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Summary

So, welcome to the last week of this course on randomized algorithms so, this week we

will see, what all are the various things we have learnt during the course. It is a recap of

whatever we have seen so far.
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So, this is a course on randomized algorithms. So, randomized algorithms is an interplay

between  randomness  and  algorithm  or  computation.  So,  there  were  three  main

components in the course; one you can think of it is algorithms and the second is tools

from probability or just say name as tools, which is helping us design these algorithms

and the third aspect was the limits of computation.

So, we used the tools from randomness or probability theory, which we use to create

algorithms, to somehow argue about the inherent limits of computations as well. So, the

in understanding what is computation, we used these tools. So, that is the third part that

we had covered while looking at  algorithms, we had studied many problems. So, we

looked at the problem of sorting, where in you are given a collection of numbers and you

want to get this in the sorted order and the quick sort algorithm said that pick a random



element instead of spending time on analyzing, which is the best element to compare

with  the  other  elements. We just  decided  that  by  picking  an  element  randomly  and

partitioning the entire collection into numbers, which is smaller than and larger than this

number. We could split it into two parts and then recursively analyze or recursively sort

the components.

So,  that  was our  quick sort  algorithm and our tools  from randomness  or probability

theory, essentially told us that quick sort will work in n log n time and then the other

problems  that  we looked at  were  the  Mincut  problem.  When we are  looking at  the

Mincut problem, we look at a graph and we want to split the graph into two parts, split

the vertices into two parts.
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So, that there is minimum number of edges from one part to the other and then we had an

algorithm to do that, we took a particular edge and contracted it and repeatedly did this

till  the entire graph was contracted into two vertices and between these two vertices,

these contracted super vertices. The number of edges will be, there is a cut edge and that

certainly is an upper bound on the size of the minimum cut. Any other cut can only be

smaller than that particular cut and we argued that with sufficiently high probability, if

we do this algorithm, there is a sufficiently high probability that we will actually find out

the minimum cut and therefore, by repeating.



So,  that  was  an  important  theme  in  this  repeat  an  algorithm,  which  has  reasonable

success to increase the success probability. So, we looked at the Mincut problem and

then we looked at the median find algorithm, where in you are given a collection of

numbers and you wanted to find out the middle most number and in finding the median,

what  we argued is  by choosing a  sample  from the  entire  collection  of  numbers  and

finding the median of the sample, helps us figure out the actual median we used some

non trivial tools to do this. 

So,  amongst  tools  we  had  learnt  about  basic  probability  and  we  learned  about

expectation of random variables and conditional expectations and then we learnt about

what  are  known as  tail  bounds  and that  what  helped  us  answer questions  regarding

median. So, tail bounds essentially means; we looking at certain event ok. So, if you are

looking at an event, it has a certain probability. The random variable associated with it,

has a certain expectation. What is the probability that the random variable deviates by a

large amount from its expected value.

So,  we looked at  Markov inequality, looked at  Cheby chev’s and we also looked at

Chernoff bound, we  used  Cheby chev’s inequality  to  show  that  this  technique  of

extracting a subset from the elements of set, whose median we want to find out and using

the  median  of  the  sample  set  in  directing  the  median  search  helps  us  improve  the

performance of the algorithm and gives reasonable guarantees for the median find. So,

we got a linear time algorithm for median find using Cheby chev’s inequality. We looked

at the routing problem on hyper cube.
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So,  here  we were  looking at  an  n dimensional  hyper  cube and each vertex, we are

looking at  permutation routing where in from each vertex, you are given some other

vertex to which you have to send an information or sent a packet and we can use only the

edges of the hyper cube in doing that and the input set of vertices is permuted to give, get

an output set of vertices.

In other words, for every input, for every vertex of the graph, there is another unique

vertex of the same graph to which you have to route a particular message. How many

hops  do  we  have  to  do  on  these  graphs?  In  order  to  solve  this  problem  we use

randomness.

