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Lecture – 31
Perfect Matching - I

So,  in  this  lecture  we  will  look  at  the  problem  of  approximately  counting  some

combinatorial objects.
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So, let us look at the particular problem that we are looking at, our input is a bipartite

graph. So G, this is a bipartite graph, the parts are V and U and E is the set of edges and

the output will be the number of perfect matchings in G. For example, if we had this

particular graph, bipartite graph. This is a complete bipartite graph. We can show that

there will be 6 perfect matchings ok.

So, we need to  get this  number 6,  we introduce some notations.  So,  when we write

capital M k this will denote the set of matchings in G of size k and small m k we will

denote the number of matchings of size k. What we are interested in is computing small

m n. So, the exact count of number of perfect matchings is difficult, it is a very hard

problem.
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So,  we  will  look  at  the  problem  of  approximating  this  value  m  n.  So,  what  does

approximation mean here? So, given an epsilon which is a it is a real number between 0

and 1. We have to compute a number x, an integer x such that x is the estimate of the

number of perfect matchings. So, this should lie between 1 plus epsilon times m n and 1

minus epsilon times m n.

It can deviate from m n, but not by much ok and we need an algorithm which when given

an epsilon and the input graph computes an x which satisfies this requirement. Further

the algorithm should run in polynomial time in poly n. So, the input graph has some

number of vertices that is denoted by the parameter n. So, the algorithm should run in

poly n and it should be polynomial in 1 by epsilon. It is a slightly relaxed requirement, in

the sense epsilon if you think of as a number, the number of bits required to represent it

may be only log 1 over epsilon; but we are allowing the polynomial to be little larger

than that ok.

So, basically given any epsilon, we should be able to produce an approximation to m n

such that  value that we produce lies between 1 minus epsilon times m n and 1 plus

epsilon times m n. That will be what we will call as an approximation algorithm for

perfect  matching.  Now  how  do  we  compute  approximate  answers  to  these  kind  of

problems? So, we lose the following fact ok.



So, this is the key thing that we will use in most approximation algorithms. So, sampling

can give approximations. What does this mean? So, let us say that there is a rectangle of

length 2 and breadth 1 and inside this there is some particular set. So, the rectangle we

will call as R and the set we will call as S. The problem at hand is estimate S. Now, how

does this related to approximation algorithms? Well, this rectangle is some set whose size

we already know and we want to estimate the size of a subset of that rectangle. 

We will  spend a little  more time on it  later;  when how is  exactly  translates  into  an

approximation algorithm for perfect matching. But let us just look at this problem in

isolation. We have the rectangle R and inside that, that is a small area S and we need to

estimate the area of this particular region. So, one algorithm would be sample from R

uniformly at random. This would mean, let us say x you take uniformly at random from 0

2 and y also you pick uniformly at random from 0 1 and your point is basically x comma

y ok.

So, that is how you get one sample and check whether that point lies inside or I mean,

outside the region S. Count the number so, we will do the sampling let us say N times.

Count the number of samples inside S. So, let the count be C and we will declare C

divided by N times area of the rectangle that is 2 here as the area of S ok. So, this is an

estimate we need to wonder whether this estimate is a reasonable estimate that is one

thing. And, the second thing is we should be able to sample uniformly from it say this

rectangle which we can do if we have an access to a uniform random variable. And, we

also need to check whether a given point lies inside this region or does not lie inside

region.

Now, this region may be presented in a wide variety of ways and we need to basically

check quickly in polynomial time whether the sample point lies inside the region that we

had chosen. So, if you are able to do that, then this entire estimation works in polynomial

time. Now, the important question is how good is the estimate? So clearly our intuition

will tell us that larger the N is the better will be the estimate. But how large an N can be

offered?

