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Lecture – 30
DNF counting

In  today’s  lecture  we  will  see  how  we  can  approximate  the  number  of  satisfying

assignments for a DNF formula. So, the DNF formula is a formula is Disjunctive Normal

Form which means you have clauses C 1 C 2 to C m and each of these clauses is a

disjunction of literals.
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So, each formula is of each clauses are the from l 1 and l 2 and l 3. So, on where each a l

i is a literal; that means, it is a formula it is a of the form x i or not x i. So, let us say l any

general literal is of the form its x i or not x i for some i where x i is the variable. Now,

what we are interested in is counting the number of assignments. So, suppose there were

n variables x 1 to x n there are 2 raise to n different assignments possible, we need to

count the number of assignments which are satisfying this particular DNF in other words

the number of assignments which causes the formula to evaluate to 1 ok.

So,  first  of  all  we need to  understand what  is  the meaning of approximating  in  this

context. The first notion that we will look at is polynomial approximation scheme. So,

suppose I is an instance of a problem; that means, one particular formula and we are



interested  in  A I  that  is.  So,  here  you  could  think  of  it  as  number  of  satisfying

assignments or let us say Hamiltonian path matching etcetera; number of Hamiltonian

paths in a given graph a number of matches in the given graph. So, A I denotes the

number  of  assignments  which  can  satisfy  the  particular  problem or  some parameter

associated with each of these instance. For each of these instance if you think of it as an a

problem belonging to the class non-deterministically NP, then you can look at A I as the

number of certificates or number of y’s which will satisfy the formula corresponding to

the non-deterministic problem.

So, we often write it as A x y we write a predicate associated with each NP problem

instance A x y where y is what we call as a certificate. So, A I you can look at as the

number  of  certificates  and  when  we  say  that  we  have  a  polynomial  approximation

scheme; that means, for any instance of the problem and for a given number epsilon. So,

epsilon we can think of it is a real number, let us say between 0 comma 1; we can output

something let us call it as Y this lies between. So, the actual value was A I, then our

output will lie between 1 minus epsilon times A I and 1 plus epsilon times A I.

So, if by A I if we denote the number of satisfying assignments and your Y the output of

your  algorithm must  lie  between 1 minus epsilon times  the  actual  count  and 1 plus

epsilon times actually  count.  And, if  you can have such an algorithm the time taken

should be polynomial in the input size and there is an epsilon here. So, if you look at

epsilon as a number it will take let us say log 1 by epsilon we are taking 1 by because it

is a number less than between 0 and 1. So, log 1 by epsilon is the amount of space

required to present this number or the input size is log 1 by epsilon. 

So,  we  could  have  said  that  the  algorithm  should  run  in  polynomial  time  it  being

polynomial both in the input size and in log 1 by epsilon, but in this case we actually

allow a little more leeway say happy if it runs in poly 1 over epsilon.
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So, when we say polynomial approximation scheme with approximation as let us say I

mean epsilon we will say that it has to run in poly, if you think of the input size as n then

should be poly n and 1 by epsilon. And if we could find such an algorithm for every

possible epsilon then we will say that is a Fully Polynomial Approximation Scheme and

we call it as FPAS. Because that is one notion of approximation here we insist that the

algorithm has to be deterministic.

So, deterministically an output has to be generated which lies very close to the actual

answer, it deviates with the actual answer by an amount epsilon. This is the first notion

regarding  approximation.  The second notion  that  we will  have  is  we will  allow our

answers to be let us say randomized. So, we will think of randomized approximation

schemes.  So,  everything  remains  pretty  much  same  as  polynomial  approximation

scheme, but we will insist that this output which should lie between these they need not

always lie there, but it lies with a certain probability delta.

