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So the next thing So, that we have an agenda this plan is we will look at the following

problem. Let us say we toss a coin n times ok. So, toss an unbiased coin n times.
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The random variable that we are interested in is the number of heads. We know that the

expectation of X is going to be n by 2. If it was a coin of bias p it is going to be n times

p. What we are interested in is how much does this random variable deviate from its

moment, I mean from its first moment or in other words we will look at various moments

of this random variable and look at what is the expected value of those moments, why is

this important. Well we are in when we in many of our random randomized algorithms

we will have this as a repeated theme. Some experiment is being conducted many times

and we expect a certain value that will be our good scenario and the bad scenario will be

that the expected value is far the outcome of the experiment is far from the expected

value.

So in particular we want to look at probability of such events. The random variable X

minus its expectation being greater than some particular value alpha, ok. So, if we want



to say that this probability is small ok. There guarantee that we can give our give to our

algorithm  depends  on  how  well  we  are  able  to  calculate  this  probability. So,  this

probability in case of unbiased coin we will calculate today for different values of alpha.

So, our first inequality that we will prove was something called as Markov inequality ok.

So, let X be positive valued random variable, we are interested in the probability that X

is just greater than some particular value a.

So we know absolutely nothing about the random variable other than that it is a positive

value at random variable and we want to compute the probability that it is greater than a

particular a ok. So, we will show that this probability is less than or equal to expected

value of X divided by a ok. Proof is very simple; we will set up what is called as a an

indicator random variable ok. So, I indicates a following event. How does it indicate?.

The value of this random variable i is 1 if X is greater than or equal to a and it is 0

otherwise ok. So, this is a certain event that is the random variable taking values greater

than or equal to a that is a certain event. The if a is let us say 100 the random variable

takes the value 105, we can say that the event has occurred ok

Now, the indicator random variable I that we have defined here defines the same event. It

takes the value 1 if X is greater than a and it takes the value 0 otherwise. Now, let us

compare 2 different random variables. The first random variable being I and the second

random variable being X by a; where a is this particular constant number ok.

If X is a random variable X b is also a random variable and let us look at these 2 random

variables point wise. Point wise means on every element in the underlying sample space

ok. So, here on every sample point X will take some value some real value, whenever it

is greater than a. So, if X is greater than a greater than or equal to a, this random variable

will be greater than or equal to 1 ok. Whereas, this random variable in that case will be

equal to 1; X is greater than or equal to a, I will take the value 1 and X by a will take the

value greater than or equal to 1. So, in the; so, in this case if X is greater than a then X by

a is greater than or equal to I. If X is less than a that is the other case remaining if X is

less than a by virtue of X being a positive valued random variable X by a is greater than

or equal to 0 and I is equal 0.

Therefore even in that case X by a is greater than or equal to I. So, here are 2 random

variables X by a and I X by a is always greater than I, therefore, its expectation will also



be greater than I ok. So, we can write this as expectation of I is going to be smaller than

expectation of X by a; they being a constant we can write it as 1 by a times expectation

of  X ok.  And expectation  of  I  of  this  indicator  random variable  is  nothing but  this

probability because I takes only 2 values 1 and 0. So, the expectation will be 1 multiplied

by this  probability  plus  0  multiplied  by  the  probability  of  the  complimentary  event.

Therefore, the left hand side will be probability that X greater than a expectation of I is

going to be this quantity and that is the proof of Markov inequality.

So, now let us ask ourselves this question. Can we apply Markov inequality to compute

the probability that if we toss a coin n times, what is the probability that you will get

more than three- fourth of the tosses as heads?
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So, this is the question that we are interested in. Toss an unbiased coin n times, compute

the  probability  that  the  random  variable  X  which  denote  the  number  of  heads  is

probability that X is greater than the random variable X takes a value greater than or

equal to 3 n by 4 ok. Of course, we can compute this using our binomial random variable

X is the binomial random variable. So, we just need to sum up over the probabilities that

X is equal to let us say i waiting from 3 n by 4 to n you will get some value that will be

the exact answer.