Suppose the area S was very small, suppose this was S then we know that we might have

to sample more times than what is required here. So, if this is 10 times smaller than this,

let us say 20 times smaller than this, will we will it suffice if we just sample 20 times



more? Or, do we have to do let us say 2 power 20? So, what is the dependency between

the size of the area that we are estimating and the quality of our approximation? So, this

algorithm is we will call it as the Monte Carlo algorithm ok.
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Now, the estimator theorem will tell us why this estimate, I mean why this algorithm can

work when the size of S is comparable to the overall size. So, what does this estimator

theorem says? So, this says that, if you choose N to be greater than 3 by epsilon square

times rho, that is the quantity that we have not discussed yet; times log 1 over delta ok.

So, epsilon we already know what it is. We do not know what delta is, we do not know

what rho is, but the estimator theorem says that if it is greater than this quantity then the

estimate is reasonably good.

So, let us look at what is rho and delta. So, let us look at some particular set U whose

size is known. So, we will call this as the universe which is rectangle for us in the earlier

case and the universe is of known size ok. And, there is a set G whose size we need to

estimate.  If  we are given one particular  sample point  from the universe,  we can tell

whether it belongs to G or not in polynomial time, but the total number of elements in G

we do not know. The universe may be a large set its size is known. If we thought of the

algorithm of generating all elements in the universe and checking whether it belongs to

G or not; that is an exponential time algorithm usually because the size of the set U could

be very large and we will call this ratio of these sizes as rho ok.



So, this in some sense captures our intuition because if rho was really small then the

dependency on N is inversely proportional. So, as rho becomes smaller and smaller, the

number of iterations it will have to run could become very large. When you are looking

at algorithms, we can afford to have rho small, but not let us say exponentially small. 1

by let us say n raise to k is ok because, then the number of times we will have to run our

algorithm is something like a polynomial will be 1 by a polynomial will be ok for us.

Now, we need to  understand  what  is  delta.  So,  this  algorithm this  can  give  various

answers at various times. It depends on how mean what all we sampled.

This was our correcting correction I mean; this is our correctness criterion that is the

answer  return  should  lie  between 1  minus  epsilon  and 1 plus  epsilon  of  the  correct

answer. So, we can look at probability that the let us call x as the estimate. It lies between

1 minus epsilon times the true value, let us call that as let us say m n and 1 plus epsilon

times m n or whatever it was, is the value that we were estimating minus epsilon times

let us say, if the alpha was the true value ok.

So, we could look at what is a probability that the estimate lies between 1 minus epsilon

of the true value and between 1 minus epsilon times true value and 1 plus epsilon times

true value. We could compute this probability or we could say that we want an algorithm

wherein, this probability is let us say significantly high. This should be greater than 1

minus delta.

In other words, we want the,  our algorithms correctness criterion are as follows, 1 x

should lie between 1 minus epsilon times alpha and 1 plus epsilon times alpha with

probability; x should lie between these, but that will happen with a certain probability.

So, this probability should be greater than 1 minus delta. In other words, probability that

the complimentary event happens that is x minus alpha the absolute value of that being

greater than epsilon times alpha there is less than delta ok.

So, if you think of this as the error ok; then we are saying that the probability of error is

at most delta. So, if we have this condition, how large an N should we choose so that this

algorithm, the Monte Carlo algorithm works properly? And the estimator theorem states

the  following,  Monte  Carlo  algorithm  works  properly.  So,  works  properly  means  it

satisfies the correctness condition. If N is greater than 3 by epsilon square rho times log 1



by delta ok. We will quickly see the proof of this. The proof is just an application of

Chernoff bound ok.

So, what does Chernoff bound say? If you look at i i d samples, of a random variable, let

us say X 1 or X 2 X N are i i d samples and each X i is a random variable whose mean is

some fixed number.
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The probability that the sum of them X minus mu; mu is the expectation of the sum. This

being greater than let us say delta times mu happens with probability which is less than 2

times e raised to minus delta square by 3 times mu ok. So, basically Chernoff bound

says, this sum of Poisson trials, what is the probability that it is greater than delta times

its expectation that is extremely small? So, we will just apply that to prove the estimator

theorem.
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So, let us set up our random variables properly. So, a random variables are as follows Y i

equals 1. If the i th sample belongs to G, this is equal to 0 otherwise and Y is equal to

summation Y i which can be viewed as number of samples in G. We use Y to estimate G.