So, the additional parameter is delta if we say that this is the failure probability when

there is the chance that the algorithm fails. So, we will say that the probability that the

output lies between 1 minus epsilon times A I and 1 plus epsilon times A I this is going to

be greater than 1 minus delta; means the success probability is at least 1 minus delta. And

if we could do this for every delta, delta again being a real number between 0 and 1, the

input  size  is  log  1  by  delta.  So,  we  will  insist  that  the  algorithm  runs  in  poly  in



polynomial time polynomial n; polynomial n let us say 1 minus epsilon and log 1 by

delta. And, if we could do this for every epsilon and every delta then we will say that we

have a fully polynomial randomized approximation scheme.

So, this would be, so, when we look at any approximation problem this would be the best

case  scenario  that  is  if  we  can  find  an  algorithm  which  is  which  satisfies  these

conditions. And, if we are unable to do that we will try and see if we can do it for just

mean to say certain epsilons, but delta we still want the failure probability we want it to

be  arbitrary  low that  is  for  any  failure  probability  we  should  essentially  have  a  an

algorithm. And its running time should be bounded by polynomial in log 1 by delta, but

regarding the approximation factor where a little less stringent ok.

So, this  is  what we mean when we say we have an approximation algorithm a fully

polynomial randomized approximation scheme for a particular problem. Now, let us keep

this definition inside for a minute and think about a simple problem.
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So, let us say we have a circle whose radius is 1 ok, we need to estimate the area of this

could have been any other geometric figure how do we estimate the area? So, there is a

technique called as Monte Carlo simulation ok. What does the basic idea? Fit this circle

inside the square ok. So, this is a square of size 2 centimeter. So, if we randomly choose

a point from the square the probability that. So, let us call the randomly chosen point let



us say x, probability that x belongs to C is equal to area of C divided by the area of this

square which is 4 ok.

Now, this will also mean that area of C is equal to 4 into probability that x belongs to C

ok.  So,  if  we  could  estimate  this  probability  exactly  that  would  mean  that  we  can

compute the area of c. So, now, probability that x belongs to C is going to be nothing, but

pi r square by 4 and this multiplied by 4 gives us pi r square in some sense we already

knew this ok. So, we just plugged in that to compute the probability, but let us say it is a

more irregular figure ok.

So, we enclose it in a in a known area let us say this is 2 and this is 4, the total area is 8

probability of x belonging to let us say x that region let us call it as x is equal to area of x

divided by 8. So, 8 times that probability is going to be area of x. Now, how do we

estimate this probability? One thing we can do is we can just repeatedly toss ok. So, let

us say independently we toss the 100 coins and out of these 100 points some of them will

lie inside and someone they may lie outside. Should have a method to figure out if the

randomly chosen point lies inside or outside the region of interest. If we could do that the

number of points which falls inside let us say that is success.

So, number of success by number of trials this is a good estimate of the probability you

can argue that no more theoretical fashion, but you can intuitively feel that the fraction of

points which lie inside is a good indicator of the probability that the point chosen lies

inside ok, 8 multiplied by that gives us the area. So, that is a way to compute the area this

is this same method can be extended to counting or approximate counting. So, this gives

an  approximate  area  if  we  could  compute  the  probability  exactly  then  the  area

computations  would  have  been  perfect  it  would  have  been  exact,  but  in  we  cannot

compute the probability exactly since we are unable to do that we estimate it and in the

estimation there can be errors.

The estimation by central limit theorem certainly is going to be better and better as the

number of trials becomes very large. Also you can see that if we had chosen a much

larger area to contain this particular area of interest then the number of trials will have to

increase. If you were to get let us a reasonable approximation to increase the accuracy it

is best that the area which is holding this particular region is as close to the actual area as

possible ok.



So, that will give better and better bounds, on the number of trials that we have to do if

this was a tiny region inside a large let us say box then we do not expect to hit this region

too often. But the quality of the answer that is if you look at the number of success that is

points which are chosen and are lying inside the area of interest  divided by the total

number of trials. This answers accuracy depends on the number of trials in the number of

trials will have to be larger and larger if this area was large in comparison to the area of

interest ok.
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So, with these insights we will try and have an approximation algorithm for DNF. So,

first attempt this will be our algorithm choose an assignment at random to do this for n

steps if. So, let us call this assignment a if a satisfies phi then a count plus plus. So,

initially we will have count equals 0 and then the last step would be number of. So, we

are interested in the count. So, we will output its a count divided by n this is a fraction of

satisfying assignments multiplied by total number of assignments we had 2 raise to n

assignments ok.

