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Welcome to the 16th lecture of the MOOC on Parallel Algorithms. In this lecture, we

continue with the discussion on tree algorithms that we started in the previous lecture.

We started looking at the tree algorithms as applications of optimal list ranking. In the

lecture in the 14th lecture we discussed an optimal algorithm for this ranking that runs in

order of log n time using n by log n processors on an EREW PRAM. And, then by way

of applications of this list ranking algorithm, in the previous lecture we looked at the tree

algorithms.

So, in particular we considered the case where we are given a tree that is in adjacency list

representation. So, let us say the size of the tree is n that is the number of vertices is n,

then we found that an Euler circuit of the tree can be found in order of 1 time using n

processors  on  EREW PRAM. Once,  we have  the  Euler  circuit  to  root  the  tree  at  a

particular node v, we can disconnect 1 incoming edge into v, then the Euler circuit that

we found becomes an Euler tour that is starting with v, and terminating with a neighbor

of v.

When we rank the Euler’s Euler tour we can convert the Euler tour on to an array that is

a linked list that is ranked can be copied into an array, every element in the list can copy

itself to it is a position. For example, a node which is logically the i’th in the list can

copy itself to the i’th physical location, then we get a representation of the linked list in

an  array.  In  which  the  physical  representation  is  exactly  the  same  as  the  logical

representation.

So, once we have the linked list converted into an array in this fashion, we can find the

parent for every single node in the tree that is we root the tree this is done by looking at

every edge and it is twin for an edge ij.

If, ij is ranked before it is twin ji then i is the parent of j otherwise j is the parent of i. In

this fashion, we can define the parent of every single node in the tree. So, that is what we



mean by rooting the tree. And, then we saw that once the tree is rooted it is possible to

find the level number for every single node, to find the level number for every single

node what we do is this for every parent child parent to child edge we assign a weight of

1, and for every child to parent node we are the child to pair an edge we assign a weight

of minus 1.

So, with these initial weights when we perform a prefix sum on the array version of the

Euler tool, we find that with every single vertex we can associate the level number of it.

Today, we shall see some more applications of the list ranking problem for tree problems.

The first 1 we are going to look at is the pre order traversal.

(Refer Slide Time: 03:32)

The preorder traversal of a rooted tree T is a listing of the vertices of T in which every

vertex is listed before it is children.

So, let us see how to find the preorder traversal of a given tree a given root a tree.



(Refer Slide Time: 04:43)

So, we will continue with the same example that we had in the last class, we took a tree

and rooted the tree at 7; after rooting the tree at node 7 it looked like this. So, this was

the rooted tree that we had a preorder traversal of this tree, begins with the root a node

has to be visited before all it is children.

And, then let us say we go to the left child which is 5 and then 5 has 3 children 2 1 and 6.

Let us say we go to 2 and then we visit 3, then 9, then 4, and then we come back to 2, 2

has already been visited we come back to 5 and then 1, we are back to 5, and then 6 and

then 10; we backtrack to 6 and then 5 and then 7 and then 8.

So, this is a pre order traversal of this tree T. So, the question is how do you calculate the

compute the pre order traversal in parallel.



(Refer Slide Time: 06:16)

So, in the pre order traversal we find that the parent to child edges count up. So, in this

example we found that starting from 7, we know that the root should come first in the

preorder traversal. So, we have 7.

Then we choose an outgoing edge of the root which is 7 5, and then 5 is the next node to

be visited, and then from 5 we choose to go to 2 and 2 is the next node visited. So, a

node is written down as soon as it is visited, but then on the way back we do not have to

write anything. For example, when we return from 9 we go back from 9 to 3 3 to 2. And,

there is  nothing to  write  in  this  backward traversal  and then when we move from a

forward from 2 to 4 we have to write 4, and then from 4 we backtrack again to 2 and 5

and there is nothing to write here.

We what it means is that when we are moving backwards there is nothing to write, but

when we are moving forward every new vertex that is encountered should be written in

the traversal. So, the parent child edges count up whereas, the child parent edges do not

count, this immediately suggests an algorithm they suggest that for parent child edges,

we have to assign a weight of one, because they count and for child parent edges we

have to assign a weight of 0, because they do not count.



(Refer Slide Time: 08:04)

So, what we do is this? We take the Euler circuit starting in the root and assign weights

of 1 and 0 to parent child edges and child parent edges respectively. And, then perform a

prefix sums on the Euler circuit. So, let us take an example and do this.

