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In today’s lecture,  we will  learn  about  universal  hashing. Universal  hashing was  the

technique by which we could do hashing and the hashing when done in this manner gives

provable guarantees about the expected running time of programs. So, let us understand

what the basic question is. So, we had looked at all the basic data structure in problem.

So, typically  there are two kinds of data  structure in problem. One is  the static data

structure  in  problem  whereas,  the  other  is  the  dynamic.  In  these  data  structure  in

problems,  we have to essentially  maintain dictionaries  ok,  which can answer queries

about whether an element is present or not. So, that would have been the static one, but

the dictionaries keep changing with time learns the dynamic data structure in problem.

There  would  be  insertions,  deletions  and  other  kind  of  updation  operations  in

dictionaries.

The basic  operations  are  insert,  delete  and find.  So,  these operations  we want  to  do

efficiently and we know that there is a O log n O log n would be in the worst case,

deterministic algorithms performance guarantees.



So, we can design by means of let us say balanced trees. We can do all these operations

in worst case O log n; where n has the size of the universe or you can think of n is the

total number of operations that we are doing. So, per operation we are taking log n. We

are interested in knowing whether we can do these in O 1 ok. So, we will see that we can

do this in an expected sense if we use hash tables. So, we will assume that say the keys

that we are inserting into these data structures. Let us as a concrete example say that the

keys are let us say character strings of length 40. 

So,  suppose  we  knew  that  our  universe  basically  contains  of  names  of  people  or

customers we may assume that each that is a 40 length string. So, approximately you can

say that this is about 10 to the 50 little more than 10 to the power 50. So, these many

different elements make our universe. So, this is the size of the universe ok. But typically

our set of interest might be much smaller than that ok. So, let say that the interesting keys

of far queue are so, let us say their size something like say 1 millionaire say 10 to the

may be little more the 10 to the power 8 and if you compare the interesting keys with the

total possibilities size of the universe; size of the universe is enormous ok.

And let us call this by so, universe will denote by U and its sizes also let say we call it as

U and the interesting keys let us say its size is N ok. We will want to store this in a table

and the table  should essentially  provide us with constant  time operations  ok.  So, the

basic idea is insert these keys into a table of size let  us say M ok. So, M should be

approximately O of n may be some 10 times and something like that.

The question is where exactly in the table do we insert. We could assume that the keys

are all coming from a sorted universe ok. So, these keys where exactly do we insert in

the table is a question. We want to insert in such a way that we can do all our operations

in constant time. So, the basic idea is to hash.

So, let us see what is the hashing function. So, you can think of it as a function h from U

to let us say 0 to M minus 1. In other words given any element of the universe we are

told at which position in the table which we are going to index by 0 to M minus 1 which

is a position where the element x would be inserted. So, if we call the table as A we will

insert x at position A of h of x. 

Now, obviously, there lot of pressing questions; what if multiple elements not to the same

position. We had assumed that N is much smaller than let us say the total size of the



universe and M is let us say something like 10 times n ok. So, even if we assume that the

table is the size 10 to the power 10, we know that there will be some particular positions

which could contain 10 to the 40 different elements. So, that is not going to be a good

case ok.

So, let us first understand what exactly is the issue.
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So, bad situation let us. So, suppose the size of the universe is greater than N minus 1

times M plus 1 ok; M is the table size. This would imply that h maps at least this is for

any h,  N elements  to one position in  the array ok.  So,  this  is  going to  be called  as

collision. So, there is going to be one particular position where there is large number of

collisions. How do we address these collisions? 

So, a simple technique is called as chaining ok. So, we could think of this as the array a

containing positions 0 to M minus 1 and this is our universe ok. So, each element will via

the function h mapped some particular position when the above theorem or lemma would

essentially mean that there is some position where lot of elements would mapped ok.

And these could be of size greater than or equal to N ok, if the universe is greater than

size N minus 1 times M plus 1 ok. So, at least mean. So, you can think of it as a U by M

I  mean  elements  would  essentially  be  mapping  to  there  will  be  one  position  which

contains U by M elements more than U by M elements ok.



