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Perfect Matching – II

The  problem  that  we  are  interested  in  today  and  the  next  couple  of  lectures  is

approximating the number of Perfect Matchings in a dense bipartite graph.
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So, each of these terms, bipartite dense and approximating in some sense presents some

of  the  limitations  that  we  have  in  counting  the  number  of  perfect  matchings  in  an

arbitrary graph, ok. So, in order to overcome that we are restricting it to bipartite and

instead of exactly counting, we are approximating.

So, what is the problem? So, suppose we are given a general graph ok. So, this is a graph

on 8 vertices ok. Now the red edges that I have drawn here, there is a matching. If you

look at these edges, they do not share any vertices; e 1, e 2 and e 3. They connect distinct

pair of vertices. Now there are two vertices which are not connected and there is no way

we can connect.  So,  this  is  an example  of what  is  called  as  a maximal  magic.  And

different number the vertices 1, 2, 3, 4, 5, 6, 7, 8 then, e 1, e 2, e 3 is a matching and it is

a maximal matching. In the sense, if you add any other edge of the graph to this set, then

that is going to share a vertex with one of the existing edges.



So, this is a maximal matching, but of course, there are other matchings which are larger

in size. This is the matching of size 3; we could have the following matching. If we had

taken the green edges, then we get what is called as a maximum matching and in this

case,  it  is also a perfect matching ok. So, if I number these vertices or named these

vertices as e 4, e 5 and the e 6; e 4, e 5, e 3, e 6 forms a maximum matching.

This is a matching which cannot be further extended. It is also a perfect matching. It

matches every, you can think of it as each vertex is matched to another unique vertex by

means of an edge; and it match this is a matching which matches all the vertices. So,

since there are only 8 vertices in this graph, you cannot have a matching of size more

than 4 and here you found one.  So, this  is  a maximum matching and it  is  a perfect

matching. It matches every vertex.

So, the general problem that we are interested in this given a graph can be find if is there

a perfect matching. Our algorithms which will do this, we also want to count the number

of  perfect  matchings  that  are  there  in  this  graph.  So,  the  green  edges  denote  one

particular matching that is a perfect matching. If we had taken let us say these edges

inside the blue edges that is another example of perfect matching. So, there are at least 2

perfect matchings are there more what is the number of perfect matchings in this graph.

That is a question that we want to solve. It is generally a difficult question counting the

number.

So, we will restrict our attention to bipartite graphs ok. So let us say we are given a

bipartite graph.
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So this is an example of a bipartite graph. So, each sides there are 8 vertices in this graph

and you can divide the graph into 2 parts. Let us say A and B says that all the edges are

from a to b or an or between a and b. This is an undirected bipartite graph. So, between

the vertices in A; there is no word, no edge and between vertices in B also there are no

edges. So, are there perfect matchings in this particular graph of course, there is if we

look at these edges this is a perfect matching. There could be others as well ok.

So,  probably there are  others,  but  um. So, you need to  count  the number of  perfect

matchings in a given bipartite graph. Now first, we can ask ourselves this question. Is

there a perfect matching in G? Could be any arbitrary graph; arbitrary bipartite graph.

Now this  question  has  a  polynomial  time  algorithm,  simple  algorithm.  We can  just

reformulate, it as a network flow problem. So let us say, there we add 2 vertices S and t

and then connect all the vertices from A to S and all the vertices from B to t ok. So, this

becomes a network and we can imagine that the vertices are all unit weight, unit capacity

edges and the direction is from S to A, A to B and B to t.

So, we can convert the input bipartite graph into a capacitated network and we can assign

unit weight capacity to each edge and then we can ask what is the maximum flow from S

to t. The maximum flow is equal to the number of vertices in A and it should be equal to

the number of vertices in B, then we can say that that will be a perfect matching. In fact,

the flow would even help us find their perfect matching ok. So, there is a polynomial



time algorithm. So, we might expect that since there is a polynomial time algorithm B

even counting the number of such may be easy, but it is known that this is a sharp P

complete problem.