So, the estimate for G, we will call it as G tilde that is equal to Y by N times size of U.

We want to compute the probability that the estimate lies between 1 plus 1 minus epsilon

times size of G and 1 plus epsilon times size of G. 

Let us call this as event E. So, this probability we want it to be high. We could look at the

complimentary event E complement that is probability that probability of E complement

or the error probability. So, this is same as probability that G complement minus size of

G is greater than epsilon times size of G and the absolute value is greater than epsilon

time size of G.

Now, how  do  we  compute  this  probability  ok?  So,  this  we  can  simply  write  it  as

probability that the estimate for G is summation Y I by N times U and the value of mod

G is equal to rho times size of U. So this should be greater than or equal to epsilon times

mod G. This is the event whose probability we need to estimate. So, we can write this as

probability that summation Y I minus rho, its absolute value is greater than N divided by

mod U times epsilon times size G. Ok just rearrange terms.



(Refer Slide Time: 21:13)

So, this is the probability that sum of random variables 0 1 random variables is greater

than I mean, minus rho N its absolute value is greater than; you can write it as Y minus

rho N. What is rho? Rho N is actually expectation of expectation of Y because each Y I,

its expectation is rho and therefore, when you have N such sample that is just expectation

of Y. So, Y minus expectation of Y greater than epsilon times N into G by U is again rho.

So, this is again expectation of Y. So, this is probability that Y minus expectation of Y is

greater than epsilon times expectation of Y. 

Here, since Y is sum of random variables which takes 0 1 value, we can say, we can

apply Chernoff bound and so therefore, this probability is less than 2 times E raised to

minus epsilon square by 3 times mu. The mu being the mean of Y which is, N times rho

ok. So, our error probability is definitely less than 2 times epsilon square by 3 times N

rho. So, error probability if you think of it as delta and if we equate to this quantity ok,

we will get delta is equal to 2 times E raised to minus epsilon square by 3 times N rho

ok.

In other words, if we choose our N accordingly, I mean, whatever be the N this is the

maximum amount of error that we can have. This is the amount of error we can have

how large should N be? So, an N which satisfies this equation will be sufficient. So, we

can write it as E raised to minus epsilon square by 3 N rho is equal to 2 by delta. Taking

logs on both sides, we will get epsilon square by 3 times N rho is equal to log 2 by delta



or we can say, N is equal to 3 by epsilon square rho into log N by delta which is what our

estimator theorem stated. So, as long as error is reasonable if it is let us say one by poly

and the fraction of good cases or the size of G is bounded by a polynomial in the size of

the total universe; this algorithm you can choose N to be polynomially bounded? 

So, the estimator theorem works properly when rho is reasonably small. If it is extremely

small, yes we cannot use the Monte Carlo algorithm. So, when it is very small let us say

the size of S is 1 by 2 raise to N of the entire size, then we will have to run it to raise 2

raise to N times to get a reasonable success probability. So, those so we need to show

that what whenever we are running Monte Carlo algorithm the set is of reasonable size.

that  is the first  requirement  ok.  So now, how do we use this  notion of Monte Carlo

algorithm to generate or to count the number of perfect matchings? 

Maybe, there is a universe which contains elements which are perfect matchings and let

us say which are not so perfect matchings or other objects. If we could, and the universes

size we could somehow estimate and then we could sample from that and generate, but

this is not a I mean we do not have any algorithm of that kind. So, instead what we will

use is an idea which can be used in a wide variety of case. It’s called self reducibility.
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So, self-reducibility  is  a key property that is  required for running the kind of Monte

Carlo  algorithms  will  be  thinking  ok.  So,  what  the  self  reducibility  bring  in?  So

whenever, so we have been defined what a self-reducibility, but whenever there is self-



reducibility  the  following  statement  is  true.  Approximate  counting  is  equivalent  to

uniform sampling ok. So, once again whenever a problem is self-reducible, we haven’t

defined what is self-reducible,  approximate counting which we had earlier  done by a

Monte Carlo algorithm can now be done by a uniform sampling ok?