So, in this case what we will do is the first element that maps, we will write it there and

then we will think of this as a link list starting from there.  So, all  the elements that

mapped to the same position we will just link it and keep it there. So, this is called as

chaining. So, now, if any insertions is to be done we can just go to the start or end of the

list and inserted there. If there is a fined, then probably it is going to take more time. So,

the time taken for the operations is going to be proportional to the length of the chain ok.

So,  if  the chain length is  large.  When is  the chain  length  large? When there  lots  of

collisions ok.

So, in those cases the running time becomes large. It could be as large as U by M and U

being a very large collection U by M and M being small U by M is not going to be; I

mean there are so, many elements mapping to the same position. There is it looks like

there is no escape. But here what we will see is that randomisation helps quite a bit ok.

How does randomisation help? As an overview randomisation helps in the same way.

Randomisation is of help in the case of quick sort algorithm. So, if you recall in quick

sort algorithm we were choosing pivots randomly. We could think of let us say the pivots

being chosen deterministically and once the code is available the adversary can look at

the code and based on the choices  of  pivots  made which is  deterministic  and hence

known ahead of time even before the code is run, the choices are clear. So, because of

that the adversary can devise a certain input sequence which will make the algorithm

perform particularly full.

So, the way out was if the choice of pivot was random the adversary could not design an

input which is bound to take large amount of time while quick sort is being run. So,

random pivots in that sense spoils the adversaries strategies of choosing the input level.

We will get the same advantage by randomness ok.

What we will do is instead of choosing deterministic hash functions which is bound to

have let us say pathological configurations ok. If take a deterministic hash functions its

guaranteed that there are going to be large number of elements which map to the same

position ok. Whereas, if we randomly choose the hash function, the adversary cannot

choose  a  particular  dictionary  or  set  of  elements  which  could  make  the  algorithm

perform poorly. So, we will see this I mean how this works. We will introduce the notion

of universal hash functions.
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So, first of all look at the properties that we will require a has functions and later on we

will define what are universal functions. The first requirement would be that the keys are

spread out ok. So, hash function basically takes the element of the universe and maps it

to some position in the table ok. So, we do not want to many collisions. So, that is one of

the requirements; reduce the collisions ok.

The second thing this  should be fast  compute.  If  we had randomly chosen our hash

function that is each element will map to a random position in 0 to M minus 1, then we

can say that chances of collision is going to be very small. But the problem is if we were

to choose one such random function, we need to store that entire function which is a map

from the universe to from U to M minus 1 that is going to be a very large object in itself.

If U was say something like 10 to the power 50 we need to store where exactly each of

these 10 to the power 50 elements mapped. So, storing that table is going to be more

expensive than actually maintaining the dictionary ok. So, this should be fast compute.

So, we will require and we will just say that the hash functions takes O of one time the

take constant time to compute. So, these are the basic requirements of hash functions ok.

And now let  us  define  what  are  called  as  universal  family  of  hash functions.  Some

textbook would refer to what we define as universal family has 2 uniform family. There

is more general notion of k uniform family as well ok. So, let say h is a collection of hash

functions  from say U to m minus 1 say if  x and y are  elements  of U, we call  h as



universal or universal family of hash function, if the probability of h x being equal to h y

is less than 1 by M.

So, what is this probability; I mean what is this event? We are fixing some particular x

and y and this should be true for all particular all choices of x and y where x not equal to

y ok. So, we will x is not equal to y because if x was equal to y then hx is of course,

equal to hy ok. So, probability that hx is equal to hy when x is not equal to y should be

less than 1 by M. Now the probability O is over choices of h ok; so, h chosen uniformly

at random from script h. So, we have a bang of hash functions let us say h 1 h 2 h k and

we have some 2 fixed elements x and y or somebody gives you some arbitrary elements

x and y ok.

Now, for every such choice of x and y such that x and y is not equal if we randomly

choose. So, uniformly at random pick h and then apply h to x you will get a checks and

apply h to y you will get hy. Now this could be equal probability of that should be less

than 1 by M. If that condition is met then this particular collection of hash functions is

called as a universal family of hash functions. So, this just provides a definition of what

is  universal  family. We need to worry about whether  we can actually  construct  such

families. 