So we do not expect that this bipartite matching problem can be solved exactly. So exact

solutions will be impossible. So exact solutions which work in polynomial time will be

impossible unless P is equal to NP. So under reasonably robust assumptions, we can say

that  this  problem  cannot  have  a  polynomial  time  solution.  So  we  look  at  can  we

approximate the number of number of perfect matchings. So how do we do      this? So,

one thing that we will use is what is called as a Monte Carlo simulation which essentially

is sample sufficiently many times and approximate and whatever; that means,.

So,  the  idea  is  construct  a  sample  space  whose  size  we  know.  Then  we  keep  on

generating samples of perfect matchings ok. So, keep on continuously sampling and we

check how many of them are perfect matchings ok. So, the sample space will consist of

all  the  perfect  matchings  and  if  we  and  there  are  other  elements  as  well.  So,  by

continuously sampling, we can estimate the number of perfect matchings. The, I mean

the ratio of the number of perfect matchings to the total elements in the set. That is the

basic idea behind Monte Carlo simulation,  but we will  do a little more sophisticated

sampling ok.
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So, we need to have some basic terminology. So, let us say M k denotes the set of all

matchings in G of size k and small m k will denote the size of the set. How many such

machines are there? What we are interested in is compute our goal is to compute or

approximately compute small m n ok. So, we can write. So, our algorithm is based on the

following observation m n can be written as m n divided by m n minus 1 into m n minus

1 divided by m n minus 2 into m 2 divided by m 1. So, this formula that, we will use to

evaluate m n.

Now, each of the terms is of the form m k by m k minus 1. Now how do we; so if you

can evaluate  each such term.  So,  let  us call  this  as equal  to r  k.  Compute  each r  k

approximately and then multiply the r k’s to obtain m n ok. So, that is the outline of the

algorithm, but how do you compute each r k approximately? Ok. So, what does each r k?

It is a ratio of the number of matchings of size k to the number of matchings of size k

minus 1.

So, suppose we had a bag or a box containing all elements of m k union m k minus 1 ok.

So, suppose we can sample, if we could sample uniformly from the set then, we can

estimate m k divided by m k minus 1 ok. But how do we uniformly sample from this

particular sample space ? So, one way is to construct a Markov chain. So, so how do we

uniformly generate  elements  of m k union m k minus 1? So the idea is, construct a

Markov chain whose states are m k union mk plus 1 ok.

And then, I mean additionally, we will require that the steady state distribution of let us

say m is the uniform distribution. This is the key thing that we will use. So, we will

generate the Markov chain whose states are each a matching either of size m k or of size

m k minus 1 ok.

Now if you have a Markov chain whose states are these, if you run the Markov chain or a

similarly the Markov chain for enough number of times we need to bother about what is

enough number of times. The Markov chain, if it is a suitably constructed Markov chain,

it  will  approach  its  steady  state  or  stationary  distribution.  Now  once  it  reaches  its

stationary distribution, the individual states will appear with probability corresponding to

the steady state distribution. So if the steady state distribution was a uniform distribution,

then we can say that the states will appear with uniform probability.



So, if we could construct such a thing then it means we could sampled m uniformly from

m k n m k minus 1 and from that we can estimate the ratio. There could be error in that,

and when we multiply many such terms each of which which have an error we will have

to work out we will have to do the algebra and show that these errors do not compound

to give some unacceptable amount of error. So, all those things needs to be done, but at

an idea level this is what is happening. We are going to construct a Markov chain whose

states are going to be the matchings of size either k or k minus 1. We will do this for all k

varying from let us say 2 to n.

