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Lecture – 03
Randomized Find

So, in this lecture we will learn about find algorithm, is the algorithmic issue that we are

interested in is as following.

(Refer Slide Time: 00:38)

The input is a set S of integers and a number k which is also an integer positive integer.

And we have to find the kth smallest element of S. The straight forward approach for

solving this would be to (Refer Time: 01:17) and output the kth element, but that would

take and log n time. Assorting takes n log n time question is can we do it better? Of

course, there are linear time algorithms; linear time deterministic algorithms to solve this

problem.

We will see a simple randomization. The linear time algorithm which the deterministic

linear time algorithm is little more complicated, we will see that a simple randomized

algorithm  can  do  this  job.  And  while  doing  we  will  also  learn  about  probabilistic

recurrences ok. So, let us look at that. So, our algorithm is the steps are as follows, first

we pick a random number Y from S and based on this randomly chosen number we split



the entire set into 2 parts. So, we are (Refer Time: 02:45) to do the set of numbers which

are smaller  than Y and the set  of number which is  greater  than Y and based on the

number of elements in these set we recurs, that is the basic idea of the algorithm ok.

So,  we will  construct  sets  A and B based on S.  So, A consist  of  elements  less than

elements of S less than say y and B is the set of elements of S greater than y and the third

step would be. So, if size of A is equal to k minus 1. So, we will assume for the time

being that S contains distinct element there no repetition of elements. If A contains k

minus 1 elements, then return y as the answer. The next condition will be if size of A is

less than k minus 1 that would mean that the kth smallest element is not the element we

have chosen it is in the set of elements which are greater than y. So, return we will call

this algorithm as find S comma k. 

So, here what we will return is return find B. So, in B we will find the k minus size of A

plus first element. So, already we have identified small a which are less than the kth

smallest elements and the element Y chosen is also not the Kth smallest. So, all those

elements have gone will return from d the third condition if A is greater than k minus 1

then we know that our element basically lies in side A. So, will return find A comma k

simple  natural  algorithm.  So,  far  collection  was  say  2  8  3  9  ok.  So,  this  contain  7

elements  and if  we wanted  to  find the fifth  smallest  element,  suppose  we randomly

choose 3 then. So, so suppose y is equal to 3 and based on 3 we split we have our A is

equal to the set consisting of 2, and B consist of every other element so 8 9 7 16 and 4

ok.

So, we know that the fifth largest must be in this collection and B and it must be the. So,

we will basically find the third smallest, because the first 2 small elements are basically

in A and Y find the third smallest in B. So, B comma 3 would be the call and again let us

say we choose a random element, suppose we had chosen let us say 9 ok. So, in that case

our  A would  essentially  be  8  7  4  and B would  just  contain  16  and there  already  3

elements in this collection. So, we can skip all the other element. So, we will basically

find A raise now 8 7 4. So, find the third element in A and the recursive (Refer Time:

07:23) would return 8 as the fifth largest element the answer is correct 1 2 3 4 and this is

the fifth element.



So, that is our algorithm, how do we analyze this algorithm? The worst case running time

of these of course, be very bad, but what we want is the expected running time of these

algorithm that could depend on k.

(Refer Slide Time: 07:58)

So, what we will do is we will define T n comma k as the expected running time on any

input, I mean the worst case expected running time for an input of size n and we are

interested in finding the kth smallest element and we can define T n to be max over all

with possible values of k T n k ok. So, amongst all possible k s whichever k is the worst

k for n the value of T n k at that point is T n ok.

So, let us write down a recurrence for T n if you had an input of size n how much time

does it take in an expected sense? So, we had the following situations, if the element that

we pick is the kth smallest element we could be very lucky and we could just pick the

middle element, all those element have to be compared with all the other elements. So,

after  this  step  after  this  pick  this  construction  of  A and  B  could  take  n  minus  1

comparisons. 

In  all  cases  it  takes  n  minus  1  comparisons  and  after  that  we  require  additional

comparisons, one of these comparisons. And the cost of those comparisons will be based

on our choice y and we have to find the average value over all possible choices. So, with



probability 1 by n we could just require one comparison and each of these other choices

could happen based on the number that we have picked. So, suppose.

So, let us look at these sets A and B in their sizes. So, based on the split we could have

either the size of A as 0 and B as let us say n minus 1. Both of them are mean this will

depend upon which is the k, which is the y that you have pick. It could also be 1 and let

us say n minus 2 2 and n minus 3 n minus 1 and 0.

So, all these could be equally likely with probability 1 by n. Once again the pivot that we

pick or the element y that we pick will uniquely split the entire set into A and B. And size

of A could be 0 to n minus 1, size of B also could be 0 to n minus 1 once the size of A is

fixed the size of B is automatically fixed and all these are equally likely. Let us look at

the case where this is of size i and this I mean A is of size i and B is of size n minus i

minus 1 ok.

