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Lecture – 29
Introduction to Approximate Counting

In the coming few lectures we will learn about Approximate Counting.
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So, we can look at the problem in the following way there is a set S and its description is

given in some particular way and we need to know how many elements are there the set

S? Now the presentation of S is extremely important how exactly is S given and that is

going to have bearings on the computational cost associated with this counting. Let us

look at couple of examples of such counting problems.

1 given a Boolean formula phi let S be the set of assignments satisfying phi ok. So, we

need  to  count  the  number  of  satisfying  assignments  for  a  formula  another  kind  of

counting problem could be given a graph G equals V comma E,  let  S be the set  of

spanning trees of G. A 3rd example could be given a bipartite graph let S be the set of

perfect matchings in.

So, let us say if you call this bipartite graph G you would not know the number of perfect

matchings  that  are  there  in  G.  So,  if  you  think  of  each  of  these  as  computational



problems in the first case the input is a Boolean formula of a certain length and in the

second case it is a graph of a certain size, in the third case it is a bipartite graph of a

certain size and our answers depend on the formula and the graphs that are given is input.

But how large can these answers be? For a Boolean formula let us say n variables the

answer the count could be as large as let us say 2 to the power n. And given a graph the

set of spanning trees also could be exponential in the number of vertices and same for

perfect matching ok, but these numbers and therefore, they can be output by some string

of length log exp n ok, in the sense the output is going to be polynomially long in all

these 3 cases.

When the count is extremely large that is it is prohibitively large to even display it I

mean that is not a problem within our computational abilities. But see all these problems

are the characteristic the answer the final answer is not too large it is polynomially long

in the input size. Contrast this with the case where we had to list the set of all satisfying

assignments and that would have been a very difficult task because there could be as

large  as  2  to  the  n  satisfying  assignments  and  there  could  be  exponentially  many

spanning  trees  and  there  could  be  exponentially  many  perfect  matchings.  A related

problem would be to sample uniformly from these exponentially large sets.

So, the set S as such could be exponentially large if we were able to count it that is

interesting thing in many cases and sometimes we are more ambitious we want to list the

set of elements in S that could be troublesome because the set could be very large. In that

case we might reduce our ambition and say that we want to uniformly sample elements

of S and there are some interesting relationship between sampling and counting. So, now,

let us look at these problems a little more firmly what are the questions that we will be

addressing and what are the requirements on the quality of our answers.
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So, let us look at one class of computational problems called as decision problems. So,

these are computational problems with; so, we will just uniformally write it as with 0 1

answers. So, examples would be is there a Hamiltonian cycle in G, another example

would be is there an Eulerian cycle in G so, G is the input. The 3rd example would have

been does the given system of linear constraints have a feasible solution with variables

taking integral values 

Another example of a decision problem would be is there a perfect matching in a given

bipartite graph these are all problems known as decision problems. And, some of these

decision problems is nice algorithms and some of them have are known to be a little

more difficult to solve.
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So, we could say that a certain decision problem belongs to the class P or polynomial

time if we could answer the decision problem ok, so, in polynomial time. The decision

problem can be answered in poly time. So, in particular if you look at say Eulerian cycle

problem the input is an arbitrary graph and we want to check if it contains an Eulerian

cycle  there  is  an algorithm which will  answer this  question for every graph and the

algorithms running time is bounded by a polynomial in the input size.

Therefore,  we will say that this problem Eulerian cycle problem belongs to the class

called  as  P or  polynomial  time.  Now  we  could  ask  this  with  associated  with  each

decision problem we could also construct a related counting problem how many Eulerian

cycles are present in this particular graph that is a more complicated question. Now, note

that if you could solve the counting problem we will always solve the decision problem,

because the counting problem, if the answer to the counting problem is greater than or

equal to 1 then we know that the decision problems answer is yes. 

So, counting problems one should expect that the computational cost associated to the

counting  problem is  more  than that  of  the  decision  problem.  Let  us  look at  another

complexity class called as NP its called as non deterministic polynomial time. So, look at

all  decision  problems  for  which  you  can  have  a  non  deterministic  polynomial  time

algorithm that will essentially be called as the class NP.



Let us take an example is a given number composite. So, the input is a let us say n digit

number denoted by capital N, we want to know whether this is a composite number. Now

the non deterministic polynomial time algorithm to do that would be guess a factor check

that the factor divides N.

So, the input is N ok, if the factor divides N you will say its composite otherwise you

will say not composite. Now the algorithm has the feature that for any composite number

there is a correct guess that will cause the algorithm to say yes the number is composite

and for every prime number there is no guess which would force the algorithm to say

that the number is composite.

