in parallel. So, these are done in parallel the time
required. Therefore, is order of N power 3 by 8 times log N, N power 3 by 8 is the
dimension of 1 square. And of course, it should be log of N power 3 by 4, but which is
the same as order of log N. Therefore, the overall time complexity of this step is order of

N power 3 by 8 log.

(Refer Slide Time: 07:23)

(lep 2
m%ﬁ MW e
AN

W
Q}viwﬁ q(om G duck @?Jﬁ
(/w@?w{{& ther

Now, we come to the second step, in the second step what we do is this we look at one
horizontal slice, this horizontal slice consists of N power 1 by 8 blocks. Let us separate
the contents of the blocks from the blocks themselves. So, let us separate the contents of
the blocks from the blocks themselves imagine that the contents of a block, a deck of

cards our idea is to redistribute this deck of cards using an unshuffle operation.

In particular, let us consider the first block. We take this first block and redistribute this

the columns of this, let us say form the cards of the deck.

(Refer Slide Time: 08:53)

clumns = cavds N
ok tnds = Auck

D[JSUPUH

/

I i)

N
N'}L}a ol 31F

So, the columns are the cards and the block contents that is all the N power 3 by 8
columns put together. We will form a deck, we want to redistribute the columns in those
fashion we take the first block and then we distribute the columns to the blocks

themselves.

The first card goes here, the second card goes here, the third card goes here and so on,
but then the number of cards then is N power 3 by 8§, but there are only N power 1 by 8
blocks. Therefore, you will soon come to the end then you will start again. So, cards 1 to
N power 1 by 8 are distributed to the blocks and then card number N power 1 by 8 plus 1
will again go to the first block card number N power 1 by 8 plus 2 will go to the second

block and so on.

And likewise, we have N power 1 by 4 rounds of cards distribution. We take the first
block and distribute the cards in this fashion the contents of the block will form a deck of
cards we imagine that they form a deck of cards where each column is a cross and then

we distribute the columns between the; among the blocks in this fashion.

(Refer Slide Time: 10:53)

hen ous duck i redncbinded
e Lol erudA ?f 0w Wor
Wt | M a0 fhay Lf&c‘\

Now, let us see how these deck of cards actually look like mind you, these are blocks that
are already sorted a sorted block. Let us assume that the elements that we have to sort are
all zeros and ones. If we can prove that our algorithm works correctly on all binary
sequences then using the 0, 1 principle we can argue that it will work correctly for any

sequence drawn from a linearly ordered set.

Therefore, through the proof, let me assume that we are dealing with binary sequences.
Now think back to the first step, in the first step what we did was to do a snake like
sorting of every single block. So, every block is now in snake like sorted order. And
since, we are dealing with binary sequences what we find is that in every block the 0’s

appear before the 1’s.

So, in snake like order, if the 0’s appear before the 1’s; you will have 1 either this
situation or this situation. The Os will always appear before the 1’s depending on whether
you have the 0 to 1 transition appears on an odd row or an even row, we have the
situation if it happens on an odd row then we have a situation like this. If it happens on
an even row, we have a situation like this. In any case, we can say that there is exactly

one dirty row in each block.

It is one such sorted block that we are treating like a deck of cards and distributing over
the blocks of the horizontal slice. So, if you consider the various cards here, imagine the
cards that are dealt in the first round. In the first round, we deal N power 1 by 8 cards.
So, in this figure, we find that this is entirely divide of the transition, the transition
happens here it does not happen within this round. Therefore, every single card dealt in

this round is identical.

In other words the number of ones that are given to the different blocks through this
dealing will be entirely identical, every block is treated exactly the same way. If you
consider round which falls within this range, here again the situation is identical the
number of ones in every pair of cards are identical, but if you consider round which
spans the 0 to 1 transition. There we find that two rows could two columns could differ,

two cards could differ.

So, in short what we can see is that when one deck is redistributed, one block could get
one more bit one. Then another block that is redistributing a block a, a, a deck in this

fashion can introduce an asymmetry of 1 between 2 recipient blocks.

And then we are doing this for every single block of the horizontal slice, there is in
particular we separate the contents from the blocks. We take the contents of the first
block redistributed over the blocks then we take the contents of the second block again
redistributed over the blocks and so on. So, when we do this we can introduce a total

difference of N power 1 by 8 between the recipient blocks.

