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Randomized MST

In today’s lecture, we will learn about Randomized linear time Minimal Spanning Tree

algorithm.
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So, the standard deterministic algorithm for solving the minimal spanning tree are say

the Prim’s algorithm and then there is Kruskal’s algorithm and the third algorithm is the

Boruvka’s  algorithm;  these  are  the  standard  deterministic  algorithm.  So,  Prim’s

algorithm if you remember it is about taking an initial spanning tree and then grow in it.

So, that if you do the correct implementation there algorithm can run in m plus n log n

time. Whereas, Kruskal will run in order of m log n and Boruvka would also run in O of

m log n. So, this algorithm basically grows an initial spanning tree. So, let us say you

have the part of the spanning tree to start with and then that defines a certain cut, you add

the least weighted cut edge keep on doing it repeatedly you will get Prim’s algorithm.

Whereas, kruskal algorithm you have an initial forest you sort all the edges and to keep

on adding the edges one after another under the condition that the added edge do not

introduce a cycle ok.



So,  this  basically  sorts  the  edges  and  keep  adding  edges  without  cycle  formation;

Boruvka’s algorithm on the other hand is you can think of it as a parallel algorithm at

every vertex add the least weighted edge at every vertex. And then you let us say cluster

it or you can contract the graph and repeat. So, two when you consider the least weight

weighted edge at any particular vertex; say if you are looking at this particular vertex

there might be lot of edges out of it. And the least weighted edge this can be done for

every vertex because if you imagine this vertex as a single element and everything else in

the remaining remainder of the graph.

So, if you think of the cut that is obtained by considering this vertex by considering there

is a single vertex. This edge becomes the least weighted edge out of that vertex becomes

the least weighted cut edge which by cut property will surely belong to every minimal

spanning tree; assuming that the graph has distinct weights on all the edges. And this

could be done for all the edges simultaneously it could happen that the least weighted

edge is shared between two vertex; for example, this u v edge could be the least weighted

edge for u, as well as for v in that case you will get only one edge instead of one edge for

every vertex you will get in the worst case one edge for every two vertex.

So, you will get at least n by 2 edges when you do this in one; so, let us call that as the

Boruvka phase. So, in each Boruvka phase at least n over 2 edges are added to the MST.

So, you can keep on doing this till; so once you add these edges two vertices which share

an edges being contracted you get a super vertex and then keep on repeating this for the

new vertices formed. So, if you had let us say 5 vertices 5 edges out of this and you had

let us say 4 vertices out of this and you contract them this edge is common that is gone.

And then there are 1, 2, 3, 4, 5, 6, 7 edges out of the block that is formed by or the super

node that is formed by combining these two vertices. So, that is a Boruvka phase why be

looking at it Boruvka is algorithm will become a crucial ingredient of the randomized

linear time minimum spanning tree algorithm.
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So, I will first describe the algorithm and then we will look at why this algorithm runs in

expected linear time. So, let  us call  this as randomized MST ok. So, input will  be a

weighted graph and the output will be the MST; it could even be a weighted forest in

which case we will be get a minimal spanning forest. So, output will be a we will think

of it as a singly connected graph. So, the output is a minimal spanning tree of G. So, the

first step is we will take this input graph and run the Boruvka algorithm on it 3 times. So,

we  will  write  as  run  3  phases  of  the  Boruvka’s algorithm ok.  So,  let  us  add  some

commentary to the step; note that you can implement each Boruvka phase in linear time

ok.

So, 3 phases would essentially mean again linear time; so can be implemented in O m

plus n ok; m here is the number of edges and n is the number of vertices ok. After 3

Boruvka’s  phases  are  run  each  phase  means  you  will  look  at  all  the  vertices

simultaneously and for each of them you add the nearest neighbor and then you contract

them. So, that contraction is also included in a phase; so that entire thing can be executed

in it is a linear time ok.

Now, after this has been done number of vertices remaining is at most n over 2 ok. So,

why would be run this Boruvka’s phase. well one thing is we could get a saving in the

number of vertices, but the edges could still be large. So, what we do is we will throw

away some of the edges ok. So, this is the only place where randomization really comes



in into this algorithm. So, we will randomly select the edges of this reduced graph. So,

we can think of it has you toss a coin and the bias let us say it is p; we will choose P to be

equal to half the randomly select each edge with probability half. So, you toss a coin, but

bias half the coin results in a head then you include that edge otherwise you throw away.

So, we will get a graph and that graph we will all that as called the graph obtained we

say G 1; our original graph was G, after we have shrunk we will get some particular

graph let us call that as G prime or we will call this as G 1 and here whatever graph we

get we will call it as G 2. Now note that G 2 can have at most n by 2 vertices or the

number of edges is also reduced because the expected number of edges will now be half

of the number of edges in G 1.

