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Treaps

In this lecture, we will see how randomization helps in design of good data structures ok.
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So, let  us look at  the problem that we are interested in solving today. So, there is a

universe u consisting of elements let us say integers one to some m and then there is a

dynamic subset of u and let us say that the sizes that is roughly n ok. So, it is varying so

it does not a fixed size, but at any given time let us say it is very close to n. 

Now we want to do certain operations on this data the operations that we will be doing

are insert an element let us say x into the set S to produce a new set and then delete

particular element y from the set, then we will also have search or find ok. So, if you are

given a key you want to know whether that element is present in S or not. 

So, these are the operations that we want to implement and we want to do this efficiently

and by which we mean we want to do all these operations in order login and we want, so

this is our objective and let us see how data structures and randomization can help us do

this. So, what we are what we will do here is we will look at a new data structure called



as treap ok. So, treap is nothing, but a marriage of binary search tree and priority queue.

So, let us understand what these components are. 

So, treap is nothing, but binary search tree plus priority queue or a heap ok. So, let us

understand what are these individual operations, what are these individual data structures

and how we will do the insert delete and find operations on them ok.
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Let us take a sample data ok. So, suppose this is our input data, so, this is our S and a

binary search tree will be something like this ok. So, if this is our input, then the binary

search tree corresponding to that would be something like this ok.

So, the key property of binary search tree is that, left sub tree contains smaller relevance,

then whatever is at the node and right sub tree contains larger elements ok. So, suppose

you have a partial sub tree like this and if we wanted to insert the element 10 into it ok.

So, you check at the root, so 10 will essentially be on the left side of 12 ok, so you will

go here and it is greater than 13 so it will go here and it is smaller than 11, so we will go

again  to  the  left  and it  is  larger  than that.  So,  basically  you will  create  a  new node

wherein 10 goes 

So, the insertion is easy and if you wanted to delete you can essentially unroll the process

of  insertion.  So,  suppose  you wanted  to  delete  11,  it  would mean that  you can  just

connect 6 in the place of 11 ok, if you had two nodes as children you will have to do a



slightly more complicated operation,  but those can be done. So, binary search tree is

essentially  a  data  structure  where  every  node  on  the  left  sub  tree  contains  smaller

elements and everything on the right contains larger elements than whatever is present at

any particular node, those property should be true of every individual node that is called

as a binary search tree and you can use this fact that insert delete and search are all

proportional the time taken by these operations are proportional to the height of the tree. 

The second data structure that we would see is something called as a priority queue or a

heap ok. So, in heap the key property is the heap property which says value at the node is

greater than values below it ok. So, if you look at the binary search tree there are children

which are grade which have larger value than the values of node, but priority queue or

heap that property that is not true ok.

So, corresponding to this input the one possible heap is as follows the largest would of

course, be 35 and let say that the moment we would not bother about how these were

constructed ok. So, if you look at this diagram on the left, that is a heap and this is a

binary search tree ok. So, if you look at any node for example, if you look at 22 you can

note that it is children are of value smaller than whatever is there in the node, this is true

not just for the node 22, it is true for every node in this particular tree and such trees are

called as heap ok. 

Given any input data you can convert it into a heap in linear time and the heap need not

be unique I mean it is usually not unique there could be given the same data you could

make multiple heaps with the with that given data the same is true for binary search tree,

but if you are inserting in a particular way then of course, there will be a unique binary

search tree ok.

But for if we look at the data as just a collection or a set of numbers there are multiple

binary search trees and multiple heaps. So, now, when we are given a collection of data

we going to convert them, we are not going to store them a size or binary search tree or

as heap, but instead we will combine these two and the combination essentially ensures

that the operations that we wanted to do, namely the insert, delete and find these can all

be done in expected o log n and the expectation is over some particular choices. 

Those choices are not really the input, but it is based on the coins random coins that is

flipped while the algorithm was run ok. So, let  us now that we understand what are



binary search tree and priority queues or heaps we can define what are called as treaps

ok.
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So,  the  input  data  is  slightly  different  from the  data  for  constructing  a  heap  while

constructing a heap or binary search tree,  the input was a set of numbers here while

constructing treaps the input is basically a set of pairs of numbers ok.

