
Parallel Algorithms
Prof. Sajith Gopalan

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture - 13
Description

Welcome to the 13th lecture of the MOOC on Parallel Algorithms. Today we shall study

an Optimal Parallel Algorithm for the Problem of List Ranking.

(Refer Slide Time: 00:41)

We have already seen the problem of list ranking before. In one of the earlier lectures we

use the technique  called  pointer  jumping,  which  is  also called  recursive  doubling to

device an algorithm that runs in order of log n time using n processors on an EREW

PRAM. 

As we discussed earlier this algorithm is not optimal. The cost of this algorithm is order

of n log n, whereas the sequential time complexity with the problem of list ranking is

order of n.



(Refer Slide Time: 01:55)

So, for the problem to be solved optimally we want an order of n cost algorithm; for the

problem. So, today we shall consider an algorithm that runs in order of or log n time

using n by log n processors. Again on an EREW PRAM and the cost of the algorithm

would be the time processor product which is order of n, and therefore it will be; optimal

the cost of the algorithm is order of n and therefore it would be optimal.

(Refer Slide Time: 03:07)

So, now let us see how the algorithm can be devised. Essentially the algorithm involves

vertex reductions from the given list. So, we are given a linked list of length n that is



there are n nodes in the linked list.  This is given in an array of size n, the classical

presentation; what is required is to rank the list. But as opposed to the previous algorithm

we have only n by log n processors. So, we do not have enough processors to perform

the recursive doubling.

If we manage to reduce the number of vertices in the list to n by log n then we would

have enough processors to run the previous algorithm So, that is what we are going to

do. We will reduce the number of vertices in the list from n to n by double log n. We

would  like  to  accomplish  this  reduction  in  order  of  log  n  time  using  the  available

processes.

So, we have n by log n processes, with these n by log n processors we would reduce the

length of the list from n to n by log n in order of log n time. Once the list is reduced the

number  of  remaining nodes  is  equal  to  the  number  of  processors.  Therefore,  on the

remaining list we will be able to perform the recursive doubling as we did in the previous

algorithm. And then we have to reconstruct the original list along with the ranks for its

vertices.

So, let us see how this vertex reduction can be accomplished.

(Refer Slide Time: 05:03)

Let us say we have a long list of people standing in front of a counter to buy tickets. So,

the last node of the linked list let us say is the counter. In the pointer jumping algorithm



we initialized the last node to 0 and every other node to 1. So, we do the same thing here.

So, we imagine that our linked list is a queue of people standing in front of a counter to

buy tickets. The one at every single node signifies that each of these people want to buy

one  single  ticket.  The  last  node  is  the  counter  and  therefore  it  has  been  labelled  0

signifying that it is not planning to buy any ticket.

Now, the queue is very long. Let us say in this queue we pick a number of people who

form an independent set. What it means is that we do not choose two vertices that are

adjacent to each other. So, we form an independent set. Let us say the people belonging

to the independent set choose to stay out of the queue for the time being. Let us say they

are going out for a tea. Then each of these persons would tell the person behind him to

buy a ticket for him.

So, let us say this person in the queue asks the person behind him to buy a ticket for him.

So, we find that the first element is the first person is still planning to buy 1 ticket, but

the second person is planning to buy 2 tickets: one for himself and one for the person

who went for the tea. The fourth vertex is still buying 1 ticket, but the fifth vertex is

buying 2 tickets now: one for himself and one for the person ahead of him. So, likewise

we update the labels of the vertices. 

So, the length of the list has now reduced, but some of the labels have changed. The label

signifies the number of tickets that a person is planning to buy. After a while again let us

say another independent set chooses 2 go for tea, and each of these persons will tell the

person behind her to buy tickets for them. So, the first vertex is still standing for herself,

the second vertex now has to buy 3 tickets: two that he was planning to buy earlier and

one extra ticket for the new person in front of her who is going out. So, the second vertex

is now planning to buy 3 tickets. This vertex is still buying two vertex the 2 tickets, this

vertex has to buy 3 tickets;  its earlier  one plus the new two. And this  vertex is also

buying 3 tickets. 