So, if G 1 contains at most m edges; then we can say a number of edges is less than I

mean; so here when I say this is in the expected sense. So, expectation is less than n over

m by 2 and number of vertices is also less than let us say n by 2. So, first step was to run

3 phases of Boruvka, there we would have got a forest we will call that as let us say C is

the  edges  of  the  MSF;  the  edges  that  we  will  gather  towards  making  our  minimal

spanning tree in the Boruvka phase those we will call as C.

And now we have reduced graph which we are calling it as G 2 ok. Now G 2 is a sub

graph of the contracted graph we will try and construct the minimal spanning forest for G

2; G 2 may not be connected G 2 could be connected, but whatever it is we will just run

the MST algo for; I would say on G 2 ok. So, now, the MST algorithm it is basically

giving a minimal spanning forest. So, we should have been little more careful and said

that this is a weighted yeah weighted graph; it need not be connected and the output is a

minimal spanning forest. If G was a connected graph then the output would have been a

minimal spanning tree ok.

So, we will run the MST algorithm on G 2 we will get a forest ok; so let F be the forest

obtained. Now this F is a random quantity in the sense depending on the choices that we

make in step 2; we could get different forests. In the second step we were selecting a sub

graph of the original graph and for that sub graph there is a corresponding unique forest.

We can say unique because we will assume that the weighted graph that is initially given

to us contains distinct weights on every edge. And therefore, any sub graph will also

have that property and therefore, when we run the minimal spanning tree algorithm that



is  this  same algorithm when we run it  recursively;  the forest  that  we obtain  will  be

unique forest. But this is unique only for the random choices that we have made; if you

fix the random choices that we have made then for each such fixed choice we will get a

unique forest; now that forest therefore, as a random quantity.

Now, once this forest has been fixed what we will do is; there are certain edges that we

can throw away. Looking at the algorithm let us wonder why this algorithm might be a

good algorithm? When does it not give linear time algorithm; that might be because there

are a large number of edges, but here we are running the algorithm on reduced number of

edges we run the minimal spanning tree on a smaller graph ok.

So, it might be possible to do it in less time, but after running why is this useful? After

we have got this particular forest what we can do is; we can throw out certain edges ok.

These are those edges whose addition will create a cycle in the forest and those edges in

the cycle that we are considering those edges are going to be the heaviest edges. So, we

will call these things as the heavy edges we will later on define more properly what are

heavy edges.

So, right now I will just write down the algorithm. So, throw out the heavy edges; what

are heavy edges? We will later on provide a definition based on F ok. So, we will call

this as the F heavy edges; the key being us these F heavy edges will not be present in any

minimal spanning tree.

So, it is safe to throw that out; so it does not depend on our choice of F edges that can be

safely thrown out.  The choice of which are the heavy edges  might  depend upon the

particular forest that we had picked, but once we have identified that a particular edge is

heavy for some particular forest that is a edge that surely is not going to be present in the

minimal spanning tree; this we will see we will see a proof of it later.
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And once we have thrown out the F heavy edges the remaining edges are called as F

light edges. So, these edges are being thrown out from G; from the original say graph G

1. So, now once the heavy edges F thrown out; we can compute the MST for ok; so these

we will call as a light edges ok. So, you compute the minimal spanning tree for the light

edges and then return. So, light edges if you call it as let us say L; we will return L union

C that is the edges that we initially picked as the minimal spanning forest ok. This is

always  return  correct  answer;  well  these  edges  C  had  to  be  present  in  all  minimal

spanning trees. 

Further this is the contracted graph and from the contracted graph the edges that we have

thrown out are the heavy edges and we will see that heavy edges deserved to be thrown

out. So, on the remaining graph if you compute the minimum spanning tree; though the

new edges that you will obtain are L all of them need to be present. And therefore, if you

return L union C that will be a minimal spanning tree of G. We need to figure out what

exactly are these heavy edges once we figure out heavy edges deserved to be thrown out;

we need to analyze this algorithm and see what is the overall running time.
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So, let me first provide you the definition of F heavy edges ok. So, F heavy edge means

it is with respect to the particular forest F. So, F is a forest and let us say our initial graph

was the was G and F is a forest for G ok; need not be minimal forest minimal spanning

forest just some collection of edges. Now, if you have a forest ok; sorry let me say that

the forest edges will be colored in black and the non forest edges let us say they are

colored using a different color ok. So, now if you take any arbitrary pair of vertices u and

v ok; between these two vertices here in this example, there is no path consisting of just

the forest edges because they belong to different connected components,  but suppose

they are in a connected component.

