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So, we wanted to prove with the version of PCP theorem. It says that NP is contained

inside PCP poly n comma 1 ok. In order to do this, we were using Walsh Hadamard code

words. See we are looking problem of QUADEQ; there in, you are given a family of

quadratic equations ok. So, we have m equations and the number of variables is n ok.

And these equations are over GF 2 which means, all the operations that you are doing are

Modulo  2  operations.  Now, this  as  we  can  think  of  this  as  solving  the  system  of

equations A U is equal to b, where A is a matrix. It is an n sorry, it is an m cross n square

matrix and U is an n square cross 1 matrix and b is an m cross 1 matrix ok.

So, we want to solve this equation such that, the matrix U is equal to the tensor product

of some n cross 1 matrix or n cross 1 vector ok. So, QUADEQ is NP complete. So, this

we can somehow produce a certificate to show that A U represents b and U is a tensor

product of small u with itself. Then, we can say that if it produce a PCP certificate which

says this.



Then, we can show that NP is contained inside PCP with this particular parameters ok.

So, one certificate for QUADEQ would be the assignment of the variables ok, but if you

look at the assignment of variables what variable takes what value. That will be too long

check 0 to query all the bits of the proof. Instead, we will expand this assignment into a

large word or a large string such that by following a certain protocol on the string. We

can be assured with a reasonable accuracy that A U is equal to b and U b equal to U

answer U as a solution ok.
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So, the proof in PCP, the verifier will have access proof and that proof we will think of as

pi which is a string or binary string of length 2 raised to n plus 2 raised to n square ok.

So, this long string we will think of it as having one part of length 2 raised to n and the

other part other will be of length 2 raised to n square. And you will assume that the first

part, is a linear function f and the second part is a linear function g. In other words, this

linear functions are essentially nothing, but the Hadamard codes or Hadamard encodings

with certain the strings ok.

So, here n is a number of variables ok. So, the function f we will see it as the Walsh

Hadamard encoding of u where, u is the satisfying assignment. For the quadratic systems

A U equals b and U equals u cross u ok. So, if there was a satisfying assignment, then the

Hadamard, Walsh Hadamard encoding of that is the first part and the second part we will

see as the Walsh Hadamard encoding of u tensor u ok. 



So, u tensor of u is going to be thought of as a matrix which is being converted into a

single string ok. So, if u is a vector is a n cross 1 matrix then u tensor u will essentially

be a matrix; n cross n matrix whose i jth entry will essentially be u i dot j ok, and this

matrix if you think of it as a single vector of size n square by some canonical encoding,

you can think of that single vector as the second part of the proof ok.

So, take the matrix of size n square cross n square and then b will append row after row

and what you get there is the string g ok. So, string g you can think of it as you tell any

position in the u cross u matrix, in the u tensor u matrix that can be queried by means of

the function g.

u cross u is an n square sized vector the Walsh Hadamard encoding of that vector will be

what is g ok. So, that is the way the proof string is going to be. Now once this proof

string has been given the verifier is going to query some part of the proof string and if

this  is indeed the correct  pro string,  in the sense it  was the encoding of a satisfying

assignment  then  your  verifier  or  the  protocol  will  say that  it  is  in  fact,  a  satisfying

instance and if it is not a satisfying instance we will show that whatever be the proof that

is being supplied with high probability that proof will be rejected ok.
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So our aim is as following as follows. Show that pi equals lets think of it as f followed by

g  will  be  accepted  with  probability  1  by  the  protocol.  If  f  and  g  were  the  Walsh

Hadamard encoding of u and u tensor u and u is a satisfying assignment. And the second



part  is,  if  any  formula  or  QUAD formula  or  QUADEQ system,  for  any  QUADEQ

instance is unsatisfiable. In other words, its every possible u is a bad, I mean if you look

at any possible you know all those will give rise to incorrect proof strings ok. So, those

are  precisely  the  bad  instances  or  the  unsatisfied  instances.  So  these  unsatisfiable

instances  will  result  in  the  poof  being  rejected.  So,  if  any  QUADEQ  instance  is

unsatisfiable then, the proof will be rejected with high probability and the number of

queries made is some constant and randomness used should be order of poly m ok.

This is what we need to show we have to design a protocol which satisfies these three

requirements ok. So, we will give the overall high level view of a protocol. Protocol

basically checks the three things the first thing that the protocol checks is that f and g are

linear ok. So, we are given a string of length 2 power n plus 2 power n square. If you

look at the first 2 power n bits is the proof, that will is what we call as an f and this next

2 power n square is what we call as g you will verify that these two are linear. That is the

first  part  ok.  So,  in  other  words  we  are  checking  that  these  are  let  us  say  Walsh

Hadamard encoding of some string.

Argued earlier, that checking whether it is a Walsh Hadamard encoding is very difficult.