(Refer Slide Time: 15:14)

Tw‘o %ﬁcké % e Chame
L om daffer by af
wock N1E w e & 1

V@W{Fﬁv ﬁiﬂ/xg éw'mw ?&u

Therefore, what we can conclude is that two blocks of the same horizontal slice can
differ by at most N power 1 by 8 in the number of ones. Now this is what we are doing

for one horizontal slice, we could repeat this for every single horizontal slice in parallel.

(Refer Slide Time: 16:14)

Per fovm am e g
bt 4 A Gwmns
(Povwudy thu Amns o fuak
Ja NH’ mjeumns £ach \K«QAQ
M gk mw m&z
LTS)

So, step 2, in fact, could be specified like this. What we do is to perform an N power 1 by
8 way unshuffle of the columns that is the same as saying that we permute the columns.

So, that the N power 3 by 8 columns of each vertical slice are distributed evenly among

the N power 1 by 8 for different slices. So, this is what we want to accomplish

algorithmically, how exactly will we do this that is a next question.

(Refer Slide Time: 17:36)

o]

el Compladam,

fley YOy ks 4 QYWQMI
Aok mowes L\b%&uﬁ”t&

Ry nuiber dwegr ¥ J\@wjﬂ

All we require is some internal computation. We assume that every processor in the mesh
knows its index. In other words, it knows its row as well as its column in the mesh. We
assume that every processor knows its row and its column in the mesh. Now in this step
data is moving horizontally that is because we treat each column as a card that is to take
part in the unshuffle operation, but the data is not moving within the column the entire

column is treated as one single card and it is the cards that we shuftle.

So, there will be no data movement vertically data will move only horizontally. So, if a
processor knows its row number and the column number it can easily calculate its
destination row number. And the column number the row number will not change,
because the data will not be moving vertically only the column number will change. So,

that is an invariant for the step, the row number does not change.

Therefore to find the coordinates of the destination point a processor has only to figure

out the new column number.

(Refer Slide Time: 19:22)

For example, let us consider the first deck of cards. In the first deck of cards, I have cards
numbered from 1 to N power 3 by 8 these are the cards of the first vertical slice cards are

the same as the columns. So, these are the columns of the first vertical slice.

Now, to which columns will these elements go the first element will go to the same
vertical slice, what it means is that the element that the first position. So, the element that
row L. Let us consider the elements of row r. So, an element which is at the first position
in the rth row will have to go to the same place, what it essentially means is that this

element is not going anywhere this element should be exactly where it is.

Now, the second element should be going to the second block which means that will be
the first element of the second block, the second block, the second vertical slice begins
with N power 3 by 8 plus 1. So, here the coordinate is going to be r N power 3 by 8 plus
1 and this will be going to the third vertical slice which will be r 2 N power 3 by 8 plus 1
and so on. So, likewise every single element in the mesh can find destination coordinate.

Now the destination coordinate is going to be within the same row.

So, every element has to move within the same row, some elements will have to move
right, some elements will have to move left. In particular, if I consider the element here
the element which is at position N power 3 by 8 plus 1, this will have to go to the second
column, because it is going to this element will have to go to the first vertical slice. So,

this will be taken up when the second vertical slices being unshuftled.

So, this element will go to the first vertical slice at an appropriate place. So, every
element can statically calculate the destination of the data that it contains. So, that is
what I said before you have to separate the contents of the block. From the block itself
the block is recipient of data, the present data is being sent around in the mesh and this

data will reach the destination and then settle down there.

So, after calculating addresses in this manner each data item knows its destination which
is in the same row. Then all the data has to do is to just up and go the data will start

walking in lockstep.

(Refer Slide Time: 22:44)

=

B> of) sk et
T ol ow p g
f das wove want

al bmogf h\@ gm)g

Imagine that the data travels in lockstep some of the data will be traveling from the left
to the right. The rest will be traveling from the right to the left of course, some elements
are not going anywhere like the element of the first column those elements are not going

anywhere, the rest of the data will be traveling either to the left or to the right.

Now, since the data is traveling in lockstep to achieve this all we have to do is to
establish certain q protocol set every single processor. So, at every single processor, we
have two streams of data, data that is coming from the left and going to the right and data
that is coming from the right and going to the left. And then a data item will occupy the

contents of the processor.

