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So,  we are  learning  about  PCP theorem.  We will  prove the  weak portion,  the  weak

portion of PCP theorem states that NP that is contained inside, PCP with the amount of

randomness that we use is poly n and the number of queries made is constant and the tool

that  we  will  be  requiring  as  what  is  known  as  Walsh  Hadamard  codes.  So,  Walsh

Hadamard codes are nothing but I think of them it is a. So, let us look at strings of length

n.

Each of them is mapped to a string of length 2 to the power n in a certain way. So, this is

0, 1 to the n this is 0, 1 to the 2 to the n, ok. So, there is a mapping. So, only very few

words amongst  this  collection  are  strings  of  length  2  to  the  power n will  be Walsh

Hadamard codes. The mapping was as follows, WH corresponding to a particular string

of length n let us call it as u, WH of u will essentially be a string of length 2 to the n and

at the ith position of the string which will denote by WH u of i. This is going to be equal

to u product i and this product is nothing but summation over k varying from 1 to the

length u k i k. So, ith position the sum number between 0 and 2 to the power n minus 2 to



the power n minus 1 and that is a big string of length n the kth bit of that is i k, ok. So, if

you take this dot product mod 2, that is the value at the ith position, ok.

So, any string of length n is converted into a unique code word of length 2 to the power n

and that code word is called as the Walsh Hadamard encoding of u, ok. So, by WH u we

mean the Walsh Hadamard encoding of the string u. You can also view these strings in 0,

1 to the 2 to the n as linear functions, ok. So, look at any string of length 2 to the power

n, ok, any binary string you can essentially view it as a function from see these positions

are they were k positions you can think of it as a map from 1 to k to 0, 1, ok. So, here the

indices are strings I mean you can think of them as n bit strings. So, f can be viewed as a

function from 0,  1 2 to its  2 to  the n to 0,  1,  ok.  And additionally, if  it  is  a Walsh

Hadamard  coding  you can  view that  these  part  you  can  check  that  these  are  linear

functions.

So, Walsh Hadamard code words are linear functions, linear functions from 0, 1 to the 2

to the n to 0, 1. And every linear function is an encoding at a Walsh Hadamard encoding

of some u, ok. This will look at linear functions in 0, 1 to the 2 to the 2 to the n those can

be  viewed  as  encodings  of  some  particular  view.  So,  whether  I  talk  about  Walsh

Hadamard code words or linear functions they are one and the same those can be easily

checked.

So, now going to see some important properties Walsh Hadamard codes; if you are given

a Walsh Hadamard code how do we check whether that is indeed a Walsh Hadamard

code word, ok. So, we argued that we just need to check linearity, ok.
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So, linear  would mean WH code word,  ok.  So, can we use this  to check if  a given

function or a string. So, when we say that there is a function, we think of it as map from

the index set to 0, 1 think of a code, code word which is think of it as a string.

So, let us take find such function and you want to check it is linear or not, ok. So, one

way would be to check if f of x plus y is equal to f x plus f y for every x comma y, ok. x

can take 2 to the power n different values y can take 2 to the power n different values.

So, this would take 2 to the power n times 2 to the power n checks. They are we will

have  to  access  those  many  locations,  that  those  many  possibilities,  ok.  So,  that  is

prohibitively expensive.

But if we check just few positions, we cannot be sure that it is linear, ok. The only way

we can be sure that it is a linear function as by checking all the locations in the string.

Even if one position is left unchecked there is only one way that that position can be

made into a linear function. So, if we and give an incorrect value at that location that no

longer  be  a  linear  functions.  So,  we  cannot  get  a  deterministic  algorithm  to  check

whether the given code word is a linear function, but we can get something which is as

good in the sense they will be almost linear, ok. So, we will device a check to see it is

reasonably close to a linear function. So, we will call for a definition.

So, we will say that function f and g are rho close, if the probability of f x being equal to

g x, when x is chosen randomly from 0, 1 to the power n. If this probability is greater



than rho then we will say that f and g are rho close, ok. They are close by an amount a

quantity rho if the probability that this function agree on uniformly sample point with

probability greater than or equal to rho, ok.

So, now, what we want to do is really check if a code word is rho close to some linear

function. We will see later on at if it is reasonably close to a linear function. Then, from

that information we can decide for the exact value of that linear function that any point

with very high probability. So, that is going to be the local decoding property of Walsh

Hadamard code.

Now, we will see how we can check if a given function is linear, ok. Relate a theorem,

this is theorem by Bloom Lubian Luban Field which says that if probability of f of x plus

y being equal to f x plus f y, when x comma y are chosen uniformly at random from 0, 1

to the power n, if this probability is greater than some particular amount rho. So, let us

say if it is probability is greater than alpha, then f is alpha close to some linear function

g. Look at this alpha we required to be greater than half its greater than half, ok.