So, let us say S is going to consist of numbers of the consists of pairs, so a 1, b 1 a 2, b 2

and a n b n ok. So, on this particular set we want to construct a treap,  so treap was

nothing, but a tree where the individual nodes are some ai bi ok, so let us say a i 1, bi 1 ai

2, bi 2 and so on ok. 

So, the input data is kept in some particular way and there are going to be this tree is

going to consist of precisely n nodes, the input consists of n pairs and we say that it is a

treap if when restricted on the first coordinate,  if you just look at the ais look at the

diagram look at the tree and erase all the bis you will get a tree with just ais just the first

coordinates.

Restricted  to  first  coordinate,  the tree  should be a  heap and restricted  to  the  second

coordinate this should be a binary search tree ok, so that is a treap. A treap on input s is a

binary tree, such that restricted to the first coordinate the binary tree T is a heap and

restricted to the second coordinate T is a heap. A priory it is not even clear that given



data we can organize in this way, but it is easy to see that given a neat set of pair of

numbers there is a unique treap corresponding to it.
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So, let us take an example given assume that the numbers the pairs are all unique ok. The

first  coordinate  we are going to refer it  to as the priority  because priority is what  is

required in a heap and the second coordinate is what we will call as the key ok. Now, we

know that the topmost element is the element with the minimum priority, so this should

be 1, 2 ok. 

So, we are going to look at a min heap, so 1, 2 should be this element and the elements

on the left should be on the left child should be everything which is smaller than 2, when

you look at the keys and there is no such element, so there is nothing on the left. So,

everything else is on the everything is going to be on the right and if you look at the

remaining elements the least priority is 2 comma 8, so that is going to be here. And on

the left side will be all elements whose key value is less than 8, that is basically 3 comma

7 and 22 comma 3 and amongst them the root is going to be the one with the smallest

priority, so that is going to be 3, 7 and as the other node is 22 comma 3 and that will be

the left child because 3 is smaller than 7. 

So, 22 comma 3 will be here and all these other three elements will be on the right side

of 2 comma 8. So, 2 comma 8 is already taken care of, so there is 3 comma 9 and 10

comma 3 and out of them the least priority is 3 comma 9. So, this node is going to be 3



comma 9 and the only remaining node 10 comma 11 is going to be the child of 3 comma

nine and since 11 is greater than 9 this is going to be the right child, so 10 comma 11. 

So this is a treap I saw if you just look at the first coordinates it is going to of this kind,

note that any node is smaller than it is children than any of it is children therefore, this is

a min heap. Whereas, if you look at the second coordinate 2 followed by 8 followed by 7

followed by 3 and comma 11. If you look at any node everything on it is right is larger

than that and everything on the left is smaller ok, so this is a binary search tree ok.

So, given any data there is precisely 1 treap corresponding to it, that is because if you

assume that the keys and the priorities are distinct the root node is going to be the node

with least priority. And then the left child or the left sub tree contains all nodes or all

pairs which have smaller key value than root and the right sub tree contains all nodes

which have larger key values than the root ok. And this sub tree there can be precisely

one way that can be organized as a treap and same for the right sub tree. So, once you

make this sub trees or sub treaps there is one way you can combine it and that is going to

give you a unique tree. 

So, given any input data that is precisely I mean if you assume that the priorities and the 

keys are all distinct where the priority could be a completely different set from the keys, 

but as long as those sets are themselves unique when there is no repetitions amongst the 

keys or amongst the priorities there is only 1 treap corresponding to it. 

Now, we could do all the insert operations or delete operations or the find operations

based on the values of the key ok. So, here what we really want the problem that we

really want to solved is, we have some particular in collection of numbers what we will

do is we will convert each of those numbers into a pair ok, the second coordinate will be

the number and the first coordinate will be the priority and this priority is where we will

introduce the randomness. 

So,  what we will  do is  given any collection of numbers we will  choose a priority a

random number  between  0  and  1  chosen  uniformly  at  random and  that  will  be  the

priority of this particular number ok. So, you can say that since we are choosing and

uniformly at  random between 0 and 1 with probability  one every number will  get a

unique priority ok. So, if the keys where themselves distinct the random choice also is

not going to introduce any identical priority elements ok. So, given a collection of input



we going to choose a random number between 0 and 1 as the priority for that and then

generate the heap corresponding to it ok.