We will see that there we can construct such families where takes O of 1 time to compute

h x for any particular x ok. So, we will also see that once we can define such universal

families and once we show the existence of such families we will see that we can do

dictionary operations in expected constant type ok.

So, first let us see I mean why universal families are helpful I mean universal family of

hash functions are helpful ok.
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So, first theorem: so, this theorem states that if you have universal families and there are

no  bad  inputs.  So,  what  is  an  input  here  ok?  When  we  are  thinking  of  dictionary

operations, the set of interesting case is what we will be whether input ok. So, look at

any sequence of inserts and deletes they are over some particular subset of the universe

whose size is subset is that is bounded by M. 

So, you take any subset of this size we will show that we have a universal family then the

insertions and deletions basically happen in constant time. But before we show that we

will show that there are no bad subsets in the sense the number of collisions is going to

be small. So, if h is universal then for any s subset of U the number of collisions at x;

that means, if you pick any element x belong in to universe the number of elements that

could collide with x is bounded by N over M. So, N being the size of s simple theorem,

but it is a very useful one this states that for any element of the universe. We were our

hashing function basically was randomly chosen hash function let us call it as h. 

Now, an element x would map to the position hx and there could be a chain starting at

that position. What we want to look at is the length of the chain this is less then N by M

that is what we are saying the expected value is less N by M ok. So, let us see y. So, we

should  say  the  number  of  the  expected  number  of  collisions  ok.  So,  proof  is

straightforward. 



So, let us say that C xy is the random variable which takes the value 1 if x and y collide

ok. So, x and y are to run I mean 2 arbitrary values inside the universe. So, this universe

had some let us say x and y are 2 arbitrary elements. For each of those we will have a

random variables C xy it takes the value 1 if the random function which we took or the

random hash function we took mapped x and y to the same location then we will say that

C xy equals 1 and it is equal to 0 otherwise ok. So, C x defined as some over all y C xy

this is going to be the number of. So, here y should belong to yes. So, look at yes. Each

element of s can collide with any with an element x 

So, our set x was there we want to know how many of these would collide with x that

would be  nothing but  summation  over  y belonging to  yes.  So,  we could look at  all

elements inside this set. Does this particular element collide with x? If it does we will get

a one if this element collides we will get another one and so on. If you add up all these

what you get is C x. So, C x is the number of collisions involved at position x when we

use a random hash function from h ok.

So, the expectation of C x is nothing but summation over y, expectation of C xy and

expectation of C xy; C xy being an indicator random variable its expectation is nothing,

but the probability that C x y equals 1. So, this is equal to sum over y belonging to yes

probability that C xy is equal to 1 that is same as the probability that x and y collide. So,

x and y collide means hx is equal to hy and we know that for any 2 element x and y

probability that they collide is less than 1 by M. So, this summation y belonging to yes 1

by M which is going to be equal to N, the number of y I mean elements inside yes that is

N. So, this is N by M.

So, if you have a universal family the number of collisions at any point x is at most N by

M.
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So, that is our take home message. Number of collisions with x; this x could be any

element inside the universe is going to be less than N by M and as a corollary we can

claim that all dictionary operations can be done in O 1 if universal. So, this is in an

expected sense if universal family of hash functions exist that is true just because the

time taken for any operation is going to be proportional to the number of collisions and if

we take let us say M to be take M to be O of N and this entire expression becomes let us

say  some constant  N divided  by  O of;  so,  some constant.  So,  we  know that  every

dictionary operation in insert delete find etcetera can be done in linear O of 1 time.

So, now the next topic would be this is possible if we have a universal family, but how

do we construct a universal family of hash functions ok? So, we will just need small

recap about the field of integers mod p ok. So, what is this? If you look at the collection

of numbers  from 1 to p minus 1 and we define the addition as addition  mod p and

multiplication as multiplication mod p then this algebraic structure has some interesting

properties ok.

So, one is we can do divisions ok. So, when we say we can do divisions means we can

divide by nonzero elements ok. So, I mean let us take an example. So, if p is equal to let

us say 13 ok, the collection of numbers that we are interested in 0 1 2 up to 12 ok.