In Monte Carlo algorithm, you require the good cases to be part of a large universe and

the good cases is a significant fraction of the universe that we have, we are considering.

Now, uniform sampling essentially means, we will generate only instances which are

good instances ok, but we can do that uniformly. So, the earlier picture was we had this

universe U and from that we were sampling elements G. We were sampling U uniformly

at random. Now, if we could sample G uniformly at random, even when we do not know

the size of G, this uniform sampling can be used to do approximate counting. In order to

do this, a key feature required as what is known as self-reducibility. It’s a natural notion.

So, let us understand it via let us say perfect matchings itself. So, imagine that we had

access  to  a  an  oracle  or  an  oracle  or  program  which  generates  perfect  matchings

uniformly at random ok. So there were let us say, 125 perfect matchings for a particular

graph. Each of those is being generated with 1 over 125 probability ok. Now how can we

use that  to  count  the size? The idea  is  the following,  let  us  look at  all  the possible

matchings and let us look at one particular matching edge E ok. Now, the matchings

could either contain E or not contain e. So, if you look at the number of matchings of

size K, this is equal to m k e plus m k n e. The number of matchings of size k essentially

is a sum of matchings which contains the edge e and this doesn’t contain the edge e.

If we could uniformly sample, we could estimate the ratio. So, this is the key claim. If we

could uniformly sample from capital M k we can estimate m k n e divided by m k e.

using our Monte Carlo algorithm. Ok use when we say using Monte Carlo algorithm,

you cannot  assume that  these  mean whatever  we are  approximating  from whichever

space we were sampling ok. So, we could sample from m k and let us say, we sample for

let us say a thousand times and we look at the number of elements which have the edge e

and the number of edges which doesn’t have the edge e. Their ratio is essentially a good

estimate of m k n e by m k e ok. But if so, this ratio could be estimated, but what is the

advantage? If we estimate this ratio can be really compute m k ok.



So, m k n e by m k e this is a ratio that we have estimated. Now suppose, we knew m k n

e we could clearly compute m k e as well ok. So, if we knew m k n e and r then m k e

can be computed; just a multiplication alright? m k e is m k n e into 1 by R. So, this can

be computed and once this is computed we can compute the sum which is m k. So, if we

could compute this ratio and m k n e we are done, in a certain sense. We have to argue

that the errors in the approximation do not add up to render our algorithm futile ok. That

we will do later. So, m k n e is what we needed to estimate,  but that is just another

instance of approximate counting, it is a smaller instance. 

M k n e is the number of perfect matchings without the edge e. So, that is a smaller

graph. You need to count the number of perfect matchings in a smaller graph. We could

again use the same idea to estimate that ok? So, we needed to estimate the number of

perfect matchings in some particular or the matchings of size k in a certain graph. Now

we need to find the matchings in a smaller graph; matchings of size k in a smaller graph

ok. 

So for that again, we can use the same idea. So, this is called self-reducibility. So, when

we could do self-reducibility. So, this is an intuitive proof of why self-reducibility would

mean approximate  counting  because if  we could self  -educe;  that  means,  reduce  the

problem to a smaller instance ok. So, we wanted to count M k now, I mean on some

particular let us say graph G, now we have again m k on a smaller graph this graph

minus the edge e. 

Now, if you could count that, that along with this estimate the estimate we obtain by a

uniform sampling so, that estimate and m k n e together yields the count m k ok. So, we

had to count the number of perfect matchings. We said we will approximately count it. In

order to approximately count we needed to sample from a universe which contains let us

say, the perfect matchings and other elements, but instead of doing that sampling; now

say that if we could just generate uniformly at random all the perfect matchings and that

is good enough because of the self-reducibility of this particular problem that we are

addressing.