But you can see that it involves summing up some number of binomial coefficients that

is not going to be I mean it can be done, but we want a simpler calculation ok. So, let us

see what Markov bound what Markov inequality gives us ok.
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So, we want probability that X is greater than 3 n by 4; this we know is less than or equal

to expectation of X divided by a. So, a here is 3 n by 4. So, this and expectation of X is n

by 2 and a is 3 n by 4 goes up, so, you will get this as 2 by 3 ok.

So, there is only a less than 60 percent 66 percent chance that this will happen ok, very

loose bound. So, we will try and improve this bound ok. You can see that this is very

loose bound ok. We will learn something called as Chebychev’s inequality. So, here what

we are interested in is the probability that X minus expectation of X, the absolute value

of that being greater than or equal to some number a ok.

So, here you are interested in the probability that a random variable deviates from its

expected value by a specified amount a. So, this we will show is less than variance of X

divided by a square the proof was a simple application of Markov inequality, but we will

see  that  Chebyshev  inequality  gives  a  better  bound than  Markov  inequality  for  this

particular problem ok.

So, how do we apply Markov inequality to this? So, we are interested in the event that X

minus expectation of X the absolute value of that being greater than or equal to a. So,



this event is same as the event X minus expectation of X the whole square greater than or

equal to a square ok. So, whenever X minus E expectation of X the whole square is

greater than a square X is going to be deviating from its mean by an amount more than a.

So, these are essentially  the same events, but here this  is a familiar  quantity. This is

nothing but the variance of X ok. So, we know that sorry the expectation of this is the

variance; this is not the variance, but the expectation of that quantity is the variance. So,

the variance comes over here, but this is a random variable which we will denote by let

us  say  the  letter  Y and  we  know  that  it  is  a  positive  valued  random  variable.  So,

probability that Y is greater than or equal to a square is going to be less than expectation

of Y divided by a square that is what Markov inequality says and here expectation of Y is

going to be expectation of X minus expectation of X the whole square divided by a

square. So, this is going to be variance of X divided by a square ok. 

So,  now, we will  try  and  apply  Chebyshev’s inequality  to  our  problem lets  toss  an

unbiased coin n times. So, if you toss a coin unbiased coin n times the random variable X

is  the  Bernoulli  random is  the  binomial  random variable.  So,  the  expectation  of  X

expectation of X is going to be n by 2 and variance of X is going to be n by 4 ok. So, if

you take a binomial random variable with parameters p and n its expectation is n p and

variance is n p into q where q is 1 minus p. So, probability that X is greater than 3 n by 4.

This is certainly less than the probability that X is greater than 3 n by 4 or X greater than

X less than n by 4 ok. So, if you look at the values that the random variable X can take

can vary from 0 to n and n by 2 being the mean and we are looking at these points 3 n by

4 and n by 4. The probability that it lies in this region is this probability and that is equal

to probability that X minus n by 2 greater than, so, the modulus of this is greater than by

4.

So, this is the expression to which we will apply Chebyshev’s inequality and that we

know that this probability is less than variance of X divided by a square. So, a here is n

by 4 square will be n square 4 n square and variance of X is n by 4. So, 4 into n by 4

sorry, this is 16 n by 4 the whole square is 16 n square. So, this will be 16 n by 4 divided

by n square. So, the value that we will get is 4 by n square as n becomes large this is a

much smaller quantity than this.



So, the probability that if you toss an unbiased coin n times the chances that it will be the

number of heads will be greater than 3 n by 4 this significantly smaller than 4 by n. Now,

let  us think of an algorithm that  we will  of an algorithm to compute  the median of

unsorted array. So, let us look at a randomized algorithm the input is the following.
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Input as a set of numbers which we will call 1 which will call a 1 to a n. So, there are n

numbers and the output will be the median of this collection ok. So, median would mean

that the middlemost element when you sorted it.