So, let us say this is your vertices and if you look at v and w in the forest there is a

unique path from v to w ok. Unique in the sense you are not you do not trace the same

edge twice; if you allow only one transition through each edge, then there is a unique

path from u to v. In fact, for any if you will take any tree and if you take a pair of

vertices; there is a unique path from one vertex to another ok. Since we are looking at a

weighted edge we can look at this unique path and look at the weights that are there on

this path. There could be a direct path between v and w; so let us say this is some path

from v to w. And probably all when these things have given weight and there could this

is your u and this is your w; there could have been a direct path as well. Now let us

compare the weight of the direct path to the weight of the individual edges in the path ok.



We will call an edge F heavy so an edge u w is called F heavy if 1; u come v should be in

the same component connected component. 2; the edges on the unique path from u to v

must all be of weight at most weight u v or u w ok. So, if you look at this path if its

weight is 10 if everything here it is of weight less than or equal to 10; then this is called

as a F heavy edge ok. So, this edges of 10 if these where the weights then this is not an F

heavy edge because every weight is at most 10.

(Refer Slide Time: 21:27)

So, how do we determine F a particular edge is a F heavy edge? So, let us look at the

unique path from u to w that is if there is such a path. And so let W F u v or u w denote

the weight of the heaviest edge in u to w path. If the weight of u w is greater than W F u

w then u v is called an F heavy edge ok. So, you look at the weight of u w every other

edge on the path those of weight strictly less than the weight of u w.

So, if these were all weights say 9, 7, 6, 5, 2, 1, 3 then all these weights the u w paths are

strictly less than the weight of u w ok. And therefore, u w will be called as an F heavy

edge that is if all these edges when if this was the unique path; these are all edges in the

path in that case u w would be called as an F heavy edge and this was 10 then this is not

a F heavy edge ok.

So, the edges which are not F heavy; so not F heavy is by definition F light and the

important fact for as us F heavy edges are not present in any MST; that should be clear



because that is just  an application of cycle property. So, cycle property says that the

maximum weighted edge in a cycle will be absent from all minimal spanning tree ok.

So, if you take the maximum weighted edge since we are looking at graphs where all the

edge weights are unique; if you look at the maximum weight edge all the other edges are

off strictly less weight. So, if you; so let us say there is a cycle and if you look at the

maximum weighted edge in the cycle  that  edge can be thrown out from all  minimal

spanning trees  that  is  what  the  cycle  property  says.  So,  here  when you have  a  part

between u and w and every edge on that path is of weight strictly less than the u w

weight. If you add this u w into this particular path you will get a cycle and this becomes

the heaviest edge of the cycle. So, that edge deserves to be thrown out from minimal

spanning tree.

So, F heavy means it can surely be eliminated ok. Now let us just previous the algorithm

the algorithm says you randomly choose a sub graph of G 1, where G 1 as a graph

obtained after running 3 phases of Boruvka. From that randomly chosen sub graph you

construct its forest which is going to be a random forest for G 1; based on that random

forest throw out all the heavy edges.

Those heavy edges we know are not going to be present in any minimal spanning tree.

We need to determine these heavy edges means we need to given a particular graph F;

we need to classify the edges as heavy edges and light edges ok; this can be done in

linear time. So, this is based on something known as MST verification algorithm, we will

not go into details of those algorithm, but we will just assume that the F heavy edges and

the F light edges can be segregated and this can be done in linear time the algorithm is by

Karger et al ok.

So, Karger had given this randomized algorithm and the analysis was done by Tarjan et

al. So, this is a algorithm given by Karger was shown to work in randomized linear time.

So, that algorithm basically  verifies that certain edges are heavy edges and the other

edges are light edges for any arbitrary tree F. So, now we said that the heavy edges can

be thrown out ok, but how do we analyze the total time; where did we get these savings ?

So,  how  many  heavy  edges  would  be  thrown  out?  The  utility  of  this  algorithm  is

significant only if large number of heavy edges are thrown out.



We have two recursive invocations of the MST algorithm here where the MST algorithm

is a running on an input of size roughly m by 2 because the original graph; even after

running multiple phases of Boruvka and after running 3 phases of Boruvka might have

let us say m over two could have a significant fraction of the initial edges. The expected

number of edges could be m over 2. And later on we have another invocation of MST;

where all the heavy edges are removed.
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What we will argue is the heavy edges are large in number or in other words we will

show that the light edges for any F that is randomly chosen. So, that the light edges are

not too many; too many for us here means let us say O of n ok; there are a linear number

of edges in the size of the graph. So, let us look at this sampling a little more carefully to

count the number of F light edges.

So, this is the question that we will answer how many light; so F light edges will be

present. So, what we want is the expected behavior or the expectation of the number of

light edges. So, what does this algorithm really do? So, let us say we had this contracted

graph which we will call as let us say G for the time being.

So, this let us say this is the graph obtain after contraction; what we do is on each edge

toss a coin ok. So, maybe this will be included, this will be included the marked edges

maybe they will be included after a coin toss. So, based on the result of a coin toss from

the graph G ok; we had obtained the graph let me just color it in red.