So, there are lots of other problems which are self-reducible. In all those problems, we

can  use  this  method  that  is,  I  mean  if  we  could  uniformly  sample  then  we  could

approximately count. The other direction is also I mean true if you could approximately



count then you can in some instances. You can do a near uniform sampling. So, we need

to sample uniformly, but sampling uniformly is difficult.
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So, what we will do is we will do near uniform sampling and we will have to show that

uniform sample,  when we looked at  our Monte  Carlo algorithm,  it  required uniform

sampling, but one can analyze this problem as well that is, if we could sample nearly

uniformly. It’s not exactly uniform, but very close to uniform. Even in those cases we

can  compute  the  approximate  values  fairly  accurately  ok.  So,  what  is  near  uniform

sample? So, let us say you are looking at a universe U and let us say the sampled element

we denote it by let us say U itself. 

If you look at the probability that the sampled element is equal to, let us say a fixed

element omega ok. This probability we would expect it to be, let us say I mean 1 by N,

where N is the size of the universe ok. So, in uniform sample what we expect is for every

omega where omega is an element of the universe that we are sampling, so probability

that the sampled element is omega is equal to 1 by N in case of uniform sample ok.

When we say that something is near? So, this is uniform. Near uniform means, we are

allowed to deviate from 1 by N. So, this minus 1 by N, its absolute value divided by 1

over N should be less than let us say rho. So, we will call that as near uniform sampling

with parameter rho.



If rho is 0; that means, we have uniform sampling. So, what we will show later on is that

near uniform sampling will also suffice ok. So now, approximately count the number of

perfect matchings, all that we require is we need to do a near uniform sampling of the

perfect matchings in the bipartite graph instead of sampling the perfect matchings.
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So, what we will do is we will sample M n U M n minus 1. So, M N was a set from

which we needed to sample. Now here sampling from now on, sampling would mean

near uniform sampling. Instead we will do an almost uniform sampling or a near uniform

sampling from M N U and M N minus 1 and we will see that our algorithm can be

slightly modified; to compute the values of M N from these quantities ok.

So, let us say that we will be doing near uniform sampling. Let us pretend that we are

doing uniform sampling of M N U and M N minus 1 ok. So, when we are doing the

sampling of M N U M N minus 1 or later on M k U M k minus 1 we can estimate the

following quantity which is let us call this as r k. So, r k is equal to m k that is number of

perfect matchings of size k by m k minus 1 because the entire universe from which we

are sampling consists of two kinds of matchings. 

Matchings  of  size  k  and  matching  the  size  k  minus  1;  if  these  matching  formed

significant portion of the entire thing, then we know that Monte Carlo algorithm would

estimate m k by m k minus 1 with good accuracy ok. So, what we will do is, we will

estimate r k. We will say that r 1 is basically equal to m or the number of edges because



anything could have been correct. I mean, when you take r 1; that means, the its the

number of matchings of size 1 that is m we can readily estimate it; I mean, we do not

have to find the ratio we will just take that as a value.

Now, if you compute r k the product over k varying from let say N to 1, this is equal to m

n ok. So, in order to estimate m n, we need to estimate just r k. So, you can write the

entire steps. Missed out many steps in between, but we will mean we have come not

given complete proofs, but this is our outline.
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Estimate m n by computing the product by i equals 1 to n r i where, r i is equal to m i

divided by mi minus one and r 1 is equal to m. Number of edges. Now, were all could be

go wrong? The first of all each of these r i’s we are just estimating. So, there could be

error; could introduce error in each r i ok. Second, each r i error might be small. Product

of r i’s could have accumulated, product of r i could accumulate error. And the individual

r i’s are not so much error prone, but maybe the product has ok.

Another issue is, how do we estimate r i? This requires sampling from m k union r k m k

union m k minus 1 can be uniformly sampled from this. Even if we could do uniform

sampling, is it guaranteed that r k, I mean, that m m k and m k minus 1 are significant

portion of the entire collection is m k and m k minus 1. Or we can just simply ask, is r k

a reasonably large? That is if one of the m i’s, capital m i’s is very small in comparison

with  the  m i  plus  1,  then  when  you  do  the  Monte  Carlo  algorithm,  the  number  of



iterations that is required to guarantee the accuracy of r k could be reasonably small. So,

is this reasonably large? These are some important questions. 

So, we will see that each of these steps could be satisfactorily answered and therefore,

we could estimate M N to reasonable accuracy by this method.
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