So, the length of the list has further reduce. If another independent set now chooses to go

for tea the length of the list will reduce again. Here it is 3, here it is 5, this node has to

buy 5 tickets now; the three initial tickets plus the two for the person who went out. This

node has to buy 6 tickets. Let us say at this point we issue the tickets. The tickets are

nothing but the ranks in this case.



So, we run the notes from the tightened. So, this note gets a rank of 0, this note gets a

rank of 6, and here the rank is 11: 6 plus 5 - 11 and here it is 12. So, this is how the notes

are ranking now. So, all the tickets have been issued. Now the people who when for tea

are coming back in, but then they have to come back in the opposite order in which they

left; that is because every person who leaves tells the person behind her to buy tickets for

her that scheme should not be confused. Therefore, we should splice the vertices in the

same order. So, this vertex is now being spliced in.

So, this vertex is between two nodes that have been ranked 6 and 12 respectively this

node was planning to buy 2 tickets. So, what it means is that between these two nodes,

we have ranks 7, 8, 9, 10, 11 and 12 that is a total of pardon me this is 11. So, there are

five ranks: 7, 8, 9, 10, 11; out of these five ranks the first two ranks of a this node which

means this node will get a number of 8; that is tickets 7 and 8 are handed over to this

vertex. And here we have this vortex coming in and it is handed over the tickets 1, 2 and

3. 

So, this node now holds tickets 1, 2 and 3, this node now holds tickets 4, 5, and 6; tickets

7 and 8 are held by this node; 9, 10, 11 our held by the node. And the last node holds

only ticket 12. So, the list has been recreated to this point, and all the nodes in this list

have now been ranked. If you do a prefix song on this list from the right end you will get

exactly the same values 0, 3, 3 plus 3 – 6, 6 plus 2 – 8, 8 plus 3 – 11, and 11 plus 1 - 12

which is exactly the values that we have on the list now.

Now we can consider the second set that had gone for tea and asked them to stand back

in the queue. And they can now take the tickets that they were supposed to buy. That is

had they not left the queue they would have had the tickets with them by now. So, those

tickets now we can distribute by taking from the people who are already in the queue.

So, this node has a rank of 12 as before, here it is 11, here it is 8, and here it is 6, and

here it is 3. Here the rank would be 1 and here it would be 5 and here it would be 9. So,

that way we would be reconstructing the list back up to this level.

Then we can let the set of people who went for tea in the beginning and ask them to

stand  back  in  the  queue  recreating  the  original  list.  At  this  point  the  list  will  be

completely ranked. In other words every person standing in the queue will now have the

legitimate ticket that he should have had.



So, this is how we are going to reduce the length of a list. So, in our algorithm what we

assume is that we are given a list of length n, and then from this list we will periodically

remove  independent  sets.  Once  an  independent  set  is  removed  the  vertices  that  are

behind the removed vertices will be rebated accordingly and then the vertex reduction

will be applied further on the new list. So, we continue this process until the total number

of vertices in the list reduces to below and by log n. At this point the number of processes

that we have is greater than or equal to the size of the list.

So, we can depute the processors to the nodes one per vertex therefore, we can now

invoke our previous algorithm the point of jumping algorithm which when executed on.

(Refer Slide Time: 13:54)

A list of size n by log n runs in order of log of that many steps which is order of log n;

using of course n by log n processes. The only difference is that the initial values are now

different. In the original point a jumping algorithm the initial values were like this; the

node at the right end had a rank of 0 and the other nodes had a rank of one each.

Whereas now, the nodes will have different ranks each node will have a rank that is equal

to one more than the number of elements ahead of it that have stepped out of the list.