(Refer Slide Time: 09:05)

In our example we had the Euler circuit in this fashion starting from 7 we had 75 52 23

39 93 32 24 42 25 51 15, 56, 610, 106, 65, 57, 78 and then finally, we had the closing

edge 87.



So, what we have agreed here is that for every parent child edge we have to assign a

weight of 1 75 is a parent child edge. So, is 785 has 3 children 21 and 6, 2 has 2 children,

2 3 and 2 4, and 3 has 1 child 3 9, 6 has 1 child 6 10 and then every remaining edge is a

child parentage. So, they will get a weight of 0. Then, we find the prefix sum over this

array. So, this is the Euler circuit that we have in the form of an array.

Once we have R and the Euler circuit as we did in the last class, we can copy it into an

array on this array we have now these weights. Let us say we find the prefix sum of these

weights. So, the prefix sums would be like this. So, once we have the prefix sums, we

observe that in the preorder traversal 7 should come first in any case the root should

come first. Now, 7 5 has a rank of 1 therefore, 5 occupies the first position 7 occupies the

zeroth position 5 occupies the first position, then 5 2 is has a rank of 2.

Therefore  2  occupies  the  second  position  and  then  3  occupies  the  third  position,  9

occupies the 4th position, and then what would be at the 5th position 24. So, 4 should

come at the 5th position and 1 will come at the 6th position 7 and 8 positions will be

occupied by 6 and 10 respectively and 9th position is occupied by 8.

So, what we have done is to. Look at the parent child edges all of these are counting up

and for  all  these edges,  the rank that  we obtain  will  be the ordinal  position  for  the

destination of the parent child edge that is a child in the preorder traversal. In particular

for the edge 2 3 the destination is 3 and this has a rank of 3, which means the edge 2 3

should occupy the third position in the preorder traversal.

So, once we have computed the ranked of the prefix sums in this fashion. Once we know

which are the parent child edges, then all that we have to do is to fill the prefix the fill the

pre order traversal array, which is shown on the bottom here. So, this filling can be done

in order of one time once you have one processor per element of the Euler circuit array.
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So, we find that we can find the preorder traversal can be computed in order of log n

time, using n by log n processors on an EREW PRAM. 

Most  of  these  operations  we  discussed  in  the  previous  class.  The  only  additional

operations after computing the Euler circuit is copying the Euler circuit on to an array

which can be done in order one time. And, then assigning the weights to the parent by

parent child edges in the child parent edges in this manner parent, child edges will get a

weight of 1, and the child parent edges will get a weight of 0, this can be done in order of

one time as well if you have n processors. Once this is done commute the prefix sums

using an optimal algorithm which can be run in order of log n time using n by log in

processors.

And, then all we have to do is to look at the parent child edges and for each parent child

edge take the rank and use that as the position number for the child in the pre order

traversal. So, then we can fill in the array that represents the preorder traversal in order

of 1 time using n processors. So, putting together if you have n by log n processors, then

every single step can be executed in order of log in time and therefore, we have that

result. So, that is about the pre order traversal.
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Similarly, we can also compute the post order traversal. In a post order traversal of a tree

T, every vertex v is  listed  after  all  it  is  children  are listed.  So,  in particular  for our

example the post order traversal would be going back to our diagram. So, the post order

traversal will be where we list the vertex after all it  is children have been listed. So,

starting from 7 we go down the tree we go to let us say we go the same way as before,

from 7 we go down to 5 from 5 we go down to 2 then 2 3 then 2 9. So, 9 does not have

any children. So, we are now backtracking from 9.

So, once we are backtracking we list 9, then we go back to 3 3 does not have any more

children we are backtracking from 3. So, we list 3 then we go back to 2 2 is not ready for

backtracking yet because 3 has 2 has an unexplored child which is 4. So, we go to 4 and

then immediately back tracked from 4, then 4 is listed. And, then 2 is now ready for

backtracking we go from 2 to 5 and 2 is listed, and then once we are in 5 we go to 1 and

then backtrack immediately so, 1 is listed.

Again we go back to 5 we come down to 6 and then to 10 and then backtrack 10 is listed,

when 6 does not have any more children. So, 6 is now backtracking. So, we list 6 at 5 we

have exhausted all it is children. So, 6 is of 5 is now backtracking. So, they can now list

5. At 7 we have a waiting child which is 8 so, 7 is not ready to finish it. So, we go to 8 8

backtracks 8 is listed and then finally, 7 is listed. So, the post order traversal of this tree



is 9 3 4 2 1 10 6 5 8 and 7 I suppose to the pre order traversal which is shown on the

right side.

So, now the question is how do we calculate the post order traversal?