Once we generate the sorry not the heap, but the treap corresponding to it once you have

the treap corresponding to it we want to see if the insert operations, delete operations can

be done quickly it will be done in order log n and whether the search operations can be

done in log n. We will see that all these operations the time taken to do this depends on

the height of the treap. 

The treap is the tall treap then it is going to take a long time, if it is short it is going to be

the operations are going to be fast, but we will arguers and because of our randomization

the treaps height is going to be bounded by log n in an expected sense ok.
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So, in a nutshell what we will do is convert input sequence which was a sequence of

integers into a sequence of pairs ok. So, if the input if you think of them as keys, we will

convert it into priority key pair and then we will construct the unique treap if you are

introducing  a  new  element  that  will  also  result  in  a  unique  treap  which  can  be

incrementally computed from the existing treap and then we will argue, that because of

randomization the treap height is bounded by o log n ok.

Now, when we are inserting and deleting we have not yet argued that the insertions can

be done in time proportional to the height of the tree. So, let us first look that for that



there is an important notion called as rotation. So, let us say that this is a particular treap

and where there is a value and there is a key and a priority this is the priority and this is

the key ok. So, let us say that we have some tree a treap at some point of time. So, this is

a root node and it has children ok.

So, let us say that one of the child was a child was A the other was A and the other was

C. So, these are 2 nodes we can convert  this via rotations we will  call that as a left

rotation and the right rotation ok. So, if you do the left rotation we will get another tree,

so let us call this as D and E ok, note that D and E are basically nodes and ABC are all

there are themselves trees ok, if you right rotate what happens is I mean giving a rotation

to the right side what happens is E comes on top, D goes down, A comes up and D has 2

children now C and B ok. 

And if you left rotate this D comes up, E goes down and A goes further down, B attaches

itself to E ok. So, this is an operation which is this left rotation and right rotation are well

defined  for  binary  search  trees,  in  a  priority  queue  also  we  can  think  about  these

operations, but they might destroy the priorities. We will see whether treaps we can do

these kind of operations on treaps ok. 

So, let us say that if you rotate in this kind the there were some existing values at these

particular nodes keys ok. So, key observation is that keys still satisfy BST property or the

Binary  Search  Tree  property  because  everything  in  A should  have  been  lesser  than

everything in E which is clearly satisfied in both trees and tree mean if you look at this as

called this tree 1 and tree 2. In tree 1 if you look at node A; node A was less than E and

that is still valid and every value in D mean, so we look we can look at it node by node

we will just do a couple of examples.

If you look at node E A consists of smaller elements and B consists of larger elements

that property is still true because A is in the left sub tree, B is in the right sub tree. Now

note that D is going to be greater than E and C is going to be greater than D ok. So, D is

greater  than E and C is  greater than D ok, so both D and C are greater  than E and

therefore, in the tree 2 you have both D and D and B is anyway greater, so E is smaller

than B. 

So,  all  those  relationships  are  satisfied  for  E,  so  you  can  do  this  for  all  possible

combinations and you can verify that these rotation operations, if you rotate to the right it



will  basically  preserve the BST properties and if  you rotate  to the left  also the BST

properties are maintained ok.

Now, when we are inserting and deleting we can use these operations to ensure that at no

point  we require  more  than  the  height  the I  mean I  mean we can  maintain  the  tree

property by insuring by doing these things properly let us let us see that. When you if

you had to just maintain the binary search tree property we could just insert and when

you insert the binary mean you will insert it ensuring the binary search property, but the

element that is inserted may destroy the treap property. For example, in this particular

data if you think of S as the input data and if you wanted to insert an element, so if you

wanted to insert an element 4 comma 9 ok.

So, here is an element whose key value is 4 and priority is 9 ok. So, try to insert based on

4 what happens is we just looking at the key value it is greater than 2 so it should be on

the left sub tree, on the right sub tree it is less than 8, so it should be on the left it is less

than 7 it should be on the left and 4 is greater than 3, so it should be on the, so this is

going to be 4 this it is priority was 9 ok. For this node, the treap property is not valid

because here is a node whose priority is 9 and that is below a node whose priority is 22,

so the priority has to be adjusted ok.