So, there is an empty seat as well. So, what the data what the processor has to do is this
in every single step, it will receive one data item from the left which is a data item
belonging to the upper q. If this data item is not designed to the same processor, it will be
sent out onto the right. Similarly, it will also receive a data item from the right side this
belongs to the lower q, if this data item is not designed to this processor it should be sent

further on to the left side.

So, all this can be done in out of one time each processor has two messages to handle one
from the left side and one from the right side. So, synchronously it will receive these two
messages one from the left side and one from the right side. And then it will decide
whether any of these messages should be saved within this processor, if it is saved then it
is not to be sent further on, but if it is not to be saved then it must be sent along the
appropriate direction. So, after checking this; the data will be sent out along the

appropriate edge in the second part of the step.

So, in order of one time each processor can handle the data moment handles one step of
the data movement. And the data may have to go from one to the first vertical slice to the
last vertical slice or vice versa. So, it may have to travel a distance of theta root N in any
case. So, the time taken by this step is at most root N assuming that one step constitutes
all this receiving two messages from the neighbors and sending two messages to the
neighbors that anyway we assume on all interconnection networks that is we assume that
every processor is capable of receiving a message from all its neighbors and sending out

a message to all its neighbors in one single step.

So, with this assumption, we can see that at most root N steps are necessary to ensure
that the columns are unshuffled in this fashion. So, the second step here takes root N time

the second step of the algorithm will take root N time

(Refer Slide Time: 26:13)

ey 5
ggy{j J?_ACL\ %Ck W}kﬂ*&l@{

O(N3!€)&ﬁ N) A

Now we come to the third step, the third step of the algorithm, in the third step of the
algorithm we once again sort each block snakelike using shear sort that we saw in the

last class. So, this is similar to the first step and therefore, we will take order of N power

3 by 8 times log in time.

(Refer Slide Time: 26:53)

o 1o alolebl 4l
[

ok mast 2 ANy s
n A hidia

So, now, let us see what the horizontal slices, we will look like take a horizontal slice.

What we know is that any two columns of the horizontal slice differ by at most N power

1 by 8 and the number of ones in them that is what we have just estimated, but then the

width of a block is N power 3 by 8.

Therefore, when you look at the entire horizontal slice there can be at most two dirty
rows that is because let us say, we are considering two blocks one in which the number
of 1’s is the least and one in which the number of 1’s is the most if the number of 1’s is
the most then the kink in this block appears early the kink is where the 0 1 transition
happens. So, in the whole of this horizontal slice, this is the block where the kink

happens at the earliest.

Then let me consider the block in which the kink happens, the latest this is the block in
which the number of 1°s is the least these two have to be approximately at the same place
that is because the number of 1’s between any two blocks in this horizontal slice can

differ by at most N power 1 by 8 and N power 1 by 8 is far less than N power 3 by 8.

Therefore, the two kinks can be separate by at most N power 3 by 8. Therefore, in the
worst case there should appear on consecutive rows. So, this will be the case for these
two blocks which have the largest number of ones and the smallest number of 1’s then
any other block that we consider will be in the mediate or in other words all of them look

almost alike except that there are at most two dirty rows.

So, every horizontal slice now looks about the same the kinks in them differ by at most N
power 1 by 8 between any two blocks which means there can be at most two dirty rows,
there is this window of N power 1 by 8 is much smaller than the width of the block N
power 3 by 8. Therefore, in the most probable cases that this window will be entirely
within one row which means the block is going to have only the horizontal slice is likely
to have only one dirty row, but it is also possible that it spills over two adjacent rows in

which case there could be two dirty rows overall.

(Refer Slide Time: 30:00)

So, when you consider two horizontal slices they have at most two dirty rows. Therefore,

in the entire mesh now, a situation like this prevails each horizontal slice.

So, the entire mesh now looks like this each horizontal slice has some number of clean
rows at the top and some number of dirty rows at the clean rows at the bottom the top,
clean rows as 0 rows. And the bottom clean row as one rows and then in between there

could be at most two dirty rows.

(Refer Slide Time: 31:27)

Sl
”“%Jt 2ach chan QAMNDQW
tﬁf T bl

OET- Sov €
N fim :

- ~ogoo

So, this is how each h slice now looks like. Then in step 4, we sort each column linearly
top to bottom. Since, we are dealing with bits this is tantamount to letting all 1’s fall
down to the bottom. So, now we will have all the ones settling at the bottom of the
column, all the Os will be at the top. How much time will this take, if we use or even

transposition sort for this, this will take root N steps.