(Refer Slide Time: 17:49)

This is easy to show we assign weights to the edges in the following fashion, we found

that while going down the tree we are not listing the vertices. So, for every parent child

edge, we have to assign the weight of 0, but then when we are backtracking through a

child parent edge, we are now going to list the vertex. So, we are going to list the vertex

while we are backtracking therefore,  we have to assign a weight of 1 to every child

parent edge.

After assigning weights like this, we do exactly as we did in the case of the preorder

traversal we find the prefix sums of the weights. And, then the ranks that we get we have

to use for every single child parent edge. And, then for every child parent edge, we have

to take the rank of the edge as the ordinal value of the child. For example, when we are

backtracking from 9 to 3 at this point the prefix sum will appear as one therefore, the

rank of 1 will be assigned to vertex number 9.

So, I am leaving the working out of the example to you the correctness should now be

clear it is the exact inverse of the pre order traversal case. So, in this case also we can

argue that in order of log n time, using n by log n processors on an EREW PRAM, we



can find the pre or post order traversal of a tree in so, that is the result we have. So, pre

order traversal as well as the post order traversal can be found in order of log n time

using n by log n processors.

(Refer Slide Time: 19:44)
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He next thing is finding the number of descendants of the node. In our example the

number of descendants the descendant of a node is the set of it is children grandchildren

great  grandchildren and so on.  A node along with it  is children,  grandchildren,  great

grandchildren; and so on form the set of it is descendants. Or descendent of vertex v

which is not the same as vertex v is called a proper descendant of vertex v. So, that set of

the proper set of proper descendants will always be 1 smaller than the set of descendants

and node itself is an improper descendant.

So, to find the set of all descendants we use the same prefix value that we had the prefix

sums we had before, in the case of the preorder traversal that is we assign a weight of 1

to  every  parent  child  edge,  and a  weight  of  0  to  every  child  parent  edge,  and then

compute the prefix sums. Now, in particular let us consider edges 75 and 57 here. These

are the parent child edge the child parent edge respectively involving vertices 7 and 5.

So, we find that 7 5 has a rank of 1 and 5 7 has a rank of 8, the difference in their ranks is

7. This is the number of proper descendants that 1 has that 5 has. So, in this case the

child 5 has 7 proper descendants. The number of proper descendents of 5 are 2 1 6 3 4 10

and 9 which is 7 elements. So, 5 has 7 proper descendants.



So, we consider the 2 edges 7 and 5. And, then the prefix sum values when we take the

difference between the prefix sum values what we find are the total number of proper

descendents of 5, because in the prefix sum values we are actually counting the order in

which the pre order traversal visits them. Then, we get the total number of nodes that are

visited before the traversal returns from 5 after visiting 5. So, 7 5 gives the rank of 5 and

5 7th ranked tells us how many nodes have been visited after 5, but before returning from

5 to 7.

So, that that is exactly the number of proper descendants that known 5 has. So, that

immediately suggests an algorithm for finding the number of descendants of a node.

(Refer Slide Time: 23:54)
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For each parent child node of each parent child edge i, j take the difference between the

rank of j i, which is the twin of i, j and the rank of i, j this will give the number of proper

descendants of g.

So, the number of descendants of j would be 1 more than this because j is also to be

added to the set of proper descendants to form the set of all descendants. So, this can be

done in order one time if you have n processors for every single parent child edge. So,

this would assign the number of proper descendants for every single node other than the

root and the number of proper descendants of the root of course, would be 1 less than the

total number of nodes that are available.



So, this is an algorithm for finding the total  number of proper descendants for every

single node in the tree. So, as is clear this would run in order of log n time using n by log

n processors on an EREW PRAM. So, all these problems on trees can be solved in order

of log n time using n by log n processors.

(Refer Slide Time: 26:07)

Now, let  us  consider  a  problem  of  a  different  queue.  Let  us  say  we  are  given  an

arithmetic expression for simplicity.

Let me assume that there are only 2 kinds of operations multiplication and addition. And,

let us say the values are all integers of course, our discussion can be easily extended to

arithmetic expressions of more complex form, but for now let me assume that these are

the constraints available. And, then the arithmetic expression that is given to us which is

of this form can be translated into a tree.

So, in this case the root has a multiplication and the root has 2 sub trees on the left side

we have 4 plus 3 which can be written as a binary tree of this form plus at the root with 4

n tree on the leaves. And, here the natural precedence says that multiplication has to be

performed  first  therefore,  here  we  have  a  plus  the  plus  is  the  last  operation  to  be

performed on the right side of plus we have 6, on the right on the left side of the plus we

have 4 into 5.