We said that we will send the packet from one particular vertex to an arbitrary vertex and

from that arbitrary vertex we will send back to the destination vertex and by setting up

the probabilistic setup, to do this we argued via  Chernoff bounds that this method will

bring down the time taken for communication, for permutation routing significantly. And

we were able to provide bounds for how quickly does the permutation routing will work

on a hyper cube if you are doing randomized routing.

And  then  we  looked  about  probabilistic  method;  that is  a  tool  where  in  by  use  of

randomness we could show the existence of certain communitorial objects and we used

tools like Lovazs local lemma in order to get stronger bounds.



So,  here  you can  think  of  these  as  algorithmic  problems,  if you wanted  to  find the

existence of find certain objects. The first step in finding an object would be to prove its

existence. So, probabilistic method gave us tools to prove the existence of certain objects

and later on in some cases, we were able to de randomize, take away the probability and

deterministically find those elements, find those objects which had certain properties and

then we looked at the 2 SAT problem and the 3 SAT problem.

So, when you look at 2 SAT you are given a formula phi, we were given a Boolean

formula in conjunctive normal form and we wanted to know whether this has a satisfying

assignment or not. For this, we had an algorithm, which randomly chooses an assignment

for the variables and keeps on changing the assignment in a random way. We argued that

this  changing the assignment  in a particular  way, which is  dependent on the random

choices, that we make. By doing so, we could argue that for a 2 SAT expressions this

quickly finds a satisfying assignment. 

The probability of finding a satisfying assignment, if there was a satisfying assignment

was  reasonably  high  and  the  repeating  paradigm  that  is  repeat  algorithm,  which  is

reasonable success helped us by increasing the probability of success. So, if we could

show that the random choices of assignments and small tweaking of these assignments

could lead to finding a satisfying assignment  with some probability  by repeating the

same method multiple times we could enhance the success probability. And in order to

argue  that  there  is  a  reasonable  probability  of  success,  we used  what  are  known as

Markov chains. The assignments themselves were thought of some kind of states and

then  on these  states  you have  some probability  distribution,  which  means  from one

particular state, you could move to another state with certain probability and so on.

And we argued that you will reach a satisfying state; that means, all the clauses being

satisfied with reasonably high probability. We use this method to give a significantly

improved performance for 3 SAT as well, in case of 2 SAT we were able to show that the

algorithm works in expected polynomial amount of time, whereas in case of 3 SAT, we

improved  the  running  time.  Although,  we  got  exponential  time  algorithm  that  was

significantly better than the brute force exponential algorithm and while doing so, we

learnt about the tool called Markov chains and then we looked at primality testing.
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So, here we are given a number n and we wanted to quickly tell whether a number is

prime or composite and we spent some time understanding, what are the properties of

prime numbers. We learned a bit of number theory and we argued that a number is prime,

then if you look at Z n star, which is all the numbers from 1 to n minus 1 module and

arithmetic being modulo and multiplication, if n is prime, this is a field.

So, here when we say Z n star, we mean the number 1 to n minus 1 is a field if and only

if n is a prime number and based on this we device some algorithms, some randomized

algorithms,  which could show, which could test  for primality  and then we looked at

minimal spanning trees. It is a, given arbitrary graph in order to find a minimal spanning

tree. It takes say n log n amount of time or e log e amount of time, where e is number of

edges, but we were able to come up with an algorithm, which works in linear time.

So, that involved use of the Boruvka’s algorithm coupled with randomization. So, we

will do Boruvka phases for some amount of time. So, we will find certain edges that will,

that  is guaranteed to be there in the minimal  spanning tree and then for a randomly

sampled subset of the remaining graph we will find a minimal spanning tree. Anything

which is not there in the minimal spanning tree of the randomized subset cannot be there

in the minimal spanning tree of the original graph as well.

