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Lecture – 33
Perfect Matching – III

We will continue the study of approximately counting the number of Perfect Matchings

in a dense graph and approach is as follows.
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If you denote by M k the set of matchings of size k and small m k the set of matchings of

the size of M k, then the number of perfect matchings was equal to m n divided by m n

minus 1 into a min minus 1 divided by m n minus 2 up to m 2 divided by m 1 into m 1.

So, if we could estimate each of these quantities m i by m i minus 1, then we could

estimate the number of perfect matchings. So, that was the approach.

And, now the question becomes how do we estimate  m i  by m i  minus 1.  For  that

consider M k union M k minus 1 and uniformly sample from M k union M k minus 1. If

we could uniformly sample from this set then we can compute the ratio m k divided by m

k  minus  1.  We  can  approximate  uniform  sampling  would  mean  that  we  can

approximately estimate whatever is this quantity which we had denoted by r k.



For that estimate to be obtainable in polynomial time what we require is r k should have

let us say values in certain range. What was our claim was r k lies between n square and

1 by n square.  Note that  number of perfect  matchings can be very large it  could be

exponentially large. And, may be after removing or certain suppose you had taken this

particular let us say the complete graph on let us say n vertices, m n would be let us say a

when could be as large as in factorial, ok. 

So, the ratio could be smaller at large, but here we are saying that it lies between n square

and 1 by n square there could be matchings which does not have say which does not have

more than one perfect matchings, ok. This is this one perfect matching in this particular

graph has no more than one perfect matching.

Now, we had done part of this claim.
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So, r k is less than n square in other words m k by m k minus 1 is less than n square, this

is  the  upper  bound.  This  we proved by saying that  from every  let  us  say matching

belonging to M k minus 1 at most n square matchings of size k can be obtained and this

basically obtains all much matchings of size k. So, by that reasoning be argued that m k

is surely less than n square times the number of matchings of size k minus 1.

Now, we need to show that m k minus 1. So, m k divided m k minus 1 is greater than let

us say 1 by n square or we need to prove that m k minus 1 is less than n square times m



k, ok. So, what we will require is the following lemma every matching in M k minus 1

has an augmenting path of length no more than 3 at most 3. I mean if you take any

matching  in  M k minus  1  the  way to  obtain  a  larger  matching  is  by  looking  at  an

augmenting  path  and  here  this  claim  says  that  the  augmenting  paths  length  can  be

bounded by 3, ok.

So, why is this true? So, let us look at. So, this is true for dense graphs. So, dense graphs

means every vertex has degree at most I mean at least n over 2, ok. So, if you take any

such graph for that this claim is true. So, let us see why that is the case.
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So, let us look at a particular matching in M k minus 1 and suppose this is that matching.

So, these vertices are matched to each other, ok. And, if you take two vertices u and v

which are unmatched; so, u is on one side and v is in the other side. And, if they are

unmatched we will show we will construct an augmenting path of length at most 3, ok.

The first possibility is that u and v could be there is an edge between u and v; if you v is

an edge then of course, there is an augmenting path of length 1.

Suppose, there are no edge between u and v let us just look at neighbors of u, ok. So,

neighbors of u the size is  greater than or equal to N by 2 and the size of v size of

neighbors of v is also greater than N by 2, ok. So, let us draw these neighbors. This is

neighbors of v and those are the neighbors of u. Now, if you look at these neighbors they

all had to be matched. If any of them was unmatched then we can of course, get an min



let us say if there was an unmatched neighbor then you can connect those and get an

augmenting path involving u or v, ok.

Now, so, we have to assume that all them were part of some matching edge, ok. So, these

are the edges out of it, we do not know where it lands up on the other side and similarly

for these. Now, since the neighbors are I mean since this is these are all sets of size at

least N over 2 and if all of them were connected to each other, then you have a matching

of size I mean if they were they were all different then you had a matching of size N, ok.