It will require too much time and therefore, instead of linear we will just we will be

satisfied if we can verify that they are almost linear ok. If they are not almost linear then

our  algorithm  will  quickly  find  out  that  they  are  not  almost  linear  ok.  The  first

verification is that they are almost linear and then we will check if g encodes u tensor u

where u is the string encoded by f. And the third part we will check is u is a satisfying

assignment for QUADEQ ok. These are the three things that our protocol will check and

verify that that number of queries made by this protocol is constant and the randomness

used is o poly n ok.

Now, if you want to look at one random location inside this string each location can be.

So, you can think of this to be let us say less than 2 into 2 power n square and each

location if you want to access, each address each location has an address of size n square

plus 1 ok. The address of the each location is surely less than n square plus 1 because

look at all with strings of length n square plus 1 that will be greater than 2 into 2 raised to

n square. So, each address is going to be of length n square plus 1.



So, if you are querying only constantly many locations then, each of those addresses

some poly n and therefore, it is a querying random locations you querying just constantly

many  random  locations  the  total  amount  of  randomness  would  be  limited  ok.  The

number of randomness used is limited to the extent of 4 poly n. So, that is we will just

ensure that the query is going to be constant number of bits ok. 

So, and if these tests are passed that is if f and g are linear and then g encodes u cross u

and uses satisfying assignment then it means that the formula is satisfiable. If any of

these  tests  fail  then,  we  will  declare  the  formula  as  unsatisfiable.  And  for  all  the

satisfying instances  these tests will  be satisfied for all  the unsatisfied instances these

tests, at least one of these tests would fail with high probability. That is what we will

show. Now, how do you check if f and g are linear? We need to check if they are almost

linear because of the properties of Walsh Hadamard encoding, we could just check at a

few locations ok.
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So, if we wanted let us say n an accuracy of 99.9 percent, we can we look at a 1 minus

0.001 linearity test. This would require c by delta queries ok. So, this c and delta it really

does not depend upon the input size ok. This is of our choose the 001 or the delta is our

choice. So, depending upon the accuracy that you want you can decide how many times

you will have to run the linearity test ok.



So, you can run the linearity test and once you are done the linearity test f and g you can

on both these parts, the first 2 n bits and the next 2 raised to n square bits if you run the

linearity test and if the functions were actually linear then of course, the linearity test

would say that they are linear. They are not actually linear if f or g is not 1 minus delta

close to a linear function. Then the property of linearity test states that would be detected

with high probability ok. The proof would essentially be rejected with high probability

and  if  the  instance  was  in  fact  satisfiable  you  can  just  give  the  correct  satisfying

assignment u or its encoding ok.

So satisfying instance, you can give WH of u and WH of u tensor u ok. If these were

contaminated and presented, then the test would surely be a success, but if they were not

even 1 minus delta close to a linear function, the linearity test will detect with very high

probability ok. So now, what we have is we can assume that our bit string that is supplied

to us has two parts and the first part is very close to a linear function the second part is

also very close to a linear function ok.

So, if you assume that the adversary is trying to cheat us it has to surely give some

functions which is very near to a linear function and some other function which is very

near to a linear function and that is precisely one linear function which is very near to

any almost linear function. This is precisely one linear function which is very close to a

arbitrary function. So f is not suppose f is not a linear function then in the vicinity of f

the neighbourhood of f that is only one function which is linear nearby means, they agree

on many bits.

So, that function let us call it as f cap and let this be g cap. So, if the adversary is trying

to cheat us he has to give some function which is not linear, but even from that not linear

function we can infer a function f hat and g hat which has to be linear ok. So, if our test

said that these functions are linear, we know that they are encoding the function f cap and

g cap ok. So, for the next test is the first test the next test we can assume that f cap and g

cap is what we have. I mean, have f hat and g hat were what were supplied to us ok. If

you  want  to  locate  the  value  of  f  hat  at  one  particular  location  we  can  do  a  local

decoding. So, f hat and g hat can be computed at any arbitrary location ok; f hat is a

function from 0 1 to the power n to 0 1 ok. 



So, and this function can be I mean you can compute the value of this function at any

point with high probability. You can compute it correctly with high probability because

of local decoding ok. Wherein, if you have to find the value at x, you find the value at x

prime and x plus x prime ok. Add the values you will get the value at x ok. So, that is

called as local decoding. So, f hat and g for g hat that is going to be a function from 0 1

to the n square to 0 1 sorry, 0 1 to the 2 raised to n ok. So, this 0 1 to 2 raised to n (Refer

Time: 20:23). f hat is a function from 0 1 to sorry, f hat is a function from 0 1 to the 2

raised to n to 0 1 to 0 1 it is a string of 2 raised to n. And g hat is a function from 2 raised

to n square to 0 1 ok.
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Now, we need to verify that g actually encodes u cross u. That u is a string that the

second check is basically check that g hat encodes u cross u or u tensor u where u is the

string  encoded by f  hat  ok.  So,  what  we have  to  do  for  that  is  query  f  at  say  two

locations, at r and r prime ok. So, they can compute at f r and f r prime ok. And this

should be equal to g of r tensor r prime ok. So, this is the check that we will perform. So,

if this check fails is equal to then we will say that this test is passed otherwise; we will

say this test is failed. We want the certain accuracy we can run it multiple times ok. Let

us look at one test and if the function f and g were of this kind ok.

