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In today’s lecture, we will learn more about expectation of random variable. So, if we

have a random variable X, the expectation of X we had defined it in earlier class as sum

over x belonging to omega; omega belonging to omega X omega probability of w. In

other words, this is equal to the values X w denotes the value that the random variable

takes, when the sample point is omega. 

So, it is this sum over all x belonging to real numbers such that the value of the random

variable  is  x  times  probability  that  X is  equal  to  x.  This  is  what  we defined as  the

expectation of a random variable. We will see many properties of random of expectations

of random variables today.

The first property that we will learn is known as linearity of expectation ok. So, suppose

X and Y are two random variables. We could look at the expectation of X plus Y ok. So,

expectation of X plus Y is equal to expectation of X plus expectation of Y, let us see why

this is the case. By definition expectation of X plus Y is equal to sum over all omega

belonging to omega, X plus Y is a random variable. 



So, the value that it takes at the point omega is the value that random variable at the point

omega times probability of omega, this is also equal to sum over omega belonging to

omega  X  omega  plus  Y  omega  times  probability  of  omega.  And  this  is  equal  to

summation ok, and this clearly is. So, this quantity if you, look at this quantity that is

going to be expectation of X and the summation when pushed to the other term is going

to be the expectation of Y.

(Refer Slide Time: 04:05)

Now, let  us look at  an interesting property of expectations.  Suppose,  X is  a random

variable  ok, so this  takes value from omega to reals. And let  us look at  this random

variable Y is equal to X square ok. So, suppose X was the random variable, let us say

suppose X is a random variable from 1, 2, 3, 4, 5, 6 to reals, such that X of omega is just

let us say omega minus 3 ok. So, on 1 it takes the value minus 2, and 2 it takes the value

minus 1, and 3 it takes the value 0, and 4 the value is 1, 5 is 2, and 6 is 3.

The random variable  Y omega will  be taking the value 4,  1,  0,  1,  4,  and 9.  We are

interested in knowing the relationship between the expectation of X and the expectation

of Y, where Y is a function of the random variable X ok. So, Y is equal to f of X. So, here

the function is the square. So, how does expectation of Y, and expectation of X relate,

what is the relationship between them? We can show that expectation of Y is greater than

expectation of X the whole square ok, why is this so well expectation of X here is so let



us assume that all these 1, 2, 3, 4, 5, 6 are equally likely. Expectation of X will be 3 by 6,

expectation of Y will be 19 by 6. 

So, we need to compare Y and expectation of X square, this is equal to half. So, squared

is going to be less than that this is greater than 1 the square is going to be greater than 1

ok. So, not just for this particular example. This is the case that expectation of Y of X

square is always greater than of expectation of X the whole square ok, so this is the case.

Expectation of X square is greater than expectation of X the whole square ok. So, let us

see why this is the case.

So, let us look at this particular random variable expectation of let us look at this random

variable  X minus expectation of X the whole square clearly. Z is a random variable,

which is always positive ok. As Z is always positive, we know that expectation of Z is

also  going  to  be  greater  than  or  equal  to  0  ok.  But,  what  is  the  expectation  of  X

expectation  of  Z,  well  expectation  of  Z  is  equal  to  the  expectation  of  this  whole

expression X minus expectation of X times X minus expectation of X, we could expand

this out.

And we will get expectation of X square minus 2 times expectation of X times X plus

expectation of X the whole square. By linearity of expectation this is going to be equal to

expectation of X square minus 2 times expectation of X being a constant that comes out,

so we will get 2 times expectation of X, and expectation of X remains plus expectation of

X whole square. So, this is expectation of X the whole square one of these cancels. So,

what we get is expectation of X the whole square minus expectation of X whole square

ok.