So, in other words suppose, you had a graph G and if you take a random subset of G, let

us call it as H and if a particular edge, e is an edge in H and e does not belong to M S T



of H. This would imply that e does not belong to M S T of G as well. And this H by

choosing this randomly, we were able to show that we could get a, an algorithm, which

works in expected linear amount of time. We also looked at other problems on graphs,

the other graph algorithm that we considered were the all pair shortest path, if you given

two, if you given a graph and if you were given to find out the distance between any pair

of vertices, we were able to compute this with a randomized algorithm.

We related it to the problem of matrix multiplication or binary matrix multiplication and

witnesses for binary matrix multiplication. The other problems that we looked at data

structuring problems, we had some large collection of data. How do we do inserts, delete

and other bookkeeping tasks associated with this data and we wanted to do queries on

them we wanted to search, we want to know if is a particular element present or absent.

And in order to do this, we looked at hashing we looked at random tree heaps and so on. 

We also looked at counting problems.  We wanted to look at the number of satisfiable

assignments for a D N F formula, we wanted to look at the number of perfect matchings

in a graph and we argued we had first converted the counting problem into a sampling

problem. We said that, if we could approximately sample, if you could sample almost

uniformly then we could approximately count and for sampling we again used Markov

chains.

We argued that we could setup a Markov chain and if this Markov chain mixes quickly,

then  we can  use  it  to  sample  elements  and  that  gives  an  approximate  or  an  almost

uniform  sampling  and  we  argued  that  almost  uniform  sampling  can  be  used  to

approximately count.

So, counting problems were solved using randomnization in this particular manner and

while looking at limits of computation, we looked at  P C P theorem. It was the main

result  we,  main  computational  complexity  result  that  we  had  discussed.  So,  P C  P

theorem, in some sense says that you look at any proof for membership from an  N P

language. So, take so were looking at P C P theorem.
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So, we related it to the complexity class called N P. So, N P tells , I mean if a language L

belongs to N P; that means, there is a proof for membership of strings. So, you look at a

string x belonging to L, you can present its proof in a certain way so that a verifier can

just read constantly many; can read polynominally bits, can read the proof, the proof is

not very long and do some polynomial amount of computations.

By use of randomness, we showed how this proof can be converted into let us say an

enlarged proof, let me just write it as large pi and this has a property that by examining

just few bits in the proof; so, this proof is of course, going to be large. So, the variant of

P C P theorem that we proved said that N P is contained inside P C P poly n comma 1,

which means once a proof has been enlarged you need to query just constantly many bits.

This 1 refers to constant. So, constantly many bits of the proof is all that you have to read

in order to be reasonably convinced that the string x indeed belongs to the language and

while doing so the proof will not become, let us say much larger than exponential.

So,  here  poly  n  means  amount  of  randomness  used, the  amount  of  randomness  is

bounded by poly n and therefore, the total amount of locations that can be addressed is

bounded by 2 raised to poly n. Of course, now there are better P C Ps, where this is

bounded by log n, but we proved the weak version, wherein there is a blow up in the size

of the proof, but although there is a blow up in the size of the proof. The verifier needs to



just check constantly many bits and the amount of randomness that he uses is bounded

by poly n and to prove this we use the Walsh Hadamard encoding.

And we use the properties of Walsh Hadamard encoding which helped us decode by with

high probability by just randomly choosing points from where you could read off the

values of the proof or the bit positions in the proof. We also looked at the L F K N

protocol, which essentially is an interactive proof for permanent. So, we were looking at

the problem of computing the permanent of a matrix.

We argued that if you given a matrix and if somebody is extremely powerful in terms of

computation, they can convince you by some number of rounds, polynomial amount of

rounds  of  interactions  and  the  protocol  had  the  property  that  if  the  prover  tries  to

convince you that the permanent of a matrix is different from what it actually is, even

though the proof prover is infinitely powerful, you can detect the lie that the prover is

making by adhering to the protocol. So, this is a short recap of whatever we had done in

the course; all the best for the exams.