Then pointer jumping will in effect calculate the prefix sum of those values from the

right end of the list.  But these are this these are precisely the ranks that these nodes

would of had had the original list been ranked without any splicing out of vertices. Now,

when the spliced out vertices are reinserted back in the list in the reverse order in which



they were removed, we would end up recreating the original list. And the time taken for

that again would be order log n. 

Therefore, to summarize what we have is this: we have several iterations each of these

iterations are order 1 time iterations; in each iteration we remove an independent set of

vertices from the list. We shall show that the number of iterations required would be

order of log n. At the end of all these iterations the length of the list would have reduced

to  at  most  n  by log  n.  Then the  number  of  processes  is  enough to  perform pointer

jumping on the remaining list. 

After  that  we again have several  iterations.  These are  the original  iterations  done in

reverse. If I call this phase 1 the pointer jumping, part phase 2, and the final part phase 3.

We shall see that phase 3 is identical to phase 1 except in that the iterations are in the

reverse order. That is the vertices that were spliced out last will be coming in first.

So, when these spliced out vertices are all reinserted back in exactly the same amount of

time there is  order  of log n time each iteration  taking order 1 time;  we would have

recreated the original list and the list would be ranked. So, that is the overall structure of

the algorithm. First we reduce the vertices from n to n by log n, and then on the reduced

list we run the pointer jumping algorithm to rank the reduced list. And then we splice in

the vertices in the reverse order in which they were removed to reconstruct the original

list. Now the original list would be ranked.

The cost of reconstruction is identical to the cost of the reduction; the schedule will be an

exact reverse of the reduction. So, all that remains to be seen now is the reduction part. 
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The second phase of the algorithm is the same as the old pointer jumping algorithm. And

the third phase of the algorithm is an exact mirror image of the first phase. Therefore, all

that needs to be specified as the first phase.

So,  for  the  purpose  of  vertex  reduction  what  we  do  is  this:  we  take  the  physical

representation of the list. The physical representation as we have seen before is an array

in which the vertices are given in no particular order. That if the physical order has no

relation to the logical order, the list could be represented in this fashion with the point

crisscrossing through the array.

So, we are given an array of linked n, a 1 dimensional array of length n. This is the actual

physical representation, but we can visualize this array as a 2 dimensional array. This is

exactly as we did in the case of the optimal three colouring algorithm we saw in the last

lecture.



(Refer Slide Time: 20:06)

Except that we assumed the 2 dimensional representation that we have in mind has n by

log n columns, and the size of each column is log n. So, what we assume is that the given

array is the row major representation of this 2 dimensional array. That has log n rows and

n by log n columns

Now, the number of columns is exactly equal to the number of processors we have. So,

we can depute one processor to each column. So, that is what we shall assume now; that

every column has got one processor. Now during the course of this reduction algorithm

will assume that the vertices hold various labels.

The various  possible  labels  for the vertices  are  these:  vertex could be in active,  and

inactive vertex is one that has not been taken up yet. A vertex could be active: an active

vertex is one that has got a process of sitting on it now. And then we will have vertices

that  are called rulers:  these are vertices  that  will  be left  in charge of some subjects.

Therefore,  then we will  have vertices  that  are subjects  to.  And then finally, we have

vertices that are removed: a vertex that has been processed and has been spliced out of

the list is a removed vertex. 

So, these are the five possible labels for the vertices. Every vertex in the list can hold one

of these five labels during the course of the algorithm. In the beginning we assume that

every vertex is inactive, that is because no vertex has been initially assigned a processor.

So, every vertex is initially inactive, then what we do is: this we have exactly as many



processors as we have columns, we take the processors and place them in the first row or

we can call this the 0-th row. Therefore, the final row will be number log n minus 1. The

rows are numbered from 0 to log n minus 1. 

So, let us take all the processors and place them in the 0-th row the i-th processor will

occupy the i-th column. Therefore, all these nodes become active, every other node is

inactive. So, at the beginning of the algorithm there are only two labels in the array:

every node in the 0-th row is active and every node in the all the other nodes in the array

are inactive.