So, since this quantity we know is greater than 0, we can conclude this is greater than 0,

therefore expectation of X square is greater than expectation of X the whole square ok,

so that basically is a proof of this particular statement, then that is something much more

general is true ok. So, and the general statement is called as Jensen’s inequality ok, so we

will state and prove Jensen’s inequality that is going to be used many times during our

course. 
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So,  Jensen’s inequality  states  that  for  any convex function  f  we have  the  following

property. If you compute the expectation of f X, so let X be a random variable. So, if you

compute the expectation of f X that is going to be greater than or equal to the value f of

expectation of X ok. How do we view this, how do we prove this see the proof, but

intuitively you can think of it in the following way. If you think of a convex function, it

is the shape of a convex function. And if you let us say look at a point x 1, and if you

look at another point x 2, the average value of x 1 and x 2 will be x 1 plus x 2 by 2, if

you take a weighted average, it will be somewhere in between these two points.

So, let us say, so that is going to be the expectation of x. So, let us say if x is a random

variable which can take only two possible values namely x 1 and x 2, this is the x this

point is the expectation of x. And this is f of expectation of x. If you compute expectation

of x, this is going to be f of expectation of x. Whereas this is going to be f of x 1, and this

is going to be f of x 2. So, if you look at the function expectation of f X as x varies that is

going to be, that is going to be lying on this line. And this is the point which is the

expectation of f of x ok. And that is going to be greater than f of expectation of x ok. 

Mathematically, what will be a that is a geometric intuitive proof, but mathematically

how do we prove this. So, we will assume that f is a twice differentiable function. And

for any function, we can write its Taylor series expansion. So, f x can be written as if you

expand it about a point let us say mu, you can write it as f of mu plus f prime mu into x



minus a by 1 factorial plus f double prime mu into x minus a the whole square by 2

factorial plus the third derivative x minus a whole cube by 3 factorial and so on ok.

So, these terms can be viewed as the error terms ok. So, if you just approx so this you

can think of as a first approximation, combine the first and the second term you get a

better approximation and so on. Now, the mean value theorem form of Taylors theorem

says that this can be written as f of mu plus f prime mu into x minus a by 1 factorial. So,

these higher order terms, we will keep the first derivative, but the higher order terms we

can make it equal to f double prime c times x minus a the whole square by 2 factorial,

where c is some value between x and a sorry a here being mu ok.

So, now we can just so this is true for any function. Now, if you take x to be a random

variable, we can compute the expectation of f x. So, expectation of f x is going to be

equal  to  expectation  of  f  mu plus  expectation  of  f  prime mu times  x minus a  by 1

factorial plus expectation of f double prime mu sorry f double prime c by x minus mu

whole square by 2 factorial. 

Now, if  you  choose  mu to  be  the  expectation  of  X ok,  so  this  is  the  Taylor  series

expansion, we expand it about the point expectation of X. So, then we will get the left

hand side is the quantity that we want expectation of f of x this is going to be equal to

expectation of f mu. Mu is the expectation of x which is a constant, so this is going to be

just f of expectation of X plus f prime of mu that is going to be f prime of expectation of

X that is a constant that comes out times expectation of X minus expectation of X plus.

Now since it is a convex function f prime c here is going to be a positive value, convex

would essentially mean f double prime is going to be greater than 0, so this quantity is

going to be positive and x minus mu whole square by 2 factorial that is also going to be

positive. So, we will call this as a plus a positive value ok. 

Whereas, this expression it is going to be expectation of X minus expectation of X minus

expectation of X. So, this quantity is going to be just expectation of X minus so here we

are applying linearity, and expectation of X being a constant will get it as expectation of

x. So, this is 0, so we will get this to be f of expectation of X plus some positive number

ok. So, if you remove that positive that means, expectation of f x is going to be greater

than or equal to this quantity, so that is the Jensen’s inequality proof.
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So, the next thing that we will see is, we will compute the expectation of various random

variables commonly occurring random variables ok. The first example that we will see is

what is called as a Bernoulli random variable ok. So, the sample space here is the coin

toss sample space. And we will assume that probability of H is equal to probability of T

is equal to half ok. And the random variable is the following ok. If the coin toss results in

a head, then the random variable takes the value 1. And if the random variable takes the

value T if the coin toss results in a tail, the random variable takes the value 0 ok. So, this

is an example of a Bernoulli random variable. And the expectation clearly is half.