So, this theorem states that if you check for just this property that f x plus y is equal to f

x plus  f  y. If  that  property  is  true  with high probability  greater  than  alpha  then the

function is going to be alpha close to some liner function g, ok. So, this means that we

can devise a linearity test by just sampling at few locations, ok. In the sense if we run the

test of whether f x plus y is equal to f x plus f y for sufficiently many points that will give

us a guarantee that the function f is reasonably close to a linear function. So, let us this

describe a linearity test, ok.

So, first you will choose x and y uniformly at random, ok. And then evaluate f x plus y, f

x and f y, ok. So, this can be directly read from the function. If f x plus y is equal to f x

plus f y this does not mean the function as linear, so we will say may be linear. And if

this is not equal to f x plus f y and we can say definitely not linear, ok. Now, you can

repeat this test some number of time. So, repeat linearity test for say c by delta times

because a delta is some parameter. If the linearity after a repeated it many times even if

one of the tests out of the c by delta test says that is not linear then the function is not

going  to  be  linear,  that  code  word  is  not  going  to  be  a  watched  smart  code  word.

Otherwise it is going to be when you are going to declare it as, if all the test that passed



then you will say that it is linear. This is known as, so it is known as the one minus delta

linearity test, ok.

So, for the time being let us just say that delta equals 0.001, ok. And if this test comes

through;  that  means,  f  is  1  minus  delta  close  to  a  linear  function  with  very  high

probability, ok. We will see why is that the case, ok. So, let us say that it is not 1 minus

delta  close to a linear function.  So, not 1 minus delta  close to a linear  function.  So,

suppose this is the case, now BLR theorem says that if it is not close then the probability

is going to be less than one minus delta. So, probability that f x plus y not equal to f x

plus f y is going to be less than 1 minus delta. 
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So, look at BLR Theorem, since the function is not close to some linear function that

would mean that, the probability that f x plus y is equal to f x plus f y is not going to be

greater than alpha. So, this is not greater than alpha means it is going to be less than

alpha. So, alpha here is 1 minus delta, ok. So, this would be in that the probability of the

function  being  incorrectly  declared  as  linear  is  going  to  be  1  minus  delta  from  1

particular run.

So, if you are running it c by delta times. So, probability that 1 minus delta linearity test

declares f as linear is going to be less than 1 minus delta the whole raised to c by delta

and this is going to be less than 1 minus delta to the whole power 1 by delta the whole



power c which is going to be less than which is inner quantity is less than 1 by e. So, the

whole thing is going to be less than 1 by c, ok.

So, this test called as 1 minus delta linearity test will say that the function is linear with

very less probability  if  the function  is  actually  not linear. You can see that  if  f  was

actually linear the test would correctly predict it to be a linear function, ok. If it is not

linear if it is not 1 minus delta close to a linear function then the chances of the function

being incorrectly declared as a linear function is very small. So, we can detect linearity

or we can detect almost linearity, ok.

Now, this is we will see this is sufficient for us. If it is 1 minus delta close to a linear

function, but delta let us say reasonably high let 0.001 then we can actually decode that

particular linear function. This is called as local decoding, ok.
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So, we were given some particular function this might be a corrupted version of a linear

function. So, f we will assume it to be 1 minus delta close to f cap, ok. So, f cap is a

correct linear function and we are getting a corrupted version, but these versions are 1

minus delta close, ok, delta let us assume that this is greater than one-fourth. We make it

even closer  than  one-fourth.  But  it  is  one-fourth  itself  would guarantee  that  there  is

precisely one function f cap, because this is your function f. There is another function f

cap which is at a distance 1 by 4 which means differs in at most one-fourth bits. And

there is another g cap which differs an at most one-fourth bit.



Then these both are going to be closed by there will be different at most half the bits, ok.

So, since they are different at most half the bits, they and both are linear function that

would mean that both of them are equal because each linear function is a Hadamard code

word, Hadamard code words verified that two distinct Hadamard and agree at only at

most in half the number of bit positions. So, there is a unique f cap to which f is close.

And we are interested in knowing the value of f cap at that particular point, ok. And what

will help us is the local decoding.

So, if you want to compute f cap x you can essentially use f, ok. What we have to do is

compute f x prime, where x prime is some randomly chosen point and compute f x plus x

prime. If you choose x prime uniformly at random x plus x prime is also going to be

uniformly at random from 0, 1 to the power, it is going to be the random string of length

n, although they are dependent, ok.

Now, if we output the value of f of x prime plus f of x plus x prime, we want to know

whether this will be equal to f cap x, ok, we will claim that is the case with very high

probability, ok. So, we know that f and f cap are close, ok. So, 1 minus delta close. The

probability that f differs from f cap at a point which is sampled uniformly at random that

is going to be less than delta. They agree with probability greater than 1 minus delta.

Now, so this value may be different from f hat with probability at most delta. So, let me

just write down error probability. This could be incorrect if f evaluated at x prime could

be incorrect with probability delta, evaluated at this point could be wrong with again

probability delta. Now, so, therefore, the maximum error is only 2 delta. So, these are

going to be correct with. So, f agrees with f hat at x prime and x plus x prime with high

probability or at least with probability 1 minus 2 delta. So, if delta is greater than one-

fourth then this agreement happens, so probability greater than half, ok.