Now the algorithm proceeds in this fashion.

(Refer Slide Time: 23:34)

The algorithm proceeds in a number of iterations, in each iteration we do this. So, let us

specify the iteration for the i-th node. So, in a nitration this is what is done: if the node is

labelled ruler it splices out the next subject. This does not make sense now, because I

have not told you have exactly subjects and rulers are elected, but I will come to that in a

moment.

So, if the node is labelled ruler it will splice out the first subject, if no more subjects are

left the node turns active. 
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If a node is active and isolated, it will splice itself out and at once in its own column. On

the hand if it is active and non isolated, the node will participate in subject ruler election.

So, that is an overall specification of an iteration. But then at the moment it will not

make sense to you, but let me explain what it means. You should at the moment focus on

only these two lines. So, forget the rest of the iteration and focus only on this part. So,

the iteration involves justice let us say; if a node is actives and it is isolated it splices

itself out and advances. So, this is we this is what will happen to the node if it is lucky.

So, this is what a lucky node this. 
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So, let us say we are lucky all the time. In that case what happens is this. We have this 2

dimensional array with log n rows and n by log n columns. And we have initially placed

all the processes in the 0-th row. The 0-th row vertices are all active, every other vertex is

inactive. This is how the initial array looks like. So, at the beginning of the algorithm this

is what we have. So, the active vertices are all in the 0-th row.

So, let us say only the underline part happens. Every node that is active is isolated, that is

every processor check for the node on which it sits the processors are all on active nodes

to begin with and they find that they are all isolated. In the sense that its neighboring

vertices are not active. We say that an active node is isolated if its neighbouring nodes

are not active. An isolated active node is one that is not adjacent to active nodes. 

So, let us say initially every processor is lucky. In the sense that the nodes on which they

sit are all isolated, which means all these are isolated vertices. In other words the vertices

in the 0-th row forms an independent set. So, this is like the first set of vertices that when

out  for  tea.  So,  these  vertices  have  been  randomly  picked,  because  the  physical

representation of the list has nothing to do with the logical representation. And therefore,

when the  list  is  given we cannot  predict  which all  vertices  will  be in  the  0-th row:

logically that is

Now, we have placed the processors on these vertices as such there is really no need that

these form an independent set. But suppose we are lucky, because of our luck all these



nodes happen to be non-adjacent. In other words they form an independent set. Since

they form an independent set they can all be spliced out simultaneously from the list.

That is since no two of them are adjacent they can all go out for tea together. So, they are

all spliced out of the list.

So, the length of the list reduces by n by log n. These vertices all turn removed that is

what the underlying part of the algorithm specified. If a node is active and is isolated

then splice itself out and then advance in the corresponding columns. When a node is

spliced itself out its label is changed to removed. So, all these vertices become removed.

And then the processors will step down in their problems to the next element, which

means the row below is activated all these nodes become active now. These all have been

removed the elements of the 0-th row have all been removed the elements in the first row

are now active.

(Refer Slide Time: 31:06)

Let us say we are lucky again, which means we get an independent set again. Therefore,

exactly as in the first step we can remove these vertices again. So, the second set of

vertices  are  also removed,  and the processors  will  advance further  in the list;  which

means row number two is now activated and the algorithm will proceed in this manner.

Every time executing only the underlined part, but this is if we are lucky every single

time. So, as I was saying if you are lucky every single time; if you are lucky log n times,



then we will be sliding down all the way until we reach the bottom at which point every

vertex other than those in the last row have been removed. 

So, now the scenario is like this the length of the list has been reduced from n to n by log

n, because we have only one element per column remaining in the list. And these are the

active nodes which means all of them have processes citic on them. The remaining nodes

have all been removed from the list one set at a time. This is precisely what we want. We

want to reduce the length of the list from n to n by log n and then on this list we want to

run the pointer jumping algorithm. Once the pointer jumping algorithm is run we can

start phase 3 of the algorithm in which we will put the vertices back in the reverse order.