So,  given  an  arithmetic  expression  with  our  precedence  rules  we  can  convert  the

arithmetic expression in 2 or 3 of this form this is called an expression tree. So, given an

arithmetic expression, we know how to convert that into an expression tree. Let us say

we are  given the  expression  tree  and we need to  evaluate  this,  the  usual  sequential

algorithm to evaluate the expression tree is to reduce the tree bottom up 4 plus 3 is 7. So,

this node evaluates to 7 4 into 5 is 20.

So, this node evaluates to 20 and then here we have 20 plus 6 26 and then at the root we

have the product. So, this is how we evaluate a tree the tree can be evaluated bottom up.

(Refer Slide Time: 28:48)

 But, how would we do this in parallel? If, the tree were balanced then we could do

exactly the same thing, if the tree were balanced we could start at the bottom of the tree

and  then  every  operation  which  is  at  the  bottom  of  the  tree  can  be  evaluated

simultaneously.

So,  in  this  case 4 plus  3 equals  7 and 4 into 5 equal  to  20.  These 2 operations  are

independent of each other. So, both of these can be executed simultaneously. So, we will

have a reduced tree with the 7 here and 20 here, then the next operation to be performed

would be 20 plus 6 equals 26. And, then finally, that reduced tree is 7 into 26 which can

be evaluated at 1 go. So, in 3 steps this tree can be evaluated.



So, if the tree is balanced then we have a way of efficient parallel execution. So, this

bottom of bottom up approach works fine if the tree is balanced, but if the tree is not

balanced, then the time taken by those parallel execution is the order of the depth of the

tree which is problematic.

(Refer Slide Time: 30:38)

That is because the depth of a tree could be order of n where n is the size of the tree, this

happens when the tree is very skewed.

For example, let us say we have a tree of this form a skewed tree of this form will have a

part of length order of n where n is the total size of the tree. The total size of the tree is

the total number of nodes in the tree. Now, this path itself has about half the number of

nodes in the tree. Therefore, the time taken to evaluate this tree would be order of n, the

number of process does not matter  you might  be able to optimize on the number of

process, but still the algorithm runs in order of n time that certainly will not do. Because,

the tree itself can be evaluated in evaluated sequentially in order of n time. 

So,  this  is  not  an  efficient  parallelization.  So,  we  have  to  device  a  technique  for

efficiently paralyze in this algorithm.
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This we can do using the tree contraction technique. The tree contraction technique relies

on what is called a rake operation. A rake operation is performed on a leaf u such that the

parent of u is not the root of the tree.

So, when u is a node. So, that it is parent is not the root what we do is this, remove node

u and it is parent and make the sibling of u, a child of the grandparent of u. So, here we

have assumed that every node has a sibling. In other words every internal node in the tree

has 2 children exactly.

So, we define the rake operation for trees of this form where every internal node has 2

children of course, the expression trees that we consider where every internal node is

either  a  multiplication  or  a  or  an  addition  this  condition  is  satisfied.  So,  the  rake

operation proceeds like this.
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The various  cases  are  these this  is  the grandparent  of u  and this  is  the parent  of  u.

Suppose the parent of u is a right child of the grandparent S of u is let us say the sibling

of u, and u happens to be the right child of p of u. The alternate case is where u is the left

child of the parent of u. In both of these cases what we do is to remove u and p of u and

make the sibling of u a child of the parent of grandparent of u from the same side that p

of u held.

So, p of u was a right child of the grandparent of u before now p of u is replaced with s

of  u  p of  u  and u are  removed.  So,  here use  a  leaf.  So,  this  is  the case where  the

grandparent of u has p of u as a right child.
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The other case is symmetric when the grandparent of u has p of u as a left child. Again

there are 2 cases u could be either the right child or the left child of p of u. In both of

these cases we remove p of u and u and make s of u a child of the grandparent of u from

the same side in which p of u was it is child. So, in this case that is the left side.

So, the principle involved in all cases is the same when u is a leaf that has been chosen to

be raked. And p of u is not the root, which means u has a grandparent what we do is that

the node u and p of u are both removed from the tree. And the sibling of u s of u is made

a child of the grandparent of u from the same side in which p of u was it is child.

So, in this case we consider that the case where p of u is a left child of the grandparent of

u in the previous diagram we considered the case where p of u was a right child of the

grandparent of u. So, this operation is what we call a rake operation.
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By tree contraction we mean the shrinking of a tree to a single vertex, by repeated rake

operations and one final reduction of a tree of the form, where the root has exactly 2

children which are both leaves.