So, we can round this off to an integer value and that is going to be our output. This is

the algorithm any good what are the probability, what are the issues with this what are

the I mean what can we say about the success probability and the quality of answer. So,

let us look at a more general problem; let us say we had a universe which we call as U

and let us say we have the set of interest which we call as G.



So, G is a subset of U, we are interested in computing size G ok. So, let us call this U

size of U to be. So, this is ok. So, now, if we follow a similar algorithm Monte Carlo

algorithm to compute the a the size of G then we would have sampled n times. So, the

algorithm is simple sample n times declare number of success divided by N times size of

U as let us say size of G ok.

So, when we do this what all could go wrong. How many times will we have to run the

algorithm n is what we need to determine in order to get a reasonable estimate.  So,

suppose we say that we want let us say an algorithm which has error probability of at

most delta and let us say approximation factor as epsilon.

Then how many times will we have to run this algorithm in order to get these parameters.

The problem that could be there is G could be first of all very large or very small if G is

very small compared to the size of the universe then we expect that this is not going to be

a good algorithm and we will see the quantitative dependency between these.
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So, we will define few random variables Y is equal to number of success in n trials. So, it

could be any number between 0 to n and we can think of this is Y 1 plus Y 2 plus Y N

where each these are i i d random variables ok. The answer that we would have declared

is. So, size of G we will declare it to be equal to Y by N into size of U ok, estimate of G

that we will give is Y by N times U we want to know. So, note that we can calculate

expectation of Y that is going to be equal to N times expectation of each Y i and each Y i



we can say that its expectation is rho, where rho is equal to say G by U size of G by size

of U 

The probability that let us call the estimate as G tilde; so, G tilde lies between 1 minus

epsilon times G and 1 plus epsilon times G, this is a probability that we need to estimate

ok. And then we want this probability to be let us say greater than 1 minus delta; that

means, the failure probability is going to be delta and for that what should be the N that

is what we will compute.

So, this probability it is going to be equal to probability that 1 minus epsilon and size G

is going to be rho into U and this is equal to probability that 1 minus epsilon times rho U

lies  between  G  tilde  is  nothing,  but  U  divided  by  N  into  summation  Y i.  So  this

probability  is  nothing,  but  the  random  variable  Y which  is  summation  of  Yi’s  lies

between 1 minus epsilon times rho N and 1 plus epsilon times rho N and rho N is the

expectation of this random variable. So, we can simply write this as.
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The probability that Y minus expectation of Y rho N the modulus of that, is less than

epsilon times rho N. So, we can straight away apply Chernoff bound ok, Chernoff bound

applies to the complement of this event. So, let us if you look at the complimentary event

so, probability that Y minus rho N the absolute value is greater than or equal to epsilon

rho N.



Chernoff bound says if you sample Yi’s independently with rho then there some x will

deviate from its expectation by an amount more than delta U is going to be less than 2 e

raise to minus say delta square by 3 times mu ok. So, this is the form of Chernoff bound

that we can just straightaway use here and that will give us the probability that Y minus

rho N is greater than epsilon times rho times N.

So, this is mu and this is going to be delta. So, this is going to be less than 2 into e raised

to minus say epsilon square by 2 into sorry epsilon square by 3 into your mu is going to

be  rho  N  ok;  so,  that  is  that  is  what  we  obtained.  So,  we  will  look  at  the  failure

probability the failure probability is less than this. So, if we can tolerate the phase the

probability of failure if it is equal to delta at most delta and we can equate these two

quantities to determine what should N be ok. So, equating those if you said delta this is a

failure probability this is equal to 2 e raise to minus epsilon square by 3 rho N, we can

just take log.