So, if let us say QUADQ is satisfiable. Then, there is a u that u can be given by the

prover in to the proof string is basically reduced by means of u. And if you look at f r and



f r prime, what are these? f r is nothing but u product with r ok. It is an encoding of the

string u an at location r that is just u dot new product with r. This product was defined as

u i r i summed over i varying from 1 to n and computed mod 2 ok. And f r prime is going

to be u product r prime and that is going to be summation i varying from 1 to n. u i r i

prime mod 2. Take the product of this, the product would be ok.

So, we were doing this for f r. So, basically querying the proof string and looking at

location half ok, but we know that this is going to be an almost linear function and the

actual  function was f  hat.  So,  if  you think of a function f  hat this  must be equal  to

summation u i r i summation u j r j prime and this, by rearranging you can see that this is

equal to double summation over i comma j u i u j r i r j prime ok; and this is nothing but

if you look at the tensor product as u with itself.

That is going to be a string of length n square and if you take the tensor product of r with

so, this is u tensor u and if you take r tensor r prime, you will get another string of length

n square and this value is going to be just the product of that ok. So, if that is the, so this

product is just its a u tensor u multiplied with r tensor r prime and that is just nothing but

in the string g whatever is at the r tensor r prime position ok r tensor r prime is some

particular location. This g is a string of 2 raised to n square and each position is indexed

by 2 vectors r and r prime. Once you variate it over all positions, you will get the entire

string.

So the value is nothing, but g r tensor r prime. So if the string so what this shows is if the

string supplied by the prover or the proof string is actually a linear function f cap, then

this test would automatically be satisfied. Now, it was not a linear function which had

these properties ok, g did not encode u, u tensor what will happen? So, we will look at

that particular case.
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We can assume that f is linear ok. We know it is almost linear and therefore, there is a

unique f hat and that f hat can be inferred from this function and the since we use the

local decoding, if the advisory or the prover was trying to cheat then we could basically

detect that with high probability.

So, we will assume that once the first test is done, f linear and g is linear ok. So, in this if

the prover tries to cheat we will catch them. So, this once we have done the first test this

is something that we can assume. And now suppose, assume that whatever is a string that

f inputs that does not that string if you take a tensor with itself that string is not encoded

by g will this happen. Now, if that is the case then what we will have is this string that is

encoded by g ok. So, g is the Walsh Hadamard encoding of some particular string we call

it as W, because its linear it is the encoding of some particular string.

So, let us say g is equal to W and Walsh Hadamard encoding of W and is not equal to

Walsh Hadamard encoding of u tensor u. So, u tensor u is some string of length n square,

its encoding is going to be some string WH of is a string of size 2 raised to n square and.

So, this W is not equal to u tensor u. That is the situation that we are. Want to see we can

detect that ok. So, look at g r tensor r prime. You were querying it as some up random

location. Now g tensor r r prime will essentially be equal to W product with r tensor r

prime.  So,  if  you write  this  in  expanded form this  should be equal  to  summation  i,

comma j W i j ok. i j will take n different values.



So, that is going to be n square different entries times r i r j ok. The tensor product of r

with r prime is going to be some vector of length n square whose i jth entry will be r i r j

ok. Sorry, r i r prime j. So, this is the product of g r r prime. We can do this because g is a

linear  function  any linear  function  as  a  Hadamard,  Walsh Hadamard code word and

Walsh  Hadamard  code  word  is  produced  by taking  product  of  this  kind  and this  is

nothing but you can write this in matrix form as vector r multiplied by W multiplied by r

prime writing in this way thinking if this is r transpose ok.

So that is a 1 cross n matrix into an n cross n matrix into an n cross 1 matrix ok. So, you

can think of this in the following way. If you look at f r times f r prime, f being a linear

code that is going to be equal to u and for some particular u it is going to be u times r and

this multiplied with u times r prime and this is equal to summation u i r i. i going from 1

to n and j going from again 1 to n, u i r j prime. This by rearranging terms is nothing, but

summation of all possible values of i j r i u i u j times r j prime and in matrix form this

can be written as again r U or r transpose U r prime. There U is now a matrix which is a

tensor product of U with itself ok.