So, the tree contraction algorithm that we have is this given the tree satisfying these

conditions.

(Refer Slide Time: 38:59)

So, we are given a tree T such that T is a rooted binary tree as in expression trees each

vertex, each non leaf, has exactly 2 children. And each vertex has 2 pointers the parent



pointer and sibling point. So, such a tree is what is given to us and we want to contract

the tree through repeated break operations. So, this is the challenge that we have.

So, the algorithm for T contraction proceeds in this fashion.

(Refer Slide Time: 40:03)
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First we get the adjacency list representation of tree and then we find an Euler circuit, we

break the Euler circuit open by deleting an incoming edge to the root. And, then we find

a preorder traversal all these are familiar operations all these we have done in the other

algorithms.
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And, then this traversal is copied into an array which can be done in order one time, if

you have one pro super element. So, in this array the logical order of the traversal is

identical to it is physical order and then we mark all the leaf nodes. And, then essentially

we delete all non leaves, leaving only the leaf nodes, but the leaf nodes need not be

consecutive in the traversal, but then we make them consecutive by compacting the leaf

nodes.

Now, the leaf nodes are in a left to right order. Let a denote the array of leaves. So, we

have managed to get all the leaves of the tree in the left to right order in an array, we call

this array A.
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Then from this A we define 2 sequences, A odd is the sequence of the odd elements in A.

Similarly, A even this defined us the sequence of the even elements in A. We define A

odd and A even in this manner the sequence of the order elements in A and the even

elements in A.

Fact for example; in a sequence of this form a b c d e f, a c and e from the odd elements,

b d and f from the even elements. So, this way we can convert an array into the odd

sequence in the even sequence.

(Refer Slide Time: 44:00)



And,  then  the  algorithm  proceeds  to  the  second  phase.  In  the  second  phase  of  the

algorithm what we do is this for ceiling of log of n plus 1 iterations, where n is the total

number of nodes in the tree or the total number of leaves. We apply in rake on all A odd

elements that is all odd numbered leaves, that are left children, that are left children of

their respective parents.

After this we apply rake on all the remaining elements of A odd. So, after performing

rake on all A odd elements in this fashion they have all vanished from the array. Now all

that remain in the array are the even elements. So, we redefine A as A evens and then

continue with the algorithm. So, here what we have to observe is that rake is performed

on  a  set  of  vertices.  So,  that  their  parents  are  non-adjacent,  which  means  2  rake

operations being performed simultaneously will not interfere with each other.

Therefore all these nodes along with their parents vanish from the tree. So, if we are

beginning with the n plus 1 know beginning with n leaf nodes, then after ceiling of n plus

1 iterations we will be left with at most 2 leaf nodes. Once, we have annihilated all A odd

elements from the tree.

(Refer Slide Time: 46:05)
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We have at most floor of m by 2 leaves left in the tree after the iteration, if we began

with m leaves before the iteration.



What it means is that every iteration that reduces the number of leaf nodes by a factor of

2. So, we have log n plus 1 iterations by which the total number of leaves has reduced to

2. So, the number of leaves in the tree now is at most 2, that is the tree now looks like

this after log n plus 1 iteration. And, the cost of the iterations as you can see in the first

item in the first iteration, we have to get rid of all A odd elements there are n by 2 A odd

elements.

So, there are so, many rake operations to be performed we know that if we have one

processor per week operation the operation can be performed in order  one time.  So,

assuming that we have n processors, the first step can be executed in order 1 time. In the

second iteration the number of rake operation house therefore, we require half as many

processors.

(Refer Slide Time: 47:42)

So, with n processors the first step can be executed in 1 time with n by 2 processors the

second step can be executed in 1 time, with n by 4 processors the third step can be

executed in unit time and so on.

And, there are log n such steps or the log n such steps and the total cost of all the steps

put together as order of n again. Therefore, we can use Brent’s scheduling principle using

Brent’s scheduling principle we will be able to execute the algorithm in order of log n

time, using n by log n processors. This is about the second phase of the algorithm, but the



first phase of the algorithm is already familiar to you all these steps we have already

executed in the previous algorithms.

Therefore, we know that all these steps in the first phase of the phase of the algorithm

these 7 steps in the first phase of the algorithm can be executed in order of log n time

with n by log n processors. Therefore, putting everything together the tree contraction

algorithm runs in order of log n time using n by log n processors. Now, the question is

how we will we use the tree contraction algorithm for evaluating an expression which we

shall see in the next lecture. So, that is it from this lecture hope to see you in the next

lecture.

Thank you.