Now, what do we mean by constructing a Markov chain? It means, a Markov chain you

can  think  of  it  as  a  graph,  but  this  graph  could  be  very  large.  We want  all  our

computations to be done in polynomial time.
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This graph for example, if our initial let us say; bipartite graph was a very large and very

dense graph with all mean let us say if it was a complete bipartite graph ok. There are n

vertices  on  either  sides;  each  n  factorial  permutations.  So  correspondingly,  every

permutation you have a matching. So, the number of matchings of size n is very large

and we cannot  really  construct  that  graph and try  to  uniformly  sample  because  that

construction itself is going to take that graph. The intermediary Markov chain that you

construct is going to be huge object. So, it defeats the whole purpose.



So here, when we say we construct a Markov chain, it the the graph behind it could be

large, but we could locally compute. Which means if you are mean if you think of the

Markov chain as a random walk on a finite graph, the finite graph could be exponentially

large. When you are at a particular state you can compute the neighboring states and you

can choose one of them with equal probability ok. If you could construct a Markov chain

such that, locally you can simulate the Markov chain, then that is good enough. You do

not have to compute the whole Markov chain and keep it with you ok. Instead, we need

to have the ability to simulate the random walk on the Markov chain. That amounts to

having the ability to locally compute the next step for each at each stage ok. So, how do

we construct such Markov chain?

Now one thing that we will I mean in order to ensure uniform distribution this thing is

fairly  easy  because  all  you  have  to  do  is  ensure  that  the  Markov  chain  is  doubly

stochastic ok.
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If  you  ensure  that  it  is  doubly  stochastic  then  automatically  the  only  steady  state

distribution would be the uniform distribution ok. So, we will use that later on. So, I

mean, what we will bother about is constructing the Markov chain. By construction, it

will be a symmetric Markov chain. The transition probability matrix will be symmetric

and when it is symmetric the columns and the rows both sum to 1 because column, the

rows anyway sum to 1. By symmetry, the columns will also sum to 1. So, these kinds of



matrices  are  called  as  doubly stochastic  matrices  and for doubly stochastic  matrices,

under reasonable assumptions we can say that the only steady state distribution will be

the uniform distribution. So we will try to construct a random work which is which is

symmetric ok.
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Now, how do we in our objective is to compute r k which is equal to m k by m k minus

1? Ok now, this is sufficient if we compute let us say, m k by m k plus m k minus 1

because I mean. So it is not equal. So, if we compute this quantity from that we can infer

what is a m k by, so this is alpha then, 1 by alpha is equal to m k by by m k. This is equal

to 1 plus m k minus 1 by m k. So 1 by alpha minus 1 is equal to 1 by r k ok.

Now, in order to determine these things, we can again do Monte Carlo simulation. When

the  reason why we focused on these r  k  is  I  mean,  if  we could  uniformly generate

matchings of size k and k minus 1 then, the ratios could be generated using Monte Carlo

simulations, but if we wanted to do the Monte Carlo the method then, these r k; I mean m

k and m k minus 1 should have I mean they should be reasonably close to each other ok.

So, so claim. So we will try and prove this claim r k lies between n square and 1 by n

square ok. So, if what is the use of this claim? Now if this claim is true then, our Monte

Carlo method that is generate enough number of samples and then compute the ratios of

the samples which belong to m k and the samples which belong to m k minus 1 that

gives r k ok. So that, I mean that gives an estimate for r k.



So, in order to ensure that certain algorithm gives good bounds I mean, we require that r

k is reasonably mean it is not very small or very large ok. So, we will show that r k will

lie between n square and 1 by n square. How this helps us, we will see later ok. Now

look at m k. These are matchings of size k. Now how can we associate these things with

matchings of size k minus 1. That is,  this is our m k minus 1. So, each of this is a

matching. So let us say some collection of edges and the number of such things are k. So,

k edges are there and each of these things would contain k minus 1 edges ok.

So what we will do is, we will show that every matching in m k minus 1 can be obtained

by I mean from a matching of m k in a certain way and we will also show that every

matching of m k can be obtained from an m k minus 1 match in a certain way. Ok and we

will count the total number of ways in which we will do that and that will be our proof.