So, since this is not a matching of size N there should be some two of them which are

connected to each other, ok. So, let this be the edge which is connected to each other and

this part of the matching.

Now, you can look at the edge from u to this. So, indicated in red and you can take

another  edge from v to the v to  its  neighbor and this  forms a these have to be non

matching at the red had to be non matching and therefore, that forms a when these three

edges together forms a augmenting path of length at most 3.
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So, I will just write down these statements. What we will choose every matching in M k

minus 1 can be obtained by a certain let us say method, and then we will show that from

any matching in M k the method produces no more than n square matchings in M k

minus 1. So, that would mean that size M k minus 1 is less than n square times M k, or in



other words m k minus 1 is less than n square times m k this is what we will need to

prove. So, these two statements is what we will see.

So, what is the method? If we are looking at the matching in M k minus 1 how do we

obtain it from a matching in M k? So, there are two methods either remove and edge

from matching in M k to obtain small m, ok. So, some matching in M k minus 1 which

we need  to  obtain  we could  obtain  it  by  just  simply  removing  an  edge  from some

particular matching in M k, ok. So, that is one way another way is to what we will call as

D e augment a path or let me just say the D e augment the matching see what are these

two procedures. By these two procedures we can obtain every matching in M k minus 1.
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The first thing is clear just take a matching in M k and remove one edge; if you get a

matching small m well and good. Another way is you take any matching in M k. Let us

look at a matching in M k, let us call it as e 1 and e 2, ok. We will convert this into either.

So, let us call this as u 1, v 1 and u 2, v 2 ok. We will either replace it by a matching

which contains this edge which is u 2, v 1 or u 1, v 2. Once again, you take any arbitrary

matching  in  M k.  We can either  remove an  edge from that  matching  we will  get  a

matching in M k minus 1 or you could pick two edges and replace it by u 1 v 1 or u 2 v

2, ok.

Now, this becomes a matching only if u 2 v 1 was an edge in the in the graph v 1 and

similarly this becomes a matching only if u 1 v 2 an edge in the original graph. But, we



can say that take any matching if  these are valid edges then we do this  replacement

otherwise we do not, ok. Now, by this method we could get matchings and all  those

matchings will be in M k minus 1. What we claim is a very matching in M k minus 1 can

be obtained in this  particular  manner, ok.  Why is  that  so? That  is  where our lemma

comes useful.

You take any matching m belongs to M k minus 1; there is an augmenting path of length

at most 3. So, since there is an augmenting path of length at most 3, if there was an

augmenting  path  of  length  1,  then  we  are  talking  about  this  case.  If  there  is  an

augmenting path of size let us say a winning paths are of odd length, so, they are of size

3 then; that means, this edge was present in. So, e belongs to m, but these two edges they

are non matching edges, ok. 

So,  if  so there is  a  matching  I  mean since this  is  an  augmenting  path  we know by

replacing it with this we will get a matching of length I mean of size k, if we had taken

that matching and done one of these procedures we will go into a matching which has

one fewer edge. So, every edge in every matching in M k minus 1 can be obtained in this

particular manner, ok.

Now, we can look at  how many matchings  can be obtained in this  manner. So,  take

anything belonging to M k there are small m k of them each of them you can you can

remove an edge this can be done in k ways or you could de augment. For de augmenting

you have to pick an edge that can be done in k choose two ways and for each choice you

can either connect the off diagonal or the diagonal. So, there are two ways. So, the total

number of ways is k plus 2 times k choose 2 that is equal to k plus k into k minus 1 that

is equal to k square. So, there are k square matchings that is obtainable from I mean that

is the maximum number of matchings that is obtainable from any matching in M k.

