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Welcome to the second lecture of the NPTEL MOOC on Parallel Algorithms. In the first

lecture of the MOOC, we familiarize ourselves with the model of computation called

parallel random access machine. We also saw an algorithm for finding the OR of n bits

on the common CRC WP ram. In particular we had seen the variance of params like

exclusive  read,  exclusive  write  param,  concurrent  read,  exclusive  write  param  and

various  categories  of  concurrent  read  concurrent  write  param.  So,  we  will  take  the

discussion further now.
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Let us say we want to find the OR of n bits on a TOLERANT CRCW PRAM. So, let us

say we are given an array of size n, in which each location holds a bit. Let us say we

need to find the OR of these bits. As we did in the case of the common algorithm, here

also we take a location that we named R in which at the end of the algorithm the result is

supposed to hold and then we proceed in this fashion. Initially only processor 1, we will

initialize this location to contain 1. So, at the end of the first step, only the first processor

has come forward and initialized the location to 1.

So, R now contains 1. Then in the second step all the processors that have a 1 will come

forward and processor 1 will compulsorily participate in the second step irrespective of

whether its bit is 0 or 1 and all of them will simultaneously attempt to write a 0 n R, R

already contains 1. Now all of them are attempting to write 0 in location R. Since this is

the tolerant model, a concurrent write is merely tolerated. Therefore, if there is a write

conflict the content of the location will not change. So, in this case the content of the

location does not change. And then finally, in the third step, the first processor looks at

this location and finds that the location contains 1 and its own bit as 1. Therefore, there is

no further action taken the answer of the problem is 1. So, what exactly are the processes

doing here.
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So, let us look at the code of the algorithm. The algorithm proceeds in this fashion. In the

first step, all the processors do not participate. This is a tolerant model, this is a variant

from  the  common  algorithm.  In  the  common  algorithm,  all  the  processes  together

initialize the variable  R to 0 whereas,  here only the first  processor is  initializing the

variable to 1. This is because in a tolerant model whenever there is a write conflict, the

content of the location will not change. So, for the initialization to work exactly one

processor should initialize. Therefore, here we have only the first processor. So, this is at

variance  with  the  common  algorithm.  In  the  common  algorithm  all  the  processes

initialized  the  variable  together  whereas,  here  exactly  one  processor  is  scheduled  to

initialize the variable.

After this, all the processors together in parallel will do this. If I equal to 1, then R is set

to 0 which means the first processor is compulsorily participating. The other processors

will join the first processor if their bits are 1.
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So, as we saw in the previous example, the processors sitting on locations 4 and 7 which

are p 4 and p 7 will participate in the right, that is precisely because their bits are 1.

Processes p 2, p 3, p 5 and p 6 will not participate, because their bits are 0.

(Refer Slide Time: 05:21)

Processor 1 is compulsorily participating whereas, the other processors are participating

conditionally. They will participate only if their bit is 1. So, R is initialized to 0. So, these

two initializations in fact, are synchronous. Processor 1 and the other processes that are

operating  conditionally  will  be  attempting  to  change  the  contents  of  R  to  0



simultaneously. So, what are we achieving by this? We are checking whether there is any

processor other than 1 that has a 1 bit. If at least 1 processor other than 1 has a 1, then all

those processes will be attempting along with processor 1 to change R to 0.

So, if there is a conflict at all that is, if there is a 1 bit in locations 2 to n, then all those

corresponding processors will be attempting to reset R along with processor 1; then all of

them will provide company to processor 1. So, this allows us to check whether there is at

least 1 1 in the range 2 to n. So, there are multiple cases. Suppose there is no 1 in the

range from 2 to n, in this case process of 1 will succeed in changing R to 0. So, R equal

to 0 now indicates that the R of the positions 2 to n is 0, then in the third step what we do

is this if R equal to 0 and A 1 equal to 1. We are setting R equal to 1, which means if R

equal to 0 in any case that is if there is no 1 in locations 2 to n, then the condition which

will allow are to be set to 1 in the third step is the first bit being 1.