So, for example, if your numbers are 4 3 8 7 2 6 5, the sorter order would be 2 3 4 5 6 7 8

and the  middle  element  is  going to  be  5.  We may assume that  the  total  number  of

elements is odd, if it is even the median is just the sum of the. So, if you have 2 3 4 6 7 8

add these and divide by 2 ok. So, we will just for convenience assume that we have an

odd number of elements. There is a deterministic linear time algorithm to compute the

median  ok.  It  is  a  slightly  complicated  algorithm.  Here  we  will  see  a  very  simple

algorithm to compute the media and it will work in expected linear time. The analysis is

a little more involved, but this is an algorithm that 1 can readily implement ok.

So, let us see the algorithm. So, first step choose and raised to 3 by 4 elements from S at

random ok. So, let us call the set as P ok. So, the choices in P are made by picking

elements at random from S with replacement. So, P could be a multi set. We may initially

assume that the set of elements in S are all distinct, but even then P could have repeated



elements. We do this just to I mean it is much easier to analyze this choice than let us say

if we do sample with replace without replacement.

The second step is sort P and find d and u ok. So, we have the set P of elements ok, we

will sort this and let us say this is the middle point, this is a collection with n raise to 3 by

4 elements, we will go this side a distance of say alpha and we will go a distance alpha is

alpha will fix later and this is going to be our d and this is going to be our u. The idea is

simple.  We will  randomly  sample  our  initial  set  and  using  that  set  we  will  pick  2

elements d and u which will act as pivots ok.

The number  of  elements  that  which  we chose  is  n  raise  to  3 by  4 and the  random

elements the elements that we pick as d and u are going to be away from the midpoint of

P within, but at a distance alpha. The third step is we are going to split the entire set S

into 3 parts. So, this is smaller than d this is greater than u and this is going to be the in

between ok. So, one can verify that all these 3 steps can be done linear  time this is

choosing n raise to 3 by 4 elements let takes only n raise 3 by 4 steps and if you have a

small sized set small here is n raise to 3 by 4 because n raise to 3 by 4 is less than n and

therefore, one can use and use a linear time. So, I mean use an n log in sorting algorithm.

So, if you use an n log in sorting algorithm for n raise to 3 by 4 it is going to take n raise

to 3 by 4 times log n raise to 3 by 4 which is certainly less than n, much less than n ok.

So, therefore, the sorting and finding d and u can be done efficiently, it can be done in

linear time. And once you have this d and u you just need a single scan of the entire set

of numbers to identify the numbers which is smaller than d and identify the numbers it is

a  greater  than  u  and  the  in  between  numbers  are  whatever  is  remaining.  What  our

algorithm will do is now if this is let us say l u I am sorry l d and if this is l u ok, what we

expect is that the middle portion is sufficiently small ok. So, what if this middle portion

is sufficiently small and if it contains a median then will determine the median.

So, determine the median if possible. When I write if possible it means if it is possible in

linear time to find the median do find it. Otherwise will just fail as we are interested in

randomized  algorithms  failing  is  perfectly  ok,  but  we  should  not  fail  with  large

probability ok. The probability of failure should be small that is all ok. So, what does it

mean to determine the median ok? Suppose this d is greater than n by 2 sorry l d is



greater than n by 2; that means, the median essentially lies in this portion ok. If l d is

greater than n by 2; that means, median is not lying in the in between region.

Second situation is l u is less than n by 2; that means, this is l u is towards the left of the

median in that case also the median is not going to be in between and the third case is if

these 2 conditions are satisfied we know that the in between elements contained in the

median, but our algorithm is just going to sort those and find the median. So, we want

this to be small. So, third condition is so, in between elements should be small, I mean

the number of the number of in between elements should be smart. 

So, will leave it at this point for today try and figure out what exactly should alpha be,

what should be our bound and what should be the small size ok. The only tools that we

would  require  to  analyze  this  algorithm  and  give  reasonable  guarantees  is  say

Chebychev’s inequality ok. So, you can try various possible values of alpha, but alpha

should be chosen appropriately. So, that for that choice of alpha there is a significant

probability that the in between elements are small and they will contain the median and

so, that will be the final algorithm.