That is the rows of the array that were removed will be coming back into the list in the

reverse order. When the last row that is the topmost row is put back into the list we

would have reconstructed the list and every node in the list would be ranked; there is of

the algorithm would run if we are lucky every single time.

So, you can see that if we are lucky every single time the reduction algorithm will run in

order of log n time, because order of 1 time is enough to remove one set of vertices.

Now, let us consider the case where we are not lucky every single time. So, let us see

what happens in the first step.

(Refer Slide Time: 33:47)

So, in the first  step we are activating  row 0,  all  these vertices  are active.  These are

vertices that are physically consecutive, but then they need not be logically consecutive,



but some of these vertices could be logically adjacent too. Therefore, if we look into the

logical representation of the list what you find is that these vertices are not necessarily

consecutive, but some of them could be consecutive too. And when they are consecutive

they could in fact be several of them that are consecutive and so on.

So, if you translate this into the logical representation what you find is that the set of

vertices  that  are  active,  need  not  all  be  consecutive  but  some  of  them  could  be

consecutive; and those that are consecutive will form sub lists of vertices that cannot be

spliced out all simultaneously. The active vertices that are isolated: for example, all these

vertices. In our example these are isolated vertices, they can be spliced out exactly as we

did it before. That is what this part of the algorithm does: if a node is active and isolated

we splice those vertices out and the processors in those columns will advance to the next

element.  But the remaining elements which are active,  but are non-isolated they will

participate in what we call subject ruler election.

So, these sub lists that form the set of non-isolated active vertices they will participate in

subject ruler election. Out of each sub lists we will elect some as rulers and remaining as

subjects.

(Refer Slide Time: 36:22)

So, every ruler will be left in charge of several subjects.  If you look at  the physical

representation what we find is this: if the topmost vertex in a column which is at present

active is chosen as a ruler of which the topmost element of another column is made a



subject;  that  could  be  several  such,  it  could  be  that  the  topmost  element  of  another

column has also been made a subject. Then we will get a linked list of this form this is a

sublist: a ruler followed by its subjects.

So, once again we have the scenario the processes are all placed in the 0-th row. Every

vertex in the 0-th row is an active vertex, but then when we look at the logical sequence

of the vertices what we now find is that: the processes are not on consecutive vertices

necessarily because there is no relationship between the physical order and the logical

order in general. These active vertices could be isolated or they could be consecutive. If

the active vertices are isolated then we are those are the lucky vertices, because those

vertex  vertices  can  be  removed  from the  list  and  the  corresponding  processors  can

advance in their respective columns. Which means if this vertex happens to be the same

as this vertex this is an isolated vertex, so this vertex will be removed and the processor

will advance in the corresponding column it will move on to the next row.

But  then  vertices  that  are  not  isolated  cannot  do the same thing what  they do is  to

participate in a subject ruler election. So, for every such consecutive set of active vertices

we will have some rulers and some subjects. So, every ruler gets some subjects. So, for

now let me assume that the subjects are consecutive with the ruler. So, a ruler will get

some vertices, some consecutive vertices as its subjects. So, here in this stretch we have

7  vertices  of  which  the  first  and  the  fourth  are  elected  as  rulers  the  remaining  are

subjects.

So, the first vertex gets the second and the third as its subjects, whereas the fourth vertex

gets the fifth, sixth, and seventh as its subjects. Then what we propose is that a node

which gets subjects remain where it is, which means the processor that is sitting on this

vertex  will  not  be  allowed  to  advance  in  its  corresponding  column.  Whereas,  the

processor which is sitting here will  be allowed to advance to the next element  in its

corresponding column. That is if a node becomes a ruler it is stuck with a number of

subjects, it can proceed in its own column only after it finishes with its subjects. That is

the job of splicing out these subject subjects from the list is now with this ruler or the

processor which is sitting on the ruler. This processor is now responsible for splicing out

these subject nodes; that is this node as well as this node. 