So, unless the first bit is 1, R will remain 0 which it should because in that case there

would be  no 1 in  the array, to  recap if  there is  not  a  single  1 in  the array, then  in

particular in positions 2 to n there is no 1. Therefore, there will be no company to p 1 in

the second step p 1 will be resetting R alone. Therefore, p 1 will succeed in resetting R

and R will end up being 0.

Then in the third step if A 1 also happens to be 0, R will not be changed, R will continue

to be 0 and that is what the answer is going to be. The second case is where there is at

least 1 1 in positions 2 to n in which case in step 2 processor 1 is going to get company,

there will be a write conflict. When there is a write conflict, the content will not change;

the content will remain 1 that we had set in the first step.

Therefore at the end of the second step R will be 1 indicative of the fact that there is at

least 1 1 in positions 2 to n. If R equal to 1, then we do not do anything and we come out

that is precisely how it should be there is at least 1 1 in positions 2 to n and the result

does 1 indeed.

Now the third cases where there is no 1 in positions 2 to n, but the first bit is 1 in which

case at the end of the second step, we will have R equal to 0 and then in the third step we

check the condition is R equal to 0 and A 1 equal to 1 that condition is true, then R will

be set to 1 which is how it should be.



So, in the 3 cases in all the three cases we find that the algorithm works correctly and the

total time taken by the algorithm happens to be order of 1. In step one only process of 1

operates, so, it is an order 1 it is a 1 step operation. In the second step, all the processes

are participating, but every processor has only 1 right to do apart from 1 condition check.

Therefore the second step also can be executed in order 1 time. And the third step has

only  the  first  processor  operating  and  all  that  is  done  is  a  condition  check  and  an

assignment. Therefore, the third step also runs in order 1 time. In the fourth step the

return that is being performed will have to be performed only by the first processor.

So, here this is wrong, only the first processor should be returning the value or any one

of the processors. This has to be conditional. It should be pardo for I equal to 1 return R.

So, only the first processor will be returning the value. So, the algorithm works correctly

in order of 1 time using n processors. So, on the tolerant model as well we are able to

find the R of n bits in order of 1 time exactly as we did in the case of the common

algorithm, but as you can see the algorithm is lot more complex. And we shall see that

algorithms on tolerant generally tend to be far harder to prove for correctness and to

analyze than algorithms for common. Therefore, we will we usually find that common is

a lot more used in the literature.

(Refer Slide Time: 11:23)

So, we have seen several varieties  of CRCW PRAM models.  How are these models

related to each other? Is it possible to simulate these models on each other? That is once



we  have  designed  an  algorithm  for  one  of  these  models,  is  it  possible  to  run  that

algorithm on 1 of the other models with modifications and if we do that what exactly is

the cost of such a simulation? So, that is what we are going to explore now.

Let us say an algorithm runs on model A in T time and suppose it can be simulated in

model B in order of T time, then we say that B is at least as powerful as A and it is

denoted in this  fashion. It is read as B is at least  as powerful as A since all  CRCW

PRAMs are similar except in their write conflict resolution schemes. We need to bother

only about the simulation of the writes that is as we saw in the last class each instruction

of a PRAM consists of 3 phases. There is a read phase, there is an execute phase and

there is a write phase.

So, consider of an instruction that is to be run on model A and let us say we want to

simulate this on model B. The read phase can be executed exactly as it is and the execute

phase also can be executed exactly as it is and a simulation needs to be done only for the

write  cycle.  So,  for  the  purpose  of  the  simulation  let  us  assume that  in  a  particular

concurrent write of the simulated PRAM, processor i wants to write value V i in location

M i. With this assumption, let us see how the models can be simulated on each other.