Somebody asked is what is let us say, 7 by 3 ok. If you had carried out this in let us say

the field of real numbers then you will get some answer, but here we want the answer to



this question what is 7 divided by 3 to belong to this collection, so that it satisfies all the

familiar rules of arithmetic ok.

So, we can write 7 as 7 into 3 inverse and 3 inverse is going to be that particular element

which when multiplied by 3 gives us 1 ok. So, 7 divided by 3 we will simply view it as 7

into 3 inverse and 3 inverse is the number which when multiplied by 3 gives 1. Now is

there any element in this collection when multiplied by 3 gives 1? Well,  we can just

multiply and see. 0 into 3 is going to be 0 1 into 3 is going to be 3 2 into 3 is 6 3 into 3 is

9 4 into 3 is 12 5 into 3 15, 15 mod 13 is 2 18 mod 13 as 5 21 mod 13 as 8 24 mod 13 as

11 20 7 mod 13 as 1 ok.

So, we know that 9 into 3 is equal to 1 ok, maybe there other elements. 30 in to 3 is 30

mod 13 as 4 7 36 as 10 ok. What you can observe is that all these elements are distinct

ok.  When you had multiplied  the  collection  0  to  12  with  the  element  3  we got  all

elements in this collection from 0 to 12 and therefore, one should of course, be present if

you say that all elements from 0 to 12 are present 1 is also present and that is what is true

when p is a prime number ok.

If you take this collection 0 to p minus 1 and multiplied it with any alpha in 0 to I mean

let say alpha should not be equal to 0 ok, if you multiply these collections or maybe I

will just start with 1 to p minus 1 and multiplied it with any alpha which is not equal to 0

the result will be again 1 to p minus 1 in some other order ok. And therefore, you can say

that every element alpha multiplied by y if you vary alpha or everything then you are

going to get 1 for some particular alpha and that alpha is a unique alpha that is going to

be the inverse of y. This is true when you have this collection as 1 to p minus 1 ok.

In other words this is the prove that can be made more formal that every element has an

inverse ok. So, you can do addition and additive inverse clearly is there with any element

you can add another elements so that you will get 0 mod p. And multiplicative inverses

are also there means for every element you can multiply with the some other element so

that you get 1 ok.

So, since additive inverse is an multiplicative inverse are present we can essentially do

arithmetic all kinds of arithmetic ok. Any division would essentially be translated will be

thought of as multiplication by the inverse ok. And this is clearly not true when this

collection is not a prime mean for example,  if  you take an 0 to 99 and if  you your



operations are mod 100. If you take 2 you multiply 2 with any other element and do this

multiplication mode 100 the resulting number will be even in particular we will not get 1

ok.

So, this existence of inverse is a characteristic of the and this happens while you are

looking at fields. In every element we will have a multiplicative inverse.
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So, what we will do is we will first describe the family h and then we will show that that

is universal. So, h will basically consist of functions of the form h a comma b ok. So, its

two parameter  family  of  functions  is  going to  be  each function  in  h is  going to  be

characterised by an a and b ok. So, a b belongs to 0 p minus 1 a not equal to 0 and h a b

of x is nothing but say a x plus b mod p. So, here p is a prime number which are suitably

chosen and h a b comma x is x plus b mod p the whole mod m.

So, what we do is for any element of the universe suppose this is our universe we will

first compute x times a plus b mod p ok. So, this will result in a number between 0 to p

minus 1 and that number is basically mapped into the array by doing mod Mm ok. So,

that maps it to some locations 0 to m minus 1 ok.

So, look at all such functions where a is not equal to 0. So, h basically consist of p into p

minus 1 elements ok; size of h is this much and each time we run our algorithm what we

are essentially doing is we are choosing one random element of this function ok. So,



once we have fixed our dictionary scheme we will choose a random input I mean we will

choose a random function and then computed for that and that random function remains

throughout the execution ok.

(Refer Slide Time: 34:19)

So, now we need to look at what is the; I mean why is this universal ok. So, we need to

prove.  So,  h  is  universal  is  our  theorem  which  means  what  we  have  to  prove  is

probability that h x is equal to hy; h chosen from script h this we have to show this is

going to be less than 1 by size of m ok. So, let us call that as small m ok. How do we

show this? 