So, what we are assuming is that this W is not equal to U ok. W is not equal to U we

want to say that this test will detect it with high probability ok. So, if r W r prime is not

equal  to  r  U r  prime  then,  a  verifier  would  have  reject  it.  We want  be  look at  the

probability of this happening ok. So since, so again here what will come handy is the

random sub some principle. So W is not equal to U you take any word random word r r

W is not going to be equal to r u with probability equal to half ok. So, U is the tensor

product of small with itself and W is some other string of length n square ok.

So, since these things are different strings. If W is not equal to u then that r W is not

equal to r U with probability half and for each of those r. So look at any particular r

chosen randomly there is a half probability of that when multiplied with U and W is

different string. For each of those strings r W r prime is going to be not equal to r U r

prime with probability equal to half ok. So, total for any arbitrary choice of r and r prime

there is a one fourth probability that r U r prime or r transpose u r prime is not equal to r

transpose W r prime ok.
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So basically, what that means, is compute f r times f r prime and g r tensor r prime for

some random values r and r prime. If the functions were not proper if the verifier was

whoever was trying to cheat, then these are going to this product is going to be different

from g r tensor r prime with probability greater than or equal to one-fourth.

So, there is a one fourth probability that the verifier rejects the incorrect proof ok. Here

incorrect would mean the string g is not a proper encoding of the string that f encodes

that happens with probability one fourth. You can try it for ten different trials there is a

it’s only a three fourth chances of acceptance. So, if you try 10 times then the chance of

acceptance is as low as three fourths raised to 10 and that is something like less than a

0.1 percent chance ok.

So, we can; so now, if first step and the second step comes through; that means, whatever

is being given as the proof its first part is a linear function second part is also a linear

function and the first part encodes a particular string and the second part encodes the

tensor  product  of  that  string  with  itself.  The  encoding  mean  the  Walsh  Hadamard

encoding  of  those  strings  ok.  Third  check  that  we will  do  this  string  u  is  indeed  a

satisfying assignment ok. 

This is easy to check if we were allowed to query lot of decisions ok. We could look at

entire string u and when from the function f, if we were allowed to query n locations we

can extract the assignment plug it in inside our quadratic equation system and see if it is



satisfied or not.  But that  is  too many queries because the number of queries  is  now

proportional to the number of variables, but we want to have constantly many queries.
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Now, one  way  to  check  this  would  be  to  extract  the  satisfying  assignment  or  the

assignment from f and check the formula check the system of quadratic equations, but

that involves too many queries you want to do only constantly a many queries. If the

assignment  had  n  variables,  if  you  extract  all  the  n  variables  that  would  require

something like 2 n variables it is dependent on the number of variables in the equation

but we do not want it to dependent on that.

So, what we will do is we will look at the equations. Suppose there are n equations, we

will extract a random subset and add the equations mod 2 and then you will get new

equation and we will  check means,  equation that  is  just  one equation ok if  that  one

particular equation is satisfied or not? Suppose u is an assignment which did not satisfied

even one particular equation. So, you did not satisfy one equation ok. Then when you

extract it and sum it this particular way, there is a half probability that will be detected.

So, that equate with the random equation that you have made will be unsatisfiable. This

random equation was formed by selecting a random subset.

If u was not a satisfying assignment to the original system of equation then, the new

equation will be unsatisfiable probability at least half ok, but this random equation let us

say that is obtained by choosing a particular subject let us say a 1 x 1 plus a 2 x 2 plus a n



square x n square ok. Because each of the variables here is a term of the form u i u j and

this should be equal to some particular number ok. But this is nothing but if you look at

this vector all a i s are some element of 0 1 ok. So, if you look at the vector the n square

long vector with these entries, I will call it as z ok. Your g z is precisely this particular

sum ok. So, this sum is nothing, but g z. That z is a vector obtained by looking at these

individual x ok. So, you can query at g z equation and if g z is equal to whatever was the

sum of these equations ok.

If g z is equal to let us say c when you will add them up you will get some particular

value that is equal then you will say that u is satisfying assignment otherwise, it is an

unsatisfying  assignment.  So,  by just  doing one query you can  check whether  u  is  a

satisfying assignment. If this u was indeed satisfying assignment the query would tell yes

it  is  a  satisfying  assignment,  if  it  is  not  a  satisfying  assignment  that  is  at  least  a

probability half of finding that this is not a satisfying assignment. You repeat it 5 times

then the probability becomes probability of success becomes 1 minus 1 by 2 to the power

5 ok.
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So, these three tests ensures that the function f and g are linear and g encodes the tensor

product of whatever f encodes and whatever f encodes is the satisfying assignment. Once

these three are checked, we know that our quad e q is satisfied ok. So, what we have

argued is any instance of QUADEQ can be converted into a proof string pi and in pi, you



can just query constantly many locations and constantly many queries requires only poly

n number of random bits ok. So, that brings us to the end of the proof of week P C P

theorem.