First I shall argue that, the priorities here CRCW PRAM is at least as powerful as the

arbitrary CRCW PRAM.
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An algorithm that is written for the arbitrary CRCW PRAM model can be run on priority

without any change. This is because the arbitrary CRCW PRAM assumes that out of

every conflicting set of processors an arbitrary 1 will succeed and the algorithm designer

is constrained to assume that the identity of the succeeding processor will not be known a

priori. That is at the time of designing the algorithm he or she would not have any idea of

which  of  the  conflicting  processes  is  going  to  succeed.  Therefore,  the  designer  is

supposed to deal with that uncertainty in the design stage, but in a priority model that

uncertainty  does  not  exist.  The  designer  knows  that  the  processor  with  the  highest

priority is going to win. Therefore, the processor the designer has a greater freedom on

the priority model.

Now here we have an algorithm that is written for the arbitrary model. Therefore, the

designer has taken on a greater constraint, the designer has assumed that only one of the

processors will succeed, but has not assumed that any one particular model will succeed.

Now  priority  guarantees  that,  priority  ensures  that  out  of  every  conflicting  set  of

processes, one is guaranteed to succeed and the succeeding processor is going to be the

same one in one execution in execution after another. This is what is not guaranteed in

arbitrary. But, whatever arbitrary requires is provided by the priority model. Therefore,

an algorithm that is written for the arbitrary model can be run on the priority model

without any change. Therefore, priority is at least as powerful as arbitrary.
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Similarly we can also claim that arbitrary is at least as powerful as common. This is

because on the arbitrary model, the designer assumes that, out of every set of conflicting

processes an arbitrary 1 will succeed. Common makes a stronger assumption, common

assumes that out of every set of conflicting processors that is every processor in a set of

conflicting  processors  is  attempting  to  write  the  same  value.  This  is  a  stronger

assumption than in the case of arbitrary. When you take an algorithm that is written for

the common model and run it exactly as it is on the arbitrary model, the algorithm will

work correctly because the now the processors are all attempting to write the same value

in every conflict and one of them is going to succeed and the succeeding processor is

getting in the value that the other process are attempting to write in any case. Therefore,

an algorithm that is written for common can be executed on arbitrary without any change

at all.

(Refer Slide Time: 16:12)

Now we come to the collision model, I claim that the arbitrary CRCW PRAM is at least

as powerful as collision.  This is  because a step of collision can be simulated on the

arbitrary CRCW PRAM in three steps.

So, the simulation is carried out in this fashion. First, every processor i writes the integer

i in the location in which wants to write. So, here first we are attempting to detect a

collision, what we have is an algorithm that is designed for the collision model and this

algorithm we want to simulate on the arbitrary model. So, the simulated algorithm is



going to  run on the  arbitrary  model  and what  we do is  this  in  the  first  step,  every

processor  i  writes  integer  i  in  cell  M i.  So,  let  us  say we have  a  set  of  conflicting

processors, let us say p 4 p 7 and p 9 are all attempting to write into the same memory

location.

So, in the first step all these are attempting to write their own indices in this memory

location, p 4 will attempt to write 4, p 7 will attempt to write 7 and p 9 will attempt to

write 9 all in the same memory location, but this step is being run on an arbitrary model

that is because we are simulating the collision model on the arbitrary model. Therefore,

exactly one of these processes will succeed.

Suppose 7 succeeds here 4 and 9 failed. So, 7 manages to write 7 in this location. Now if

these processors, read the value back, then they can know whether they have succeeded

or not. So, processor 7 knows that it has succeeded, process of 4 and 9 know that they

have failed. Now why did they fail? They failed because they had a conflict. So, when

they  attempted  to  attempted  to  write  a  value,  but  find  that  the  value  written  was

something else, then they realize that there was a collision and there was a conflict and

some other processes succeeded in the conflict.

So, 4 and 9 are now aware of the conflict, but 7 is still not aware of the conflict. When 7

reads back what it seizes 7 indeed so, it has succeeded in getting its right value. It could

have succeeded because it is alone and did not face a conflict or it could have succeeded

because it  was the lucky one in the conflict.  So, except for process of 7 every other

processor involved in this conflict knows that they have failed, then in the second step

every processor that failed in the first step will write a special collision symbol in M i.