So, epsilon cube by 3 rho N is equal to log 2 by delta. So, N will be equal to 3 sorry by

this is epsilon square 3 by epsilon square log 2 by delta by rho. So, the number of trials

that you have to do to get a probability of failure no more than delta is going to be this

much.
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So, number of trials required will be equal to 3 by. So, this is for error less than delta this

is 3 by epsilon square log 2 by delta into 1 by rho. So, if this rho was very small, rho was



the fraction of inputs that we had tried which were good, rho is size of G by size of U, G

was the set that we were interested in and U was the universe. If rho was very small then

this is not a good algorithm. So, in DNF there could be a DNF whose there is just 1

satisfying assignment amongst let us say 2 raise to n possible assignments and then the

number of trials record could be large ok.

So, that is the reason why we cannot use the simple Monte Carlo algorithm to solve the

approximation  problem  for  DNF  counting;  so,  what  is  the  way  out.  We were  now

sampling from here should not expect that this is going to be a good sampling because

they said that we had was very tiny compared to the region from where we are sampling.

If you could find something which is small enough to encompass this then we could do a

better approximation and that is what we will see in the next part ok.

 So, instead of sampling from the set of all possible assignments we will try and sample

from a small region ok. So, what does these regions going to be ok. So, let us look at this

structure of DNF formulas little more carefully.
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So, if the formula was of the form let us say l 1 or l 1 1 and l 1 2 so on or l 2 1 and so on

or l m 1 and l m k. Can we try and count how many satisfying assignments can be there

they will split into parts. So, let H i denote the number of assignments satisfying the ith

clause ok.



And what we are really interested in this union of H i, can we determine any of these if

we find the H i and we could maybe try inclusion exclusion formula, but since there are

m clauses the inclusion exclusion formula would essentially have 2 raise to m different

terms. So, we cannot really  go by that root that is going to be computationally  very

costly.

So, what can we really do here. Let us see if we can just compute each H i. If you look at

each H i they are of the form let us say x 1 and x 2 and x k maybe not and. So, how many

satisfying assignments are there for this? Well, there is only one possible value of these

variables that will satisfy the particular clauses H i, but the other n minus k variables can

be arbitrarily assigned.

So, each assigned count is extremely simple, the number of satisfying assignments for

the ith clause can be simply computed as 2 raised to n minus k, where k is the number of

variables that is appearing in the or number of literals appearing in that particular clause.

Note  that  if  any  clause  appears  more  than  once  we  just  throw  them  away  that

simplification can be done some variable appears both as positive and negative then of

course, that clause is not satisfiable therefore, we can just throw it away.

So, 2 raise to n minus k under these assumption 2 raise to n minus k is the number of

assignments which satisfies the ith clause. If we wanted to take 2 of them simultaneously

then it becomes little more complicated, but that also you can compute the formula. But

the real issue here is we cannot compute all of them there are too many of them 2 raise to

m of them. So, we cannot apply inclusion exclusion.

What we will do is instead of sampling from the entire when we run our Monte Carlo

simulation or the Monte Carlo algorithm instead of sampling from 2 raise to n possible

assignments. We will sample from another sample space which whose size is not too

large it is at most m times the number of satisfying assignments ok.

So, if we could find a space which contains at most m times the number of satisfying

assignments then by this method rho is going to be at most m sorry 1 by m so, 1 by row

is m. So, that is going to work in 3 by epsilon square log 2 by delta ok.
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So, if rho is equal to 1 by m or if it is it is a greater than or equal to 1 by m then simple

Monte Carlo works. So, that sample space is what we will construct its a simple sample

space to construct. Let us imagine the multi set of a Hi’s. So, h i here we denoted it as a

number we can overload it and say that H i is a set containing all the assignments which

satisfy the ith clause.

So, when you say multi set we will look at the assignment comma i ok. So, consider the

pair v comma i ok. So, let us say we will again H i itself H i is equal to the set of all v

comma i such that v satisfies the clause i ok. So, clearly if you take union of Hi s that is

going to be multi set of you can put it i mean in 1 to 1 correspondence with the multi set

of satisfying assignments  that is  for every satisfying assignment  we are counting the

number with its multiplicities.