But the processes that are sitting on these subject nodes abandoned them and proceed in

their respective columns to the next position. So, the processes that are sitting on the

subject nodes get to advance in their respective columns. So, in this case the processor

will advance to the second the second row, here also the processor will advance to the

second row which means row number 1. Whereas, the process that is sitting on the ruler

will be still stuck with row number 0. 

So, the rules are stuck, whereas the subject processors get to move forward leaving the

subjects behind in charge of the rulers. So, that is what we did in the last part of the

algorithm specification. If a node is active and non isolated then it will participate in the

subject  ruler  election  and  will  advance  forward  only  if  its  node  has  been  chosen  a

subject. 

So, after the subject ruler election has been taken place we can start the next phase. So,

in the first phase we do not have to worry about what the subjects and rulers will do at

the beginning of a phase, because when the algorithm begins there are no subjects and

the and the rulers there are only active and inactive vertices; and the active vertices are

all in row 0. So, in the first phase of the algorithm this is what happens. Every active

node that is every row 0 node which is isolated will be spliced out, and the process of

sitting on them will advance to the next row. But then for every set of consecutive row 0

vertices we will have subject ruler election, we will see how exactly the subject ruler

election will take place. But once subjects and rulers are chosen the subjects will be left

in charge of the rulers and the processes that was sitting on the subjects will abandon the

subjects and move down their columns.

After this is done, we are ready for the next phase.
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So, in the second phase of the algorithm; in the second iteration we have to consider

every single ruler. So, every node checks whether if it is a ruler. So, if they node is a ruler

then it must have a subject, then it will remove the first subject ; the nearest subject. If a

node is a ruler it will remove the nearest subject. And after removing the subject, if it has

no further subject left it will then turn into an active node. Then it will go back to the

original game. So, this is the first part of a general phase, this will come into play only

from the second phase onwards.

So, in general at the beginning of a phase we have vertices of all kind. There are the

removed nodes which will not come up again except in phase 3 when they are put back

in the list. Therefore, in the reduction phase when once vortex is removed it is out of

play. Then we have vertices that are active and inactive. Inactive vertices have not been

taken up yet they have not got a processor yet, so they will come in future. Then we have

rulers  and  subjects.  The  subject  nodes  have  lost  their  processors,  because  those

processors have abandoned these subjects to be in charge of the corresponding rulers. So,

the subject nodes are without processors. So, we have processors sitting on only the ruler

nodes and the active nodes.

First at the beginning of a general phase we will look at the ruler nodes, for every ruler

node we will  remove the first subject since two ruler nodes are separated by several

subjects. That is when you consider two consecutive rulers they will have the subjects of



the first ruler between them. So, these are all subjects of the first ruler. Therefore, when

two rulers are removing therefore, subjects we are in essence removing an independent

set. This ruler is removing its first subject namely this the circle vertex. The second ruler

is removing its first subject namely this the squad vortex. So, we find that the circle

vertex  and  the  squad  vertex  are  not  adjacent,  because  they  must  have  one  ruler  in

between them.

Therefore,  according to the scheme when every ruler is removing its first subject we

would  be  removing  an  independent  set.  So,  at  this  instance  in  the  execution  of  the

algorithm we would be removing an independent set from the list. So, several rulers are

removing their respective first subjects all simultaneously. And then every ruler has to

examine whether it has now removed its last subject. If the last subject has been removed

then the ruler goes back to being active. And then it will take part in the second part of

the algorithm which we saw early. If a vertex is active and if it is isolated it will splice

itself out and go down the column, otherwise it will take part in subject ruler elections

and then advance if chosen subjects. That is how the algorithm works in general.

So, this is not just the second phase, this is every phase greater than or equal to 2; every

phase numbered greater than or equal to 2 will function like this at the beginning of a

general phase. We have processors sitting on rural ruler nodes as well as active nodes.