So, r k less than n square we will call that as the upper bound.
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So, let us first try and see the upper bound. So, upper bound says r k is less than or equal

to n square ok. So, that is m k divided by m k minus 1 is less than n square. So, take any

matching of of m k minus 1 ok. How do you extend it to m k?

So, there are k minus 1 edges. There are n minus k vertices. So let us suppose each side

contained n is the number of the maximum size of the matching. So n minus k minus 1

edges have already been matched and the unmatched vertices they are going to be 2

times n minus k minus 1. So, if you look at just one side, there are; so on one side there



are at most n minus k minus 1 unmatched vertices. Now each of those vertices could be

matched to one of the n minus k minus 1 vertex on the other side. So in all, each I mean

let  us say if  you take a specific  element  of m k.  So let  us say this is one particular

matching, this matching could be extended to let us say n minus k minus 1 whole square

other matchings ok. These this is a matching of size k, this is of size k minus 1.

So, total number of extensions possible is at most n minus k minus 1 whole square which

is n square. So, each matching from m k minus 1; capital m k minus 1 may be extended

to another matching of size k. Now in fact, every matching in m k, if you remove an edge

from it you are going to get a matching in m k minus 1. So, every matching is obtainable

in that form and therefore, if you look at each individual matching in m k minus 1 and try

all possible extensions for all of them, we will get the complete collection m k ok. So, we

know that m k is going to be less than or equal to n square times m k minus 1 ok. So, this

is basically the upper bound. How do we do the lower bound ok?
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So we need to claim that every matching in m k minus 1 is obtainable from m k in a

certain way and we will count all those possible ways, and that will give us the bound for

m k minus 1 ok. So first of all, let us prove following lemma for every matching in m k

minus 1, there is an augmenting path of size at most 3 ok. So typically, when you take a

particular matching and if you want to make it a bigger matching, what we will do is find

an augmenting path ok. So let us understand what is an augmenting path?



So, let us say this was a matching edge and just drawing it by wiggly lines ok. So, let us

say this connects alpha and beta and let us say alpha 1 beta 1 ok. Then there was another

matching edge between alpha 2 and beta 2 and there was another matching edge between

alpha alpha 3 and beta 3. Now suppose, these had the property that I mean by virtue of

this being matching, these edges had to be disconnected. But if these vertices say alpha 0

and beta 0 and these are vertices such that these edges were present in the graph ok. If

the original graph contained alpha 0 alpha 1 edge, beta 1 alpha 1 edge, beta 2 alpha 3

edge and beta 3 beta 0 edge then, we could throw out these edges from our matching and

include the other edges.

So, we do not want any matching edge start either at alpha 0 or beta 0 ok. So, such a path

in the original graph is called as an augmenting path ok. So, we can just simply think of

an augmenting path as a path in the original graph. So let us say, this is a path in the

original graph such that, if you look at vertices which are adjacent to each other ok. So,

this is u v and if this is an edge ,this is a matching edge then the next edge is going to be

a edge which I mean; the next edge is not going to be present in the matching. So, an

augmenting  path  is  a  path  such that  if  you look at  the  alternate  edges,  they  are  all

matching edges. Clearly by definition of matching, there cannot be adjacent edges which

are matching edge, but they could have been let us say separated by length more than 1

and if you take an arbitrary path maybe this is an edge and this is a matching edge, but

these two are not present ok. This could happen in an arbitrary path, but that we will not

call it as an augmenting path.

So an augmenting path is a path in which the edges alternate between matching edges

and unmatched edges. Further, we require the starting edge and the ending edge to be

non-matching edge. If you have such a path, what you can do is you can I mean if you

have such a maximal path it means further this cannot be extended further. I mean there

are no, I mean if you look at any outgoing edge there are no matching edges appearing

there  ok.  So,  that  is  called  as  an  augmenting  path.  If  you  flip  suitably  then  the

augmenting path will increase the matching size by 1 ok. So this lemma states that, for

every matching in m k there is an augmenting path of size at most 3. We will prove this

lemma.
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