So, let us fix some particular x and y ok. So, first these gets mapped to I mean. So, we

choose a random h and we want to compute the probability the random h would map

these 2 elements to the same position in the array a. There were m positions that x could

have been mapped to, but we are not choosing a random position from this I mean from

this array, but instead we are first mapping x to x plus b mod p and this we are going to

mapped to A y plus b mod p and this mod n wherever I mean mod n it will take into this

position and mod N it will the I mean sorry mod m will take you to this position mod m

would take you to again this position ok.

So, whatever we are doing in these two steps; first to Z p and then to A, we can think of

it as x mapping indirectly to this particular position. So, this is our function h. So, h is



essentially composition of two functions and what does the probability that x maps two

things to the same position ok.

So, for x let us call its image in Z p as r. So, a x plus b mod p let us call it as r and a y

plus b mod p is equal to r where p we will assume p is greater than m ok. Now this a x

plus b if x is not equal to y can these 2 elements; so, let us assume that x is not equal to y

can ok; so, x; so, sorry this type here. So, a y plus b we call it as s is not equal to y. Can r

b equal to S? Let us see if it can be. So, then a x plus b is equal to a y plus b mod p. 

Suppose r is equal to s this condition is true. That would imply that a times x minus y is

equal to k times p ok. Now a is chosen from 0 to p minus 1 and x minus y also we will

ensure that it is less than p. Since these are two elements which are less than p cannot

mean divide either of them and p being a prime must divide one of them ok.

So, if we chose p to be larger than the let us say the maximum values that x and y could

take and such a prime surely exist, if you could take such a prime then this does not

happen that is a x plus b will not be equal to a y plus b mod p. And therefore, we can

assume that r when you choose x and y as unequal elements ax plus b and ay plus b are

also going to be unequal ok.

Now, what is the probability the two such elements will map to the same position that is

what we need to compute. So, intuition is simple; distinct elements x and y mapped to

distinct  positions,  but  x  and y could  have been adversarial.  But  now since  we have

randomised means since a and I mean a and b are being chosen randomly this basic is a

random element of Z ok.
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Lets  compute  the probabilities.  We need to compute  the size of the following site  h

belonging to script h such that hx is equal to hy; for some arbitrary element x and y the

number of functions which would map x and y to the same element. So, this we can think

of as this is equal to the size of r comma s pairs such that r is equal to let say a x plus b

and s is equal to a y plus b and r minus s is equal to 0 mod n. 

So, all those r and s so, here when x and y are different r and s are going to be different.

So, two r and s will map to the same position only if r mod r minus s is going to be 0

mod n ok. So, we need to compute the total number of such pairs ok. If you fix an r ok;

so, r could be chosen in p ways r could be any number between 0 to p minus 1 and for

each s for a fixed r how many s’s are there which satisfies this equation; r minus s is

equal to 0 mod N at most p by n ok; s could have been p of them ok.

So, 0 to p minus 1 all those ones which are separated by distance n could fall in the same

equivalence class. So, that can be at most let us say ceiling of p minus 1. So, the size of

this set is bounded by p, p is for the choice of r and s there can be at most p divided by n

minus 1 because r equal to s is something that we do not want and this is surely less than

equal to p into p minus 1 by n. 

So, we have basically modified some notation; mean n is m that is size of the table ok.

So, we were looking at a x plus b mod p mod m ok. So, if r is not equal to s they mapped

to the same position only if r minus s is equal to 0 mod m ok. So, this is going to be 0



mod m and the total number of such pairs is less than p into p divided by m ceiling of

that minus 1. So, that is less than p into p minus 1 by n.

Therefore the probability that ha is equal to hb is going to be less than this number that is

p into to p minus 1 by N divided by total choices of h; the total number of h where p into

p minus 1. So, this is equal to 1 by m ok. So, with this we can conclude that h is going to

be a universal family of hash functions ok. So, basically what it means is we can do all

the dictionary operations in constant time ok. We will stop here for today. 