We could also consider the coins being biased. So, let us look at the;  so that is also a

Bernoulli random variable with parameter p. So, when the parameter is p, the probability

of a heads we will assume as p, and the probability of tail will be 1 minus p. And in that

case the expectation of this random variable will be 1 times p plus 0 times 1 minus p,

which is equal to p. So, this is the Bernoulli random variable. 

The second random variable that we will look at is the binomial random variable ok. So,

let us consider this experiment of tossing a coin n times, so toss a coin n times and look

at the or count the number of heads that appear ok. So, X is equal to number of heads, we

will assume that the coins biases p.

So, in that case the probability that the random variable X takes the value K is going to

be n choose k into p raise  to  k times 1 minus p raise to n minus k.  So,  this  is  the



probability that the number of heads appeared is k. Out of the n tosses, we could pick k

of them, and all of them had to be heads that will happen with probability p raise to k.

And the remaining had to be tails that will happen with 1 minus p raise to n minus k. So,

random variable which has this distribution is called as a binomial random variable. We

could also think of binomial random variable with parameter n and p as the sum of n

independent coin tosses or in n independent binomial random variable Bernoulli random

variables ok.

So, now let us try and compute the expectation of the binomial random variable ok. So,

we can compute this as summation k times n choose k times p raise to k into 1 minus p

raise to n minus k. This expression will simplify as n times p, but there is another quicker

way to compute the expectation of X, we can use the linearity principle. So, if we think

of X as the sum of n Bernoulli random variables, then the expectation of X is going to be

the sum of expectations of the X i's. And each X i, it is expectation is going to be p,

therefore this is going to be n times p.
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The third random variable that we will see today is what is called as a geometric random

variable ok. So, let us imagine the following experiment. We keep on tossing coins till

we get a head ok. So, our sample space is going to be different from the sample spaces

that we have seen so far ok. So, we do not know how many times, we are going to toss

the coin ok, but we know that the outcomes can be thought of as H, TH, TTH, and so on



ok. So, this is a countable sample space, it is a discrete sample space ok, but it is not the

sample space of all possible coin tosses ok.

For example, the outcome T is not present inside the set omega. And the probability is

that we can assign to the individual sample points are if we assume that the coins bias is

p, so this happens with probability p, this happens with q times p or q is 1 minus p, this

happens with q square times p and so on. And you can verify that summation p to the i q,

i varying from 1 to infinity, this is going to be equal to 1 ok.

So, what does the geometric random variable say, geometric random variable counts the

number of tosses that you have to do before you get the first head ok. So, X of H will be

equal to 1, X of TTTH will be equal to 4. And we need to compute the expectation of X

clearly, by definition this  is going to be equal to summation over the values that the

random variable can take, random variable can take the value i with probability q raise to

i minus 1 times p that is going to be equal to if you sum this up, we will get 1 by p ok.

You can think of this as an arithmetic or geometric series, can look at the following series

1 plus q plus q square so on. Since, q is less than 1, this summation is going to be equal

to 1 by 1 minus q.

If you differentiate both sides, we will get 1 times so 1 plus 2 times q plus 3 times q

square so on. And the differential of this is 1 by 1 minus q the whole square multiply the

entire left hand side and right hand side by q, you get q plus 2 q square plus 3 q q so on.

This is going to be equal to q by 1 minus q the whole square. And this is the expression

that we have here it  is if you bring the p outside,  so that is going to be equal to so

summation q raise to so we just took we did not have multiplied. So, this summation is

going to be equal to 1 by 1 minus q the whole square.