So, what we can do is we can rotate accordingly, we can do these operations rotations

left rotations and right rotations ok, these operations do not kill the BST property, but we

can use this to adjust the priorities let us see how that is done ok. 
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So, from here we could move you could do a left rotate and therefore, 9, 4 goes up, so 9,

4 goes up and 22 comma 3 comes down ok. Now this ensures that the BST property is

maintained at this particular node between these pair of nodes the BST property and the

tree property is valid, but now if you look at let us say 3, 7, 9, 4 ok. So, if here every I

mean every node it is BST property as well as the tree properties holding because 2 and

greater priority and greater priority and greater priority. 

So,  maybe if  this  node had a  higher  value you might  have to  do a right  rotate.  So,

basically by a sequence of left and right rotations you can ensure that the treap property

is maintained ok, so in a nutshell what we have argued is the following
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Insert based on BST property, when you do this the time taken will be proportional to the

height  and  once  you  have  inserted  a  particular  pair  the  tree  property  need  not  be

maintained. So, we will do appropriate right and left rotations to ensure treap property. 

Treap property in the sense the BST property comes for free because we had inserted

based on the BST property. The rotations either in the left side or the right side do not

affect the BST property, but we are using those to adjust the priorities. So, one by doing a

sequence of left and right rotations we can ensure that the tree properties also maintained

ok. So, suppose you had some particular node like this ok.

So, let us say this was your temporary treap and then we wanted to insert an element the

BST property ensures that the element was added here ok, maybe this node it had to go

somewhere else, so that the treap property is maintained. So, you look at these two nodes

and decide whether it is to be rotated right or not and then if it is rotated right what

happens, this node becomes the newly added node goes up and then maybe depending

upon these nodes you might have to rotate it left or right and maybe this goes up. 

So, the total number of operations that happen this is going to be bounded by the current

height of the tree ok. So, this operation also in this is the time taken is proportional to the

height  ok.  So,  what  this  means  is  any  insertion  in  the  treap  can  be  done  in  time

proportional to the height of the tree and deletion is exactly same as insertions just delete



an element  and if  it  is  an intermediate  element  you might  have to,  so that  the treap

property is maintained. 

So, all those operations this is similar to the usual binary search tree operations with

these rotations and they take time proportional to the height of your tree. What we need

to argue is that, the height of the treap in the expected sense remains small in the sense it

is going to be equal to o log n, so that is what we will show next. 
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So, this is the theorem the expected height of treap with n elements. So, let us say we 

have done a sequence of insertions and deletions and finally, we have n elements and the 

expected height of the treap with n elements is o log and therefore, all these operations 

insert delete, so it is etcetera can be done in o log n expected time ok.

So, how do we prove such a statement? This is happening because of the random choices

that we have made, the priority queue that was there with respect to the first coordinate.

That priority queue it is height is never going to be more than o log n and in an expected

sense that is what helps us to maintain the overall height.

So, let us introduce some notations, so x i will denote the ith smallest node in terms of

when you say ith smallest this is in terms of the priority. So, this ith smallest node in

terms of the priority not on in terms the key value will be somewhere in the tree we will

look at it is expected height ok, so let us denote it by random variable. 



So, let us say capital X i we will define as the height of the ith smallest node, this is a

random quantity because it depends on when this element was added and so on ok. We

are assuming that each element gets a random priority and that priority is being used to

create a point pair the first coordinate being the priority and second point being the key

and X i is the height. 

Let us introduce some more random variables. So, we are looking at the event that node j

is an ancestor of ith node ok. So, let us indicate this by the random variable I ij. So, I ij

this is equal to 1 if ith node is an ancestor of j in the treap and summation j going from 1

to n I ij will denote, the number of ancestors of i we want to show that, so if you denote

this by the random variable let us say y i, we want to show that expected value of y i is

equal to o log n. 

The expected value of y i it is approximately log n, it is bounded by log n that is what we

want to argue. This is some of certain random variables so, expectation of y i by linearity

of expectation is the expectation of I ij summation j going from 1 to n ok. So, now what

we want to know is the expectations of this individual I ij, but the expectation of an

individual  indicator  random variable  is  nothing,  but  the probability  of  the event  that

indicates. 

So, this is summation j going from 1 to n probability that ith node is an ancestor of jth

node, ith node or x i is an ancestor of the jth node ok. So, ith node here means that

particular pair which had ith smallest  priority and jth node would means jth smallest

priority ok. 

So, we have to slightly modify our argument here we were looking at the smallest in

terms of priority, but let us look at I mean we could do this entire analysis on the basis of

the key values as well ok, ith smallest node means the key value is ith smallest and jth

smallest means the key value is the jth smallest ok.