Now, in this case whether recurs in i or whether we recurs in n minus i minus 1 depends

on the value of k. If k was smaller than i then we would have recurs in A otherwise we

would have recurs in B. But since we having the taking the average of all possible I

mean we are interested in finding the worst case behavior over k, because here we are

looking  max  over  all  possible  values  of  k,  we  could  assume  that  we  will  be  very

pessimistic and we could say that always we will be recursing on the larger set ok.

So, this can be and therefore, whenever we are confronted with the choice is 0 n minus 1,

we will basically be recursing in n minus 1. Whenever we are confronted with the choice

of 1 minus 2, this is where we will be. And all the way of 2 lecture of n by 2, we would

be recursing in the other half and if you look at it carefully the terms basically repeat.

So, we can say that T n is equal to n minus 1, this is for the fixed comparison that you

have to make to separate the elements into sets of size I mean sets which is smaller than

Y and greater than Y plus if you are lucky you could take let us say and with probability

1 by n you have to take just return the correct answer. So, let us say that is constant time.

So, 1 by n into 1 or if you are looking at the number of comparison we could just say that

this does not happen at all plus 2 by n into T n minus 1. 



(Refer Slide Time: 13:10)

So, T n minus 1; so, T n minus 1 appears in both these situations so, that is why this 2 is

coming. So, all these could have appear in the possibilities for A and B each of them

appears with 1 by n probability, but 0 n minus 1 in that case we recurs on this set of n

minus 1 and n minus 1 0 again we recurs in the set of size n minus 1. So, that accounts

with 2 into T n minus 1 plus T n minus 2 all the way of to T n by 2 ok.

(Refer Slide Time: 13:50)

So, this is the recurrence that we have, T n is equal to n minus 1 plus 2 by n times

summation T i i varying from n by 2 to n ok. So, if you look at these the summation there



are precisely n by 2 terms or n by 2 plus 1 term from together and they vary from T i to T

i plus I mean from n by 2 to n ok. So, we been to guess that we could guess and solve.

So, let us check whether T n is less than or equal 4 n ok. So, suppose we plug in the

value that T n of T k is equal to 4 k is less than or equal to 4 k we can see if  this

recurrence is satisfied now if this recurrence is satisfied then we know that T n is less

than or equal to 4 k ok.

So, when we plug that n T i from n by 2 to n takes value from let us say 4 n by 2 to 4 n

ok. So, this is precisely I mean this is roughly n by 2 terms and their values are varying

from 2 n, let us take the 4 out 4 times n by 2 to n and the average value of the these is n

by 2 plus n by 2 ok. So, that is going to be 3 n by 4 ok. So, these are n by 2 terms with an

average value 3 n by 4. So, we can say that  summation i  equals n by 2 to n T i is

approximately equal to 3 n by 4 into n by 2 because there are n by 2 terms, you can do

the calculation more precisely and check it, but this itself is sufficient for us. So, this tells

us that T n is equal to n minus 1 plus 2 by n into 3 n by 4 into n by 2 ok. So, this cancels.

So, over all you will get this as that is the 4 here 4 into 3 n by 4. So, this is 4 times 3 n by

4 so 3 n. So, n minus 1 plus 3 n which is 4 n minus 1 ok. So, therefore, we can say that

the average time taken is going to be less than or equal to 4 n its a linear time algorithm

ok. So, this particular week the things we have covered.
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First we looked at quick sort algorithm and then we had looked at another algorithm for

matrix multiplication, this was the third algorithm called find algorithm ok. So, all these

algorithms used randomness in a certain way, but if we look at these algorithm closely

there are some differences between them. Quick sort for example, always get the correct

answer.  This  find  algorithm  also  always  get  the  correct  answer  whereas,  matrix

multiplication we had this property that the correct answer is given with high probability,

but the quick sort algorithm could have large running time in certain runs. Find algorithm

also that problem the running time could be high.

So, large running time is the drawback of this algorithm where as matrix was giving

correct  answer  with  high  probability,  but  the  running  time  was  to  say  always  good

running time.  In the sense it  would never  take more than I  mean the algorithm will

always run in on square. So, this basically is the 2 types of randomized algorithm. The

first algorithm which always gives the correct answer is called a Las Vegas algorithm

whereas, the algorithms which sometimes give an incorrect answer they are called as

Monte Carlo algorithms which one is better will depends upon our needs. 

If we wanted an algorithm which will always give the correct answer. If the correctness

of the answer is (Refer Time: 19:29) then we will have to go with Los Vegas algorithm.

But if we want the algorithm to be first and we can live with a small we can take a small

chance of error then Monte Carlo algorithms are usefully used ok.

That is all that we will have for this week. In the next week we will look at axiomatic

definitions of probability. We will have review of probability that we would be needing

in the later on lectures.