So, 4 and 9 now realize that they have failed they have failed because they were in a

conflict. Therefore, in the second step both of them will attempt to write the collision

symbol in the memory location at  least one of them will succeed. It does not matter

which one succeeds, but one of them will succeed, since both of them are attempting to

write the same value which is the collision symbol, the collision symbol will get inside.

So, the location now contains the collision symbol.

Now processor 7 consider the processor 7, processor 7 succeeded in the first step. It

could  have  succeeded  because  it  did  not  face  a  conflict  or  it  could  have  succeeded

because it was the lucky one out of a set of conflicting processors. It can find out which



of these cases it was now so, for every processor that succeeded in the step one let us

read the location so, process 7 now goes through the location and reads it. It knows that it

had succeeded in the first step, at the end of the first step it had 7 in the location; it had

managed to write 7 in the location. But now, when it looks at the location it finds the

collision  symbol,  then  it  realizes  that  the  symbol  collision  symbol  appeared  in  that

location because there were some conflicting processes which in turn came in the second

step and wrote the collision symbol overwriting the value which it had put in. Therefore

processor 7 now realizes that there was a conflict. Therefore, in the third step what every

processor  does this,  every processor that  had succeeded in the step in  the first  step,

checks if cell M i did not change its contents during the second step if it did not change

its contents, then that could be only because there was no other conflicting processor to

change its successful write into the collision symbol.

If there is no other processor that is had there been no 4 and 9 had processor 7 been alone

which means had it not been conflicting in this write, then it would have succeeded in the

first  step and then  when it  write  reads  its  value  back it  would not  know whether  it

succeeded because it  is alone or because it is the lucky one in the set of conflicting

processors. But in after the second step when it finds that the value which it wrote still

remains in that location it would realize that there was no other conflicting processor to

change its value to the collision symbol. Therefore, in the third step it would go ahead

and write the value it wanted to write in location M i.
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So, in these three steps therefore, a step of the collision algorithm can be simulated on

the arbitrary CRCW PRAM, what it means is that an algorithm which runs in T time on a

collision CRCW PRAM and algorithm which runs in T time on the collision CRCW

PRAM can be simulated in 3T time on the arbitrary CRCW PRAM which is of the same

order. Therefore, we say that arbitrary is at least as powerful as collision. And finally, we

claim that collisions at least as powerful as tolerant.

(Refer Slide Time: 22:14)

Given an algorithm on tolerant let us say we want to simulate it on collision. So, let us

consider the right cycle of an instruction of the tolerant algorithm. To simulate this on

collision we assume we have twice the memory that is the collision model is assumed to

have twice the memory that the tolerant model has. Every cell of the tolerant model is

assumed to have an auxiliary cell  in the collisions  in the collision model  that  is  one

single cell  of the tolerant model is assumed to have an auxiliary cell in the collision

model thereby doubling the memory requirement. So, the processors that attempt to write

in a memory location will first attempt to increment their corresponding auxiliary cells.

So, to begin with the auxiliary cells will contain some garbage value, it does not matter

what the auxiliary cell contains. All the processes that want to write will first read the

auxiliary cell of the intended recipient of their rights and then increment these values and

write the value back. So, this value is incremented by all the processors. Now this is

happening on the collision model. Therefore, if there is in fact, a write conflict the value



that a certain will be the collision symbol. So, let us say this auxiliary cell contained 10

to begin with. All the processes that want to write in this location will read the contents

which is 10 and change it to 11 or they attempt to change it to 11.

So, if there are multiple processes attempting to write in this location all of them are

attempting to write 11 here, but then because of the write conflict they will not succeed

in writing 11 here instead they would be writing just the collision symbol that is if there

is a genuine conflict. But if there is no conflict, if there is only one processor attempting

to write in this memory location, it will read the 10 that was there and write 11 instead.

Therefore, when this processor looks at this location it knows that it is not in conflict, but

of  course,  there  is  a  special  case  we have  to  consider  the  case  where  the  auxiliary

contains the collision symbol minus 1.