Of course for composite  numbers there are wrong guesses that is true,  but for every

composite number there is at least one right guess and therefore, we will call that this

problem or this decision problem composite versus non composite that is an NP that is of

course,  the  polynomial  time  AKS  algorithm  which  checks  whether  the  number  is

composite or not and it does not involve any guessing.

Similar question would be is there a Hamiltonian cycle in G. Again you can have a non

deterministic polynomial time algorithm that is an algorithm which will make a guess

and verify using that guess that the graph contains a Hamiltonian cycle and the entire

computation gets done in polynomial time.

So, now why are we looking at P and NP when we look at the various counting problems

that were faced with we could imagine that there is an underlying sample space a large

sample space and say which we call U and this is split into 2 parts the set which has the

required property and the complement set. So, for each element we could check whether

the particular element I mean let us say take one element and check whether it belongs to

S or it belongs to S complement you do this for every element in the universe you will

get a count well that is not an efficient algorithm if U is very large.

But this question itself there is the sampled element or the arbitrarily picked element

have the particular property or not that we can view as a decision problem that decision

problem may have a  polynomial  time algorithm or in some cases it  might  have non

deterministic polynomial time algorithm.



The class of problems that we are interested in for counting is those problems whose

decision problems have a non deterministic polynomial time algorithm, they should have

at least a non deterministic polynomial time algorithm naturally this class P is completely

contained inside NP ok.
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So, now let us look at some more concrete example let us look at this problem the input

is a graph and the output we want to be the number of spanning trees of G. Clearly thus

G have a spanning tree this question can be answered in polynomial time its connected

we can say that it contains a spanning tree or if we just assume that the input graph is

connected we know that (Refer Time: 14:36) it is going to have a spanning tree.

So, the decision problem associated with it is a very simple problem it can be resolved

Trevelyan polynomial time, but what about the counting problem, can be estimate or can

we find out the number of spanning trees in a given graph. For example, if we have taken

this particular graph it is a simple graph. So, this is 4 vertices and 5 edges, how many

spanning trees does this have? Well, if you keep the edge 1 3 in the spanning tree.

Then so, let us look at the number of spanning trees for this particular graph this could be

one and there are 4 such and these are the ones without the diagonal with the diagonal is

there that this is one, this is another ok.



So, there are 4 such as well. So, in total there are 8 spanning trees. So, here we had

enumerated them and one can verify that there are no more. So, it looks like some kind

of I mean you have to try many possibilities and check if it is a spanning tree and so on;

there is a theorem called Kirchoff’s Tree theorem which basically helps us solve this

problem quickly. So, the theorem says suppose you look at the matrix A which is the

adjacency matrix for the matrix for the graph ok.

So, A let us call it as the. So, in this case it would be the matrix with some 1 2 3 4 2 1 as

an edge 2 0 is not an edge 2 3 is an edge this is not an edge 4 1 is an edge 4 3 is an edge

others are not an edge this is the matrix A. And we can have a diagonal matrix which lists

the degree of each vertex. So, one is the vertex degree 3 and the others are of 2 is of

degree 2 3 is of degree 3 and 4 is of degree 2 and everything else 0. So, if you look at the

matrix D minus A that is going to be the a following matrix with 3 2 3 2 on the diagonal

they were 0 and the other entries are all negative ok. 

So, this matrix D minus A in general is going to be and for any undirected graph, this is

going to be a matrix whose determinant is 0, because if you add up any row for that

matter any column the symmetric you will get 0, because for each edge there is a minus

1 and you have the degree on the diagonal.
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So, if you add up in your row you will get 0. So, the determinant of this is going to be 0,

but you can just remove a row and a column and then try and evaluate the determinant



and that determinant would be called as a minor. So, look at a minor of D minus A and

look at its determinant that will be equal to number of spanning trees ok. So, this is

Kirchoff’s  tree  theorem and  because  of  the  tree  theorem  we  can  compute  all  these

quantities  determinant  computations  is  can  also  be  done  in  polynomial  time.  And

therefore,  this  problem  of  computing  the  number  of  spanning  tree  can  be  done  in

polynomial time.

So, this is an example where the decision problem is also called polynomial time and the

associated counting problem is  also a polynomial  time even though the total  number

could have been exponentially large. If you take the complete graph it will have n raise

to n minus 2 spanning trees. So, it is a large number, but still that computation could

have been done in linear time. If we had let us say taken each spanning tree and check

whether it is a spanning tree then, we will have to do large number of computations we

do not have to do it because of Kirchoff’s tree theorem.