So, step 4 takes root N steps, if you recall step two also took root N steps the unshuffling
operation took root N steps, but steps 1 and 3 did not take root N steps, it they took

smaller of root N steps. So, far we have spent 2 root N plus smaller root N steps.

(Refer Slide Time: 32:40)

Now, at this point when you look at the vertical slice; look at any one vertical slice what
we find is that in any column, the 0’s appear before all the ones, but then when you
consider 2 rows belonging to the same vertical slice, 2 columns belong into the same
vertical slice. We find that they have approximately the same number of 1’s. Why is that

a vertical slices made up of blocks of the sort?

So, this is one vertical slice. So, if you consider 2 columns belonging to this vertical
slice. We find that they have approximately the same number of ones that is the
contribution towards the number of 1’s. In these 2 columns is approximately the same
from each block, there could be a difference of at most 1. Therefore, if you consider 2

columns, the difference in the number of 1’s cumulatively could be at most N power 1 by

8. Therefore, what we know at this point is that 2 columns of a vertical slice differ by at

most N by 1 N power 1 by 8 in the number of ones.

Therefore, if you take two consecutive column 2, 2 columns from this vertical slice; from
the same vertical slice, we find that the number of 1’s between them differs by at most N
power 1 by 8 whereas, the height of the vertical slices square root of N which is much
larger than N power 1 by 8. Therefore, the number of dirty rows that is the band of dirty
rows has a height of at most N power 1 by 8 in any vertical slice. So, the dirty band is

now pretty narrow indeed in comparison to the total height of the vertical slice.

So, above this dirty band, we have a clean band of all 0’s and below this we have a clean
band of all 1’s. So, this is the situation in vertical slice after vertical slice every vertical
slice looks almost sorted there is a small dirty band of size at most N power 1 by 8 in the

middle of the vertical slice.

Now, this vertical slice is divided into several blocks each block has a width of N power
1 by 8 N, N power 3 by 8. So, if you measure the vertical slice in units of N power 3 by
8, what we find is that the dirty band either is entirely within one block or it spans at

most two adjacent blocks.

(Refer Slide Time: 35:39)

The dirty band could either be within one single block that is, because the height of the
dirty band is at most N power 1 by 8 whereas, the block height is N power 3 by 8.

So, if this is the case we have exactly one dirty block in the vertical slice or it could be
that this dirty band spans 2 adjacent blocks the height of the dirty band is at most N
power 1 by 8 the height of a block, here to here is N power 3 by 8. And here to here is
also N power 3 by 8. So, now, the dirty band will span at most two consecutive blocks
within every vertical slice, this is the worst that can happen. The second case is the worst

that can happen the first case is the best that can happen.

(Refer Slide Time: 36:53)

Now, in the next step which is step 5 of our algorithm, what we do is this in each vertical
slice, we pair of the blocks in this fashion, the first block and the second block together
will form 1 pair. Then the third block and the fourth block will form another pair then the

5th and the 6th will form another pair and so on.

We visualize every vertical slice as consist consisting of pairs of blocks in this fashion
and then we will sort each pair in snakelike order. In the shear sort algorithm that we
studied, in the last class we saw how to do snakelike sorting within a squarish mesh, but
here we are considering a rectangular mesh where the height is twice the width, but then
exactly the same algorithm can be used. You can verify that the same algorithm will
work here. So, using that algorithm, we will sort each pair in snakelike order each pairs

taken together this sorted and snakelike order.

So, this is nothing, but an invocation of the shear sort algorithms. So, we saw in the last

class it will take order of N power 3 by 8 times log N. Now the height is twice N power 3

by 8, the width is N power 3 by 8. For each instance of shear sort still the algorithm will
run in order of N power 3 by 8 times log N times. So, that you can verify, you can verify

that shear sort algorithm will work correctly on rectangular basis as well.

Now, if the situation was the first one that is if the dirty band was entirely within one
block. Now that dirty band has been cleaned up, it has been replaced with one single
dirty row. And therefore, the vertical slice will have exactly one dirty row, but had the
situation been the second one that is if the dirty band spanned two consecutive blocks,
we do not know whether they were an odd even pair. If it was an odd even pair the snake
like ordering of this odd even pair would have cleaned up this dirty band, but had it not
been that is had the dirty band been spanning an even odd pair then this would not have

happened.