The collision symbol is nothing, but a special integer. So, it is possible that an arbitrary

location can contain the collision symbol minus 1 at any point in time. Therefore, if all

the processors attempting to write in the memory location increments this value, then the

location  will  end  up containing  the  collision  symbol.  Therefore,  even  if  there  is  no

collision we might assume that the recirculation, but those can be easily circumvented. A

processor  which  attempts  to  agreement  the  location,  first  checks  what  value  it  has

written. Here it has read 10 and has attempted to write 11. Similarly if the value that it

reads in happens to be the coalition symbol minus 1, then instead of incrementing they

will attempt to decrement this value. Therefore, the value that is attempted to be written

is indeed different from the coalition symbol.

Therefore  the  processor  knows  whether  it  has  succeeded  or  not.  If  it  finds  that  the

coalition symbol has appeared in the auxiliary memory location, then it knows that it has

failed and there is a conflict in which case it would do nothing. The tolerant model is

assumed to do nothing whenever there is a conflict. Therefore, the contents of the actual

memory location which is this will be left as it is. On the other hand when it finds a

coalition symbol when it does not find a collision symbol, then that is a clear signal field

for going ahead and writing then the processor know says there is no conflict and the

processor will go ahead and write the value that it wanted to write.

So, what this shows is that a step of a tolerant algorithm can be simulated on the collision

CRCW PRAM in order of one time. Therefore, an algorithm that runs on the tolerant



model in T time can be simulator on the collision model in order of T time. Therefore,

collision is at least as powerful as tolerant.

(Refer Slide Time: 26:45)

So, on the whole we have shown that priorities at least as powerful as arbitrary. Arbitrary

is at least as powerful as collision and arbitrary is also at least as powerful as common

and collision is at least as powerful as tolerant. In fact, we can show that all of the above

relations are in fact strict. It can be replaced with strictly more powerful in each case. In

particular you can show that priority is strictly more powerful than arbitrary.

(Refer Slide Time: 27:18)



This can be established by showing that for some problem P 1, there exists an algorithm

they turns in order of T time on priority and by showing that for the same problem P 1 on

arbitrary there is a low bound of omega of T 1, where T 1 is omega of T its omega of T

which means there is  a problem P 1 which can be solved faster  on priority  than on

arbitrary.  There  is  a  low  bound  proof  which  precludes  an  equally  fast  solution  on

arbitrary. Similarly for the next inequality as well we can find such a problem. There

exists a problem P 2 which can be solved faster on arbitrary than on common and the rest

is a problem which can be solved faster on arbitrary than collision. 

(Refer Slide Time: 28:42)

And there is a problem which can be solved faster on collision than tolerant which means

all these inequalities are strict, but then how do collision and collision tolerant compare

with common. This question becomes relevant because what we have just shown is that

priority  is  more  powerful  than  arbitrary  which  is  more  powerful  than  common  and

arbitrary  is  also  more  powerful  than  collision  and  collision  is  more  powerful  than

tolerant. But then how do common compares with collision and tolerant? It can be shown

that  common  is  incomparable  with  collision  of  tolerant.  That  is  because  there  are

problems P 1 and P 2 such that P 1 can be solved faster on common than on collision and

P 2 can be solved faster on tolerant than on common.

So, there are two problems P 1 and P 2 that establish that common and collision tolerant

are incomparable with each other. In this  course,  most  of our discussions of CRCW



PRAM  algorithms  would  be  confined  to  priority  arbitrary  and  common  models.  In

particular we will be mostly as to the tolerant model because the tolerant model is not

known to have a nice property called self simulating. We would like our models to be

self simulating. A model is said to be self simulating, if a larger PRAM of that model can

be simulated on a smaller PRAM of the same PRAM; the same model for a proportionate

slowdown. We shall show that all these models are self simulating except possibly for

tolerant and self simulation is a crucial property. Since tolerance is not known to be self

simulating, we do not use tolerant much. We have seen a couple of algorithms on the

CRCW PRAM s of common and tolerant varieties.
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Let us now see some problems on the EREW PRAM or CRCW PRAM. Let us say we

want to evaluate a Boolean circuit.  A Boolean circuit is made up of the 3 logic gates

AND, OR and NOT. Let us say we are given a Boolean circuit like this and let us say we

are given the input values.