If the assignment v satisfies both let us say clause 5 and 3 and 25 it is counted 3 times,

this  is  once  for  each  clause  it  satisfies.  Now we could  define  another  set  which  is

basically so, this is going to be our universe. So, union H i have which we will call as H.



(Refer Slide Time: 34:45)

So, universe is going to be union H i which we will call as H ok. Now in this universe

when the count means obtaining the count of this universe is simple because that is just

going to be sum over sizes of H i s because these each H i has a unique i in the second

coordinate. So, you look at each H i the elements inside that H i s the first component is

an assignment and the second component is a number indicating i. So, it is different for

different classes. So, this summation is just 2 raise to n minus k i where k i is the number

of literals appearing there. So, size H i can be easily computed.

Now, we will define G to be the subset. So, find G such that size G is equal to number of

satisfying assignments and additionally G is a subset of H ok. Now number of satisfying

assignments and H what is the relationship? So, H is not going to be so, it surely will be

less than m times number of satisfying assignments where m is the number of clauses.

This is because you take any satisfying assignment it can be present in at most m clauses

ok.

Therefore each quantity can each assignment can appear at most m times therefore, total

number the size the multiset is bounded by m times the number of assignments. So, when

you get these the set G which is equal to number of satisfying assignments and this is the

subset of H size of G by size of H is going to be greater than 1 by m ok. So, G by H is

going to be greater than 1 over m and that will take care of all the requirements ok. Now

how do we construct this set? It is simple.
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So, let G be the subset of H such that G consists of elements of the form v i where i is the

smallest element may be i will just rewrite it.
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So, we have this set H which is the multi set. So, this set these various elements v i v j u i

u i 2 etcetera. Now we can think of this as split into various assignments. So, let us say v

i 1 v i 2 v i k. So, v is an assignment which appears k times and then let us say u appears

say j 1 u j 2 u j r and u appears r times and so on. So, we want to pick one element each



of these for that we will pick this smallest j r ok. So, G will basically be the set of v i

such that v i belongs to H and v j does not belong to H if j is less than i ok. 

So, pick the smallest elements on the basis of the second coordinate for each assignment.

So, we are the number of elements that we pick is going to be equal to the number of

satisfying assignments. So, this is easy G is equal to number of satisfying assignments

ok. Now, how do we check if a particularly now let us sample one of the elements and

we sample uniformly from H. Well, we can I mean the moment of thought would tell you

that from this multi set if you wanted to sample that is not a difficult thing because you

can first choose a particular clause uniformly at random and then from that. 

So,  if  you choose let  us  say this  the second coordinated  random. For that  particular

second coordinate, all the satisfying assignments of that there are 2 raise to n minus k of

them. They can be found by fixing the first k coordinates first k here means whatever of

the  variables  it  is  appearing  in  that  particular  clause  those  who  set  to  the  value  as

prescribed  by the  clause.  And for  the  other  variables  you just  choose  randomly  ok;

uniformly at random toss a coin and fix the values of the other variables and that will

give you a uniform sampling from each of these H i’s and that basically translates into a

uniform sampling for the entire set.

So,  you can uniformly sample from H. Further once you have picked one particular

element, how do you check whether that belongs to the set G. Well if your i was some

particular element, for every element smaller than i, there are at most m of them you can

check whether they belong to any of these smaller elements. There are only m of them.

So, you can actually do this computation that computation polynomial time.

So, this verification of whether a particular assignment comma i pair belongs to G can be

done in polynomial time and therefore,  we are done with the requirements  we could

sample from this set x uniformly at  random. The size of H is known and we can in

polynomial  time  figure  out  whether  the  sampled  element  belongs  to  G  or  not  and

therefore, that will give us a polynomial time approximation scheme for computing the

number of satisfying assignment of DNF formula. 

We will stop here and we will continue with other approximation algorithms in the next

class.