So, p into this expression will give you p plus 2 times q p plus 3 times q square p so on

ok. So, this is going to be equal to p by 1 minus q is the whole square that is going to be

equal to 1 by so 1 minus q is p this is 1 by p ok. So, the expectation of the geometric

random variable is 1 by minus p.

The fourth example that we will see is what is called as a hyper geometric distribution or

the hyper geometric random variable ok. So, let us imagine the following experiment.

We have r red balls, and b blue balls ok, and then we will pick n balls at random. So, this



will be uniformly at random. So, the total number of ways in which you could do this is r

plus b chose n. And all the possible choices are equally likely ok.

So, the sample space if you write it explicitly, that is going to contain r plus b choose n

elements. So, let us say if our balls were numbered, if we thought of them as R 1 we

wrote them as R 1, R 2, R r, and B 1, B 2, B r our picks could be a sequence of n balls

ok. So, let us say alpha 1 alpha n, where each alpha i is a red ball or a blue ball ok. So,

every such choice is going to be included into the set omega. And the size of omega is

going to be equal to r plus b choose n.
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Now, we could  define  a  random variable  on  this  probability  space,  which  is  so  the

random variable that we are interested in is a number of red balls, when we choose n

balls at random without replacement ok. So, probability that this random variable X is

equal to k is going to be equal to r choose k times b choose n minus k divided by r plus b

choose k.

And therefore, expectation of this random variable is going to be summation over all

possible values that X can take, so values varies from 1 to r, so i varying from 1 to r i that

is the value of the random variable times the probability that the random variable takes

the value i that is going to be r choose i into b choose n minus i times r plus b I mean

divided by r plus b choose k sorry this is not r plus b choose k this is r plus b choose n.

Now, how do we calculate the expectation of X? Again we can simplify this expression



apply it is a binomial identities and get the correct answer, but these computations can

again be done using linearity of expectation ok.

So, let X i denote the random variable the indicate random variable. So, X i equals 1, if

the ith ball is red. So, let us say we had picked n balls, and numbered them 1 to n the 1 to

i. Whatever is the ith ball, if that ball is red Then we will say that x i equals 1, because 0

otherwise; clearly. X is equal to summation over i X i, where i varies from 1 to n. 

Therefore,  expectation  of  X,  there  is  going  to  be  summation  i  going  from  1  to  n

expectation of X i. And each of these X i's their expectations has to be equal ok. Because,

when  we  are  picking  n  balls  at  random  uniformly  at  random,  we  do  not  really

differentiate between any of the positions, any ball is equally likely to be in any of these

positions ok.

And expectation of X i is same as the expectation of any other i so let us say X 1. The

first ball can be red or I mean can be red with probability r by r plus b ok. So, this is the

probability in the expectation of any X i. So, expectation of X would be r times n divided

by  r  plus  b.  So,  now we have  seen  many  different  random variables,  and we have

computed their expectations.

The next problem that we will address today is something called as the coupon collector

problem. So, we will introduce the problem today, and we will work out the details in the

next class. So, let us say we have n coupons, which we will call it as c 1, c 2, and c n ok.

So, the experiment that we do is the following, we will randomly sample a coupon ok.

We will think of the sampling as with replacement. 

So, each time we are equally likely to get any one of these coupons c 1 to c n. We will

continue doing this,  till  we get all  the coupons ok.  What  we are interested in is  the

expected amount of time that we will have to sample in order to get all possible coupons

ok. So, we will just write down the requirements. Sample the coupons till all coupons are

obtained.  Assume  that  each  coupon  is  equally  likely  in  every  sampling.  Compute

expected number of sampling in order to get all the possible coupons ok, how do we

solve this problem. We are going to use the random variables that we have studied so far

in order to compute the expectation of this particular random variable ok.
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So, the idea is simple. So, let us say Y is the random variable. So, Y is the number of

sampling.  We will  see  Y as  a  sum of  geometric  random variables  ok.  And  for  any

geometric random variables, we know what is expectation is we will apply linearity of

expectation and compute the expectation of Y. So, how can we view Y as a sum of

geometric random variables. So, what we can imagine this particular experiment, we will

keep on taking coupons. And each time we have a collection of coupons that we have

already obtained ok. And we can define success as finding a new coupon that we have

not discovered so far ok.