So, given this Boolean circuit and given the input values, we want to evaluate the output

value. We know how to do this sequentially, we will evaluate the leftmost gates one by

one. So, the outputs of the leftmost gates are solved one by one. Once these values are

known, the second level gates can be evaluated. So, the outputs at the second level can

now be calculated. Once these values are known, the third level gate can be evaluated



and so on. So, this will require evaluating the gates in a certain order in this left right

order. A gate can be evaluated if both of its inputs have already been evaluated.

So, sequentially we would require looking at each of the gates in turn and the cost of the

algorithm would be linear in the number of gates. So, let us say we want to evaluate this

in parallel on an EREW PRAM. We assume that the gates have a fan-in of 2 at the most

the OR and AND gates have a fan in of 2 each and the NOT gate has a fan-in of 1. And

let us say the fan out of every gate is at most 1, that is an output signal can be used by at

most one input of another gate. So, in particular the output is not used at all. So, fan out

could be 0 as well.

So, let us say we are given a Boolean circuit of this form which is to be evaluated on an

EREW PRAM. So, for the for the purpose of the evaluation, let us say we have as many

processors as there are gates. So, let us locate one processor on each of the gates. So, for

this example you require 8 processors. So, let us say we have one processor stationed on

each  of  the  gates  and  then  the  gates  can  be  evaluated  in  this  fashion,  consider  the

leftmost gates first, the inputs to these gates are all known. Therefore, their output values

can be calculated simultaneously and in parallel.

So,  the  processors  that  are  situated  on  the  leftmost  column  will  all  be  active

simultaneously and they would produce their outputs at the same time. So, 0, this is 1,

this is 1 and this is also 1. Now once the outputs of the leftmost column of gates is ready,

the next set of gates can be activated. So, the gates which are at the second level can now

be activated, they would in turn be evaluated in the second step all of them would be

evaluated simultaneously. So, here we have a value of 0 and here we have a value of 1.

Then the third level of gates will be activated. Therefore, here we will get a value of 1.

Finally, the fourth level of the gates will be activated and we will get a value of 0.
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So, in 4 steps we can find that the circuit evaluates to 0. So, in general given a Boolean

circuit on a EREW PRAM, we can evaluate the circuit in time that is equal to the depth

of the circuit, but the total number of instructions executed is equal to the size of the

circuit which is the number of gates in the circuit. So, as you can see in the example we

saw, the size of the circuit is much more than the depth of the circuit. The running time

of  our  simulation  is  equal  to  the  depth  of  the  circuit  whereas,  the  total  number  of

instructions executed is of the order of the size of the circuit.

The model  is  an EREW PRAM, this  is  because on none of  the steps have we used

concurrent reads and concurrent writes. Concurrent reads are not necessary because the

fan out is at most one therefore, an output that is produced will not be read by more than

one gate. Therefore, there is no need for concurrent reads and concurrent writes are also

necessary  not  necessary  because  all  the  values  that  are  written  are  on  exclusively

exclusive lines. Therefore, the modulus and EREW PRAM and the running time is equal

to the depth of the circuit.
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Another problem that we can study at this stage is that of finding the OR of n bits on an

EREW PRAM. Let us say we are given an array of bits and we want to find the OR of

them. We can divide the bits into odd even pairs, we consider the first bit and the second

bit together, they form the first odd even pair, then with these form the second odd even

pair, this will form the third odd even pair, this will form the fourth odd even pair. Then

let us say we have 4 processors using these 4 processors we find the OR of these pairs.

So, here we find that the OR is 1, here we find that the OR is 0, here again we find that

OR is 0 and here we find that the OR is 1.