Now, so, these were our numbers the key is where let us say from some particular set the

ith smallest key value that node is what we call as x i and the jth smallest key value that

is what we call as I mean x j and so on.
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So, probability  that the ith smallest  key value is  an ancestor  of the element  with jth

smallest key value this is the probability that we need to ascertain ok. So, let us look at

these elements i and j ok, so small and we have lot of numbers in between as well ok. So,

we will have an lemma which will help us estimate this probability ok, x i is an ancestor

of x j if and only if i has or x i has least priority among all the elements whose key value

is between x i and x j. 
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So, we have these nodes x i and xj and all elements appearing between i and j let us call

that as a set S ok. So, S is a set of all elements the key value is between i and j what we

want to prove is all elements in S has larger priority than x i. So, we will split the proof

into 4 parts we added treap and suppose x i was the root by virtue of it being the root, its

priority is going to be surely smaller than the priority of all the other elements ok, in

particular all the elements in S will have strictly smaller priority ok.

So, if x i was a root then we know that, i is an ancestor of j and i’s priority is smaller than

all elements in S ok, so that is case one. Now if j is the root it is the same argument x j is

the root, then we know that j is an ancestor of i and therefore, by virtue of j being the

root it is priority is the at least and therefore, it is priority is smaller than all elements in S

is the smallest. 

Now, if it is not root there are two cases they could be in the same sub tree or they could

be in different sub trees ok. So, the third case x i and x j in same sub tree so; that means,

there is some root and then x i and x j is in this sub tree ok, by recursion you can say that

the same argument should work ok. Because now you have a smaller set of numbers

these numbers they are strictly smaller than that and x i and x j are elements here and if

there  is  an ancestor  descendant  relationship  between x i  and x j  we can restrict  our

argument to the smaller sub tree. If they were in different sub trees what do we do? So

that is our 4th case ok.

So, let us say the root node is some x k and this is a sub tree containing x i this is a sub

tree containing x j ok. Now one of them is on left and the other is on right, the elements

on the left by nature of the BST we know that I mean if x i is on the left, xi is less than x

j and in particular your x k is going to be lying in between x i and x j. If you look at the

key values the key value of x i is going to be less than the key value of x k and the key

value of x j is going to be greater ok. So, this would mean that I is less than k is less than

j.

Now, k is an element in between i and j and that has the least priority from the set S ok, x

i is the node which is having least priority and therefore, if you look at the elements in

between x i and x j, x i is not an ancestor of x j; xj is not an ancestor of x i and we have

neither of them neither x i nor x j has the smallest priority it is some other element and

therefore, that takes care of all the 4 cases ok. 



So, this means that whenever some element is an ancestor of some other element that 

particular node has least priority. So, now, all that we need to estimate is the probability 

that a particular node has least priority amongst a collection ok. So, that would help us 

calculate the expectation ok.
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We needed to compute this probability; probability that the ith node is an ancestor of the

jth node. So, this is equal to summation j going from 1 to n, probability that the priority

of ith node is smaller than priority of jth node ok. 

So, if you check the case that i is less than j, so this summation we can split it into 3 parts

summation j going from 1 to i minus 1 probability that the priority of the ith node is less

than priority  of  jth  node plus  summation  j  equals  i  plus  1 to  n,  probability  that  the

priority of the ith node is smaller than jth node and this is what we because if you take

the case where j equals I that probability is 0. 

And this probability ok, so here in this side we have some particular j and amongst the

set 1, so let us say this is one I and here is your j. So, you have i minus j elements ok. So,

i minus j elements which are competing to have the least priority, the priorities where

chosen  randomly.  So,  every  element  has  equal  chance  of  being  the  lowest  priority

element.



So,  i  being  the  low least  priority  happens  with  probability  1  by  i  minus  j.  So,  this

summation plus summation j going from 1 to n 1 by j minus i when j is greater than i this

is going to be 1 by j minus i. So, these probabilities have to be summed this is going

from j going from 1 to i minus 1 ok. 

So, each of these terms you can upper bound by the harmonic number, so this is going to

be less than 2 times H n and H n is approximately log n, so this is 2 log n ok. So, what

this means is that the expected height of any particular node is bounded by o log n and

that completes the proof we will start the new topic on hashing in the next lecture.