(Refer Slide Time: 20:33)

Now let us look at another problem called as perfect counting the number of perfect

matchings ok. So, we will look at a bipartite graph and the number of vertices on either

sides will be equal because otherwise there will not be a perfect matching, we want every

vertex to be matched to some other vertex. So, let us say this is 1 2 3 4 5 1 2 3 4 5 we can

call them as a 1 a 2 a 3 a 4 a 5 and b 1 b 2 b 3 b b 5. So, again the question of existence

does there exist a perfect matching this can be solved in polynomial time because it can



be converted into a network flow problem it can be solved in many other ways. So, this

question can be solved in polynomial time, but we want to know how many are there and

that becomes a more complicated problem what is known as the following. So, let us say

we can again construct a matrix corresponding to it ok.

So, we will have vertices 1 2 3 4 5 on the columns on the rows this is corresponding to

the side A and for the other side we will have it on the columns 1 1 is an edge. So, you

put a 1 2 1 is an edge, so, you put a 1 and so on ok. So, this is some kind of adjacency

matrix for the bipartite graph you can think of it as a reduced adjacency matrix because

ideally there would have been 2 n vertices ok, but because it is bipartite let us say this

where A this is B; this is B this is A this is B 8 ways are no edges. So, this will be 0 B to

B there will be no edges and by since we are looking at an undirected bipartite graph we

can say that these parts will be symmetric.

So, we just looking at this part looked at 2 problems; one is the spanning tree and the

other is bipartite matching. The count the number of spanning trees and the number of

perfect matchings although both the decision problems a polynomial time we saw that

one can be easily computed by the other we do not readily have an algorithm to do those

computations in polynomial time.
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We could also look at problems which are in NP for example, we could look at a general

Boolean formula and we want to compute the number of satisfying assignments. If you



could do this for arbitrary Boolean formulas depending on whether that number is 0 or 1

we  would  have  solved  the  decision  problem for  sat  and  sat  being  an  NP complete

problem you could have concluded that P equal if there was an algorithm to count the

number of satisfying assignments for an arbitrary formula we could have easily solved P

versus NP problem.

So,  this  one should expect  that  this  is  going to  be difficult,  but  what  about  suitable

restrictions if we restrict these Boolean formulas to certain kind of formulas. So, the kind

we are interested in is what is called as disjunctive normal form ok. So, let us describe

what is disjunctive normal form? So, our formula phi is of the form C 1 or C 2 or C 3 or

C k, where each C i is of the form l 1 and l 2 and l 3 and l k where each a l i let us call

this C l i 1 one l i 2 2 l i 3 or l i 1 l i 2 and l i k i ok.

Were each l i known as the literal is either let us say x alpha or not x alpha its an either

variable or the negation of the variable. And we may assume that each clause contains at

most one occurrence of a variable, because if two occurrence of same variable appears if

they are in the same format  we can just  replace it  by a single one or if they are of

opposite kinds we can say that that particular clause is unsatisfiable and therefore, the

formula can be simplified further.

So,  we are  given  a  formula  of  this  kind  and  we are  asked  the  question  how many

satisfying assignments does this particular formula have? For example, if were taking phi

is equal to x 1 or x 2 sorry x 1 and x 2 or not x 1 and x 2 or x 1 and not x 3 ok. So, there

are 8 possible assignments it is clear that by taking just the first clause itself we can find

an assignment which satisfies them satisfies all of them ok.

For example x 1 equals 1 x 2 equals 1 and x 3 equals 0 would satisfy the first clause and

therefore, it would try to say the entire formula, but there are other things as well x 1

equals 1 x 2 equals 1 x 3 equals 1 is another one. So, we can just look at all possible 8

assignments and describe the total number, but that is an exponential time algorithm.

So, these are the typical kind of problems that we are going to look at when we study

counting;  when  we  talk  about  approximate  counting  that  arises  because  the  exact

counting may be difficult in many cases. In cases spanning tree we could get the exact

count by a polynomial  time algorithm because of Kirchoffs Tree theorem. In case of

perfect matching we can think of the problem as computing the permanent of a matrix,



but computing permanent is known to be difficult. So, we cannot hope to find the exact

values.  In  case  of  satisfying  assignments  for  a  Boolean  formula  again  if  we  could

compute it exactly then we would have solved the P versus NP problem.

So, therefore, we will be less ambitious and say that instead of computing the exact value

can we get the approximate answer that is the general theme of approximate counting.

And we will  in addition allow randomization,  in the sense our approximate counting

needs to be correct only with a certain probability ok; we will mix two themes the formal

definitions for that we will see in the next lecture.