So, at some stage let us say we have 5 different coupons out of a total of let us say 20

different  coupons.  There  are  15  other  coupons that  we can  get  out  of  a  total  of  20

different coupons. So, there is a three-forth chance that our sampling will result in a new

coupon. If we do the same analysis, we will see that at any stage we already have certain

coupons that we have already picked. The remaining from the remaining set of coupons

there is a non-zero probability. There is a fixed probability that well find a new coupon,

so that we can think of as a geometric random variable. The some of these geometric

random variables one can easily compute.

So, let us introduce some new random variables. So, Y i let us define to be the random

variable, which denotes the number of samplings required after finding the i minus 1st

coupon to obtain the ith coupon ok. So, at some stage we have already collected i minus



1 different coupon. The additional sampling that we need to do, before we get the ith

coupon that is what we will call as Y i clearly.

Y is just Y 1 plus Y 2 plus Y n, we can think of this as the following. So, let us say these

are the various coupons that we collected represented by dots on the line ok. So, here let

us say we obtained coupon 1, and again the sample we got 1, and then we got a fresh

coupon, let us call that a coupon 3, then we got another coupon ok. So, the time that we

were in one coupon that is, so that is the time before we got the first coupon. So, this is Y

1, and then we have to do two samplings in order to get the next coupon, so that is going

to be Y 2.

And then the immediate next sampling we got Y the third coupon, so that is Y 3. And

maybe next we sample we were getting 1, 3, 1, 4, and after that we got 2. So, we did 5

samplings before we got the fourth token, so that is Y 4 and so on ok. So, this is the time

spent after obtaining the 4th token in order to get the 5th token. So, all the samples here

essentially must be from one of the samples that we have already obtained ok. So, clearly

Y is equal to Y 1 plus Y 2 up to Y n.

And linearity of expectation says expectation of Y is equal to expectation of Y 1 plus

expectation of Y 2 plus expectation of Y n ok. So, let us look at what is expectation of Y

i, Y i clearly is a geometric random variable, but its parameter is something that we need

to determine ok. So, when we are at the when we have already obtained let us say i

minus 1 coupons, there are a remaining of n minus i minus 1 coupons.

If we pick any one from there we have a success, otherwise we will need to repeat the

sampling process ok. So, Y i we can think of as a geometric random variable. So, Y i is a

Y i is a geometric random variable with parameter or the success probability equal to n

minus i minus 1 divided by n. Out of n possible coupons, only if we pick, these n minus i

minus 1 two coupons, we will consider it a success ok. 

So, the expected value of this geometry expected expectation of this geometric random

variable is going to be equal to so this is the parameter. So, this is expectation of Y i is

equal to 1 by p, where p is this particular quantity. So, this is going to be equal to n

divided by n minus i minus 1 ok. Now, we can just sum this up, and that will give us the

expectation. 
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So, expectation of Y is equal to summation i going from 1 to n Y i, and this is going to be

equal to summation, i going from 1 to n, n divided by n minus i plus 1. So, this is going

to be n times and i equals 1 this is 1 by n, and the next it will be 1 by n minus 1, and the

last term will be plus 1 ok. So, this is equal to n times H n, where H n is the harmonic nth

harmonic number ok. H n is approximately log n ok.

You can see this by, if you just integrate the function y equals log x from 0 from 1 to n,

so at 1 it is 0, and then it will be some set function ok. So, the area under this curve was

going to be till stage n is going to be less than this, and you can bound it. And you can

show that it is very much, it is very close to log n. So, the number of times we will have

to sample as approximately n times log n ok. So, we will stop today’s lecture here, and

continue in the next class. 