First we activate the processors that are sitting on the ruler nodes. All these ruler nodes

will check if they have they do have subjects that they have at least one subjects, because

as soon as a ruler loses all its subjects it would have turned active. Therefore, if a node is

still ruler it is with subjects. Therefore, every ruler will remove the first subject that it has

and if there is no further subject left it will turn active.

So, this is one time instance when we remove an independent set from the list. So, after

the turn off the ruler nodes are over we consider all the active nodes. If an active node is

isolated we splice the active node out of the list. So, this is another instance during a

phase when an independent set will be removed from the list. So, in every phase we are

in fact  removing two independent  sets  from the list.  In the first  instance every ruler

removes its first subject, all this happens simultaneously. In the second instance every

active node that is isolated will splice itself out, this will also happen simultaneously.

And then if a node is active, but is not isolated then it will take part in subject ruler

election, and every processor that has its node chosen a subject abandons this node to be



in charge of the corresponding ruler and advances in its column and that is the end of the

phase. Then we continue to the beginning of the next phase

So, this is how the algorithm proceeds phase after phase until the number of vertices is

reduced to less than n by log n.
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We wish to be able to claim that we require only order of log n phases before the number

of vertices falls to below n by log n. But this requires specifying the details of the subject

ruler election. The subject ruler election proceeds in this fashion.

(Refer Slide Time: 49:57)



The subject ruler election is proceed is done on a set of consecutive active nodes. 

So, all these nodes have processes sitting on them; what we do first is this. Colour these

sub lists  using  double  log  n colours.  At  most  three  steps  of  the  symmetry  breaking

algorithm are enough to colour the sub list with double log n colours. Once the list is

coloured in this fashion a very local minimum is picked out. For example, if this list is

coloured  in  this  fashion  the  local  minima  of  this  list  are  these  this  node  is  a  local

minimum because it has a neighbour of colour two, but it does not have a neighbour of

colour less than one. This node is also a local minimum, because it has two neighbours of

colours two and three it does not have any neighbour of smaller colour. And this node is

also a local minimum, because it is two colours that are larger than two and it does not

have a neighbour of colour less than 2.

So, we pick out the local minima and then break the list immediately prior to the local

minimum. So, let us say we break the list in this fashion. So, the list is broken into three

pieces: the first stretches 1-2, the second stretch is 1-3 and the third stretches 2-4. Now,

we can claim that the length of each stretch is at most 2 double log n. If you break the list

before the local minima the length of the resultant list will be at most 2 double log n.

(Refer Slide Time: 52:36)

That is because we have used it most double log n colours. In the worst case scenario we

could have a colour distribution like this. Let us say one is a local minimum then we

have 2, then we have 3 let us say the colours going all the way up to log of log n, and



then let us say the colours start decreasing. This is the worst that can happen. The colours

can go increasing from 1-2 double log n and then decrease from double log n into 1. If

this is the case then this one is the local minimum and this one is a local minimum, none

of the other vertices in this stretch is a local minimum. And then the preceding link of

every local minimum is broken, which means we end up getting this entire stretch as a

sub list. In this sub list the colours are increasing from 1-2 double log n and then are

decreasing from double log n into 2.

So, the length of this stretch can be at most 2 double log n minus 1. This part is double

log n minus 1 1-2 double log n the number of edges, and then here it is double log n

minus 2 for a total of 2 double log n minus 3 edges or 2 double log n minus 2 vertices.

So, you can say the maximum stretch of any resultant list is going to be 2 double log n

minus 2 vertices.  And then we can choose the first  vertex here as  the ruler  and the

remaining vertices as the subjects. So, this would ensure that every ruler has given at

most 2 double log n subjects.  If  we had in fact,  coloured with double log n by two

colours  then we would be able  to  ensure that  every ruler  gets  at  most  double log n

subjects, which is a condition that we need for the correct analysis. 

Now the analysis of the algorithm that we shall do in the next lecture. That is it from this

lecture  hope  to  see  you  in  the  next  lecture,  where  we  shall  do  the  analysis  of  this

algorithm.

Thank you. 