So, in that case f x prime would be f hat x prime plus f hat x plus x prime this is going to

be f hat being a linear function, this is going to be f x plus f hat x prime and since all the

arithmetic is mod 2, these two quantities cancel out and you will get this as f hat x. So,

instead of evaluating the function at a random point x when if you are given a particular

point x and you want to evaluate it at that point, instead of directly querying that point

you can check at some related points x prime and x plus x prime and based on that you

can infer the right end.



So, this will be the correct answer with high probability, otherwise if you are directly

querying the adversary knows which is a point at which you have to evaluate and that

could have been given the incorrect value. So, here since the adversary has no controlled

over which are the query points, unless he makes large number of incorrect values at

various query points chance that he will be able to bluff is going to be extremely smart,

other words via local decoding you can get the correct answer with high probability.

Since, you are using Walsh Hadamard code what we have gained is first thing we can

check if it is linear, second thing is we can do local decoding, ok. You will use these two

properties while constructing a PCP for a particular NP complete problem. So, let us just

describe NP complete problem that we are going to solve using PCP, ok.
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We want  to  show  that  NP  is  contained  inside  PCP which  uses  poly  n  amount  of

randomness and queries constant number of places, ok. In order to do this what we will

do is we will take an NP complete language and construct a PCP for it and the language

that  we choose is  something known as  QUADEQ, ok;  it  is  a  language of  quadratic

equations over g f make it clear what that means. So, look at equations of this form. So, u

1, u 2, u k are all variables. So, u 1 u 2 plus u 3 u 4 plus u 1 u 5 is equal to say 1 and u 2

u 6 plus and so on. So, you have m equations and n variables, ok.

And each equation consists of many terms and each terms quadratic term, ok. Quadratic

in the sense there are two variables appearing in product form. And a solution for such a



system could be assignment of 0, 1’s to the variables in such a way that the equation

holds true and all the addition and multiplication are carried out mod 2, ok. You can

verify this  is  NP complete.  It  is  we want  to  know whether  this  particular  system of

quadratic equation has a solution or not. This can, this is a circuit sat can be reduced to

this, ok. So, if you can solve this you can solve any other NP complete problem. 

There  is  an  easy  reduction  to  circuit  sat,  you can  we are  not  going to  look  at  that

reduction, ok. So, this is a particular problem that we are looking at how do we solve this

using PCP. We will  write  this  equation  in  a  slightly  different  format.  So,  this  has  n

variables and m equations. We can write this entire system of equations as a matrix and

each u i u j think of that as a new variables.
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Let us have a new variable capital U i j, and that is defined as u i u j, ok. So, now, with

this notation what we have is we can write this entire thing as a matrix, ok. And these

entries  these this matrix  which we call  as A, the entries in this  are going to be 0, 1

entries,  because all  multiplications  and additions  mod 2,  ok.  And this  is  going to be

multiplied with the vector U, and U consists of all the capital U i js.

Now, if we solve that that does not mean that the original system of equation which let us

call it as Q. So, Q may not have a solution, ok. They will not solve this equation AU

equals b, where b is the vector consisting of all the RHS, ok. So, A is a 0, 1 matrix and b

is a 0, 1 column vector, and U consists of u 1 u 2, u 1 u 3, may be u 1 u 1 and so on, ok



so that n square entries in U, ok. So, if that has a solution then we want to say that

QUADEQ has a solution, ok but there is some dependency between these u i, u j’s.

So, if additionally, if you that U is the tensor product of u, where u is a solution and if

you think of the quadratic equation in that the solution is going to be a vector on n

variables, ok. So, if you call that n vectors, I mean if you call that particular vector as u.

So, this is the solution to the quadratic equations, and if your capital U is a tensor product

of u and u, ok, then we can say that the QUADEQ has a solution, ok. So, let us this write

this down cleanly.
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If AU is equal to b and U is equal to u tenser u for some vector small u over 0, 1 then Q

has a solution, this is when if and only if condition, ok. So, here A is going to be m cross

n square matrix, U is going to be an n square cross 1 matrix, and b is going to be a m

cross 1 matrix and small u is going to be an n matrix, ok.

Now, what is this tensor product? So, if you take a vector u 1 up to u k, and if you tensor

product it with u 1, u 2, u k you get a matrix which is a k square matrix where the i jth

entry is going to be u i into u j. So, these conditions you can check that if a b is equal AU

equals b and u is equal to the tensor product of some vector in which the components are

chosen from 0 and 1, then Q has a solution then the reverse also true, ok. So, what we

will  try  to  show  is  that  the  solution  to  this  particular  system  of  equations  can  be



converted into PCP, ok.  So, you can construct  some particular  PCP that  encodes  the

solution of this particular QUADEQ that is what we will do in the next session. 