Now, because of this we can conclude that m k is going to be less than n square times m

k.
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So, contingent on this claim, that every matching in M k has an augmenting path of

length no more than 3, we can conclude that r k lies between n square and 1 over n

square. From this what we will do is based on this claim we can try to uniformly sample

from M k union M k minus 1. So, M k is the collection of all matching. So, size k and M

k minus 1 is the collection of all matchings of size k minus 1. How do we uniformly

sample from this? These sets could as such be very large, but we will just generate the

elements as and when we require it, ok.

So, if you are at one particular matching from that matching we will go to one of the

neighboring matchings in a suitable way. So, our aim is to construct a Markov chain

whose states  are  M k union M k minus 1,  such that  the Markov chain  has uniform

stationary distribution, ok. If we manage to do this the advantage that we have is should

imply that we can uniformly sample from M k union M k minus 1. We can uniformly

sample that would mean that we can estimate size of M k divided by M k union M k

minus 1; we can also estimate M k by M k minus 1 etcetera, ok.

And, this can be done in done in polynomial time as M k is not too small compared to M

k union M k minus 1 and M k minus 1 also is not too small compared to the total size

because of our claim we can do these estimations in polynomial time, now. So, now, that

the reason why we are constructing the Markov chain is clear. Let us try to construct the

Markov chain whose states are M k union and M k minus 1.
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So, each state of the Markov chain of the Markov chain is a matching. So, this would be

a matching. It either belongs to M n or m belongs to M n minus 1. If it belongs to M n

we will move to some particular state in a certain way; if it belongs to M n minus 1 then

it moves to certain other states, ok; if it is M n minus 1 it will move to let us say some

other state. So, depending upon whether this matching belongs to M n or M n minus 1

we are going to the specify the transitions of this Markov chain.

So, suppose E is the set of all edges in the bipartite graph G. What we will do is we will

choose an edge of E uniformly at random or for every edge of E we tell how was the

transition going to be done, ok. So, let us say e is a particular edge e belongs to capital E

then so, the way we do a transition is as follows. At the start with v we just pick an

arbitrary matching; it might either belong to M n or belong to M n minus 1. Now, for a

particular matching we randomly select an edge e ok. Based on the properties of this

edge we will go to some particular state.

Now, first if your matching itself was belonging to M n and this edge also belongs to

small m ok, then what you do is from this matching m you will go to a matching which is

m minus e, ok. So, there are going to be lot of these transitions one for each edge of. So,

one such for each edge in small m. Now, suppose m belongs to M n and e does not

belong to m then you just remain at the same state that is a self loop, ok.



There is another case. Suppose, your edge m was belonging to M n minus 1, and m union

e belongs to M n then you go from m to m union e. If m belongs to M n minus 1 and the

edge e union m does not belong to M n; that means, you cannot add the edge e and make

a larger matching out of it. Now, this happens because of certain conditions. So, let us

say when you add e let us say connects u and v we were already unmatched vertices then

when you add the edge G it gives you a larger matching, but when you are not able to do

this; that means, u is connected via a matching edge to something and v is also connected

to something by a matching edge.

Or it could be that one of v means; so, this is your edge u v, one of them is connected and

the other one is not connected. If this case had appeared then what you will do is you will

just remove this particular edge and add these two, ok. So, again in this there are two

cases. Suppose, e cannot be added and it is because both it is endpoints are there in

matching edge.  I  mean one of them was matched you could just  flip the edge when

instead of this particular matching edge you add this particular matching edge, ok. This is

possible when v was not connected; if u and v were both connected then you do nothing,

because if you add e that will only decrease. So, if u and v were both connected then you

do nothing, ok.

So, these are the steps in your Markov chain. The property of this Markov chain is this is

a symmetric Markov chain. The Markov chain is doubly stochastic. Doubly stochastic

ensures that this is unique stationary distribution. So, this Markov chain since it is unique

stationary distribution, the unique stationary distribution is the uniform distribution. So,

doubly  stochastic  basically  means  that  the  uniform  distribution  will  be  the  unique

stationary distribution ok. So, that is our Markov chain.

We will see more of this in the next lecture.