So, we have started with 8 bits now, we are reduced to 4 bits. If we find the OR of these

4 bits, we would have the OR of the original 8 bits. So, the size of the problem has been

reduced by a factor of 2 using 4 processors. We depute at one processor for each odd

even pair. Now these bits are again paired off, this is the first odd even pair this is the

second odd even pair  and we depute one processor to each the OR is  found in this

fashion. The problem size is now reduced to 2, but we have used 2 processors here. Now

there are only 2 remaining bits, they will form one single odd even pair with one single

processor; I can find the OR of them in one step.

So, here I have used one processor. The total time taken by the algorithm is 3. In the first

step, I have reduced the number of bits from 8 to 4, in the second step I have reduce the

number of bits from 4 to 2, then in the third step I have reduced the number of bits from



2 to 1. So, the algorithm runs in 3 steps and three comes from the total number of bits

that we had we had 8 bits and 3 is the logarithm of that to the base of 2. In general if I

had an n bit array, I could have found the logarithm of OR of these n bits in order of log

n time and how many processes would I need to use? In the first step I would need n by 2

processors, in the second step I would require n by 4 processors and so on.

So, it would seem that I would require n by 2 processors to achieve running time of log

n. So, when we have n by 2 processors running for order of log n time, the total cost of

the algorithm is order of n log n which seems exorbitant considering that the or of n bits

can be found in order of n time sequentially. We shall see that a scheduling technique

called the brain scheduling technique will enable us to reduce the cost of this algorithm

from order of n log into order of n later. We shall talk about brain scheduling principle in

one of the future lectures.

(Refer Slide Time: 41:04)

And analogous problem is that  of finding the sum of n integers which again can be

solved on a EREW PRAM in the same way. Suppose we are given 8 integers of which

we want to find the sum. Again we can form odd even pairs, the sum of the first pair is 3,

the sum of the second pair is 7, the sum of the third pair is 11, the sum of the fourth pair

is 15; then we have odd even pairs of 3, 7 and 11, 15. Here we have 10 and here we have

26 and finally, the sum of all the numbers is 36.



So, in this fashion for the same cost that is order of log n time and n by 2 processors we

can find the sum of n integers in on EREW PRAM. The model that we have used to

EREW PRAM because there is no concurrent read anywhere and there is no concurrent

write anywhere.
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Another model of computation that we shall be using is what is called a comparator? A

comparator is an operators that takes 2 values a and b and then produces the smaller of

the 2 values on its upper output and the larger of the 2 values on its lower output. A

network  that  is  made  up  of  comparators  can  be  used  for  problems  like  merging  or

sorting.
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Let us say we have a comparative network for sorting. We shall study a couple of them

later in this course. So, at this moment I am only asking you to visualize a comparative

network. So, this network has several comparators interconnected in various ways. We

have, let us say a sequence of inputs flowing in and a sequence of outputs flowing out.

So, if we provide a set of integers here for example, these will be permuted in the output.

So, that in the output they will be in increasing sorted order. So, a 3, a 2, a 1, a 4 will be

the increasing sorted order of these elements.

So,  imagine  such  a  comparator  network  for  sorting.  The  depth  of  this  comparator

network that is the length of the longest path in this comparator network will be the

running time of the comparator network that is then once the inputs are fed in the inputs

have to travel through the comparators and appear at the output. When they appear at the

output  we  would  have  them  in  sorted  order.  So,  let  us  say  d  is  the  depth  of  this

comparator network which happens to be the length of the longest path in the comparator

network, then d would be the time taken by the comparator network to sort a sequence.
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 I shall give an exercise for you. Show that comparator network of depth d and cost n, the

cost of a comparator network is the total number of comparator units you used in it, can

be simulated on EREW PRAM of size n in time order of d. Of course, you can assume

that one comparator output will be used only at one input this assumption is crucial.
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But with this assumption, what you need to show is that a comparator network of depth d

and cost n can be simulated on EREW PRAM of size n in time order of t. So, with that

we come to the end of this lecture, hope to see you in the next lecture.

Thank you.