(Refer Slide Time: 39:36)

o |

g Ve

1

odd

_ 1|
R

|

._-—-—'———I—-—'—

Then we would have the upper 1 cleaned up and the lower 1 also cleaned up the upper
even block and the lower odd block are both separately cleaned up, but then there would
be some number of once at the bottom here. And there would be some number of 0’s at
the top here. So, if you look at this we would find an arrangement like this, but then this

can be cleaned up in the next step if you do an even odd pairing.

(Refer Slide Time: 40:15)

Qta‘ i 2w -0d4

el = %s

— okelike Gt

— [3] m(,cfmms
[ﬁ ?%ck

(i g 1)

So, step 6 is identical to step 5 except in that within every vertical slice we form pairs in
this fashion. The first block does not pair with anybody the second block and the third
block will form a pair then the 4th block and the 5th block will form a pair and so on.

So, we form even odd pairs and do a snake like sort of these pairs of blocks using shear
sort exactly as we did in step 5. So, this would again take order of N power 3 by 8 times
log N time. So, this is again not one of the dominant steps, but at this point we can be
assured that every vertical slices in sorted order. The vertical slice looked like this before
there was a small dirty band in the middle this dirty band could have spanned two
consecutive blocks, but we do not know whether those consecutive blocks are odd form

an odd even pair or an even odd pair.

Therefore, we consider both the cases, first we form odd even pairs and sort the odd even
pairs in snake like order then we form even odd pairs and sort the even odd pairs and
snake like order. Once, we have finished doing this we could, we would have ensured
that the V slices completely sorted. So, at this point the vertical slice is completely
sorted.

(Refer Slide Time: 42:10)

[7+7 ab st L
0 0’“\”&3 WS W
— wdh Vi

We have vertical slice that looks like this with 1 kink. So, we know that there are at most
2 dirty rows in each vertical slice. After step 2, we figured that when you look at two
blocks of the same horizontal slice the number of 1’s between them differed by at most N

power 1 by 8 that was the case after step 2.

Now, after step 2, we have not moved data around horizontally all the data moments
have been vertically. For example, in step 3 we sorted the columns in step, in step 3 we
sorted the blocks. Therefore, the data does not spill out of the blocks. In step 4, we sort
the columns the data moves only vertically not horizontally. And in step 5 again data
moves only vertically not horizontally. In step 6 again data moves only vertically not

horizontally.

(Refer Slide Time: 43:30)

b A oud § 10 2
Lo Hacks fw s b

biffoud by <™ s
ho vedius
Giffoud by <N® i

Therefore, what our argument now is that at the end of step 2, two blocks of the same

horizontal slice differed by at most N power 1 by 8 in the number of 1’s.

Therefore, if you aggregate over all horizontal slices, you can say that two vertical slices
differed by at most N power 1 by 4, there are N power 1 by 8 vertical slices. In the
number of ones from step 2 to step 6, we have moved data only vertically as I said just
now. Therefore, the same invariant holds, even now that is if you consider two vertical
slices they differ by at most N power 1 by 4 in their number of 1’s. But then the width of
a block which is the same as the width of a V slice is N par 3 by 8 that is a 0 to 1

transition within a vertical slice.

(Refer Slide Time: 44:42)

In particular, if I consider a vertical slice with the least number of 1’s and the most
number of 1’s. The kinks in them, the kinks in them differ by at most N power 1 by 4 but
the width of the vertical slice is N power 3 by 3 by 8 much larger than N power 1 by 4.

Therefore, we can safely say that the kink in one vertical slice is either in the same row
as the kink, in another vertical slice or it is in an adjacent row. If you take the vertical
slice with the least number of the ones and most number of 1’s, we find that their kinks

differ by at most N power 1 by 4.

Therefore, in the entire mesh now we find that we have at most two dirty rows. Now the

graph looks almost sorted the mesh looks almost sorted.

(Refer Slide Time: 46:20)

%Lu. W{/f?& @wkﬁ AQW\DS{
Govled -

How do we ensure that the remaining two rows are also cleaned up in the desired bounds
will decide our result that we will be able to sort the elements in 3 root N plus smaller
root N steps, but then the details of the last 2 steps. We shall see in the next lecture. So,

that is it from this lecture hope to see you in the next.

Thank you.