This is a sub graph of the original graph which we will call as H and for H we will

obtain; so H is a smaller graph, for H we will have to obtain a spanning forest which

would be let us say I have not put the weights, but suppose it is something like this ok.

So, that is the way the algorithm progresses; from G this is the contracted graph we will

sample we will go to H and from H we will go to F ok. So, F is the minimal spanning

forest.

Now, based on F; obtain let us say G prime G prime is a sub graph of G and we are

interested in how many edges are really present in G prime ok? What we will like to say

is that in an expected sense large, number of edges will be thrown out of G based on this

F. Let us look at the edges in G; we will write it in the increasing order of their weights

the algorithm we do not sort the edges because that is too costly to do because if we sort

all the edges your algorithms running time will be m log m which is more than linear

time.

So, we will not sort, but let us imagine the vertices in the sorted order. So, we want to

figure out which of the edges that would remain in G prime ok. So, after that contraction

phase and after throwing out certain edges based for the intermediary minimal spanning

forest; what are the edges that would remain ok? How many such edges would be there?

Look at the edges in the original graph let us call it has e 1, e 2, e m.

So, this m is not the total number of edges in the input graph, but it is the number of

edges in the contracted graph ok. So, let us say it was e 1, e 2, e m; what we had done is

we toss a coin ok. So, let me just say that and I will denote the output of the coin toss.

So, heads and some of them will be tail; tail head ok.

The heads are the ones that I would pick to obtain the graph H and then based on H in

some of the edges in H. So, look at all these edges in H; few of them I will add to the

forest. Once the graph H is fixed, it has a unique minimal spanning forest which are the

edges of the forest we will need to worry about it. Once the edges of the forest gets fixed

the edges which will be removed also gets fixed.
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So, from F we will basically compute G prime ok; so the entire process we can view as;

we have all these edges e 1, e 2, e m and we toss the coin and after the result of the coin

tosses obtained we could take decisions. So, now, let me just look at the ith edge in the

sorted order ok; will  this  edge be present in  G prime? Before that  will  this  edge be

present in F ok? So, the question of whether this will be present in F. So, does e i occur

in F; it depends on two things 1, the outcome of the toss. If the toss had resulted in a tail

then certainly it is not going to be included in H which is not present in H is going to be

included in the forest.

But even if this edge was present in H if the weight of that edge was too much or if it

was not a suitable H for the minimal spanning forest it; could have been thrown out ok.

So, I will write that as the MST criterion. So, only if this particular edge e i satisfies the

outcome of the toss requirement and the MST criterion will it be present in the forest.

Now the outcome of the toss is not dependent on anything else these are independent

coin tosses; so it just depends on that particular toss. The MST criterion does not depend

on any edges after e i. If you look at the sorted order the only edges which plays a role in

the MST criterion are the edges which appear before e i.

There  are  many edges  in  the  graph G which had gotten  added to the  sub graph H;

amongst these look at those edges whose weights are less than e i, those alone would

determine  whether  e i  is  present  or not.  So,  look at  this  sub graph of H formed by



restricting the attention to edges which have weights which is strictly less than e i. Now,

if you look at the edge e i. So, let us say e i is u comma v u and v are in the same

connected component in this sub graph ok; which is a sub graph that we are looking at?

Look at H; H is a particular graph which is a sub graph of G and inside H restrict your

attention to only those edges whose weights are less than e i. They would have formed

the sub graph amongst themselves; now if u and v are connected in that sub graph if you

add the H connecting u and v, they will form a cycle whose weight whose largest edge is

going to be u v and that is; that is why u is not going to be present ok.

So, this edge gets occurs in F in that sub graph if you add u and v they do not form a

cycle in other words u and v belong to different components in that sub graph ok. So, if

they belong to different components e i will be present; if they do not belong to different

components e i will not be present. So, this decision entirely based on the outcome of the

coin tosses e 1 to e i.

The result to the coin tosses starting from e 1 to e i determines the sub graph. And once

the sub graph is determined the decision of whether e i is to be present in F or not is

completely  made.  And therefore,  the  other  edges  do not  play  any significant  role  in

whether e i occurs in F or not ok. Now what we are interested in is the light edges; how

many light edges are there?

So, in order to analyze that we will do a small trick; what we will do is the following, let

us see here we constructed the sub graph H ok. And then after  H is ready we were

looking at the forest and then we were looking at the sub graph of G by removing the F

heavy edges. We will look at it in this increasing order of their weights itself; when an

edges being considered that edge if it is included into H it might create a cycle in the

already existing H ok.
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So, consider creating H iteratively ok. So, which means start with empty; empty set keep

on adding edges to H on the basis of the coin toss these edges considered in increasing

order ok. So, we can imagine that the coin tosses have already been done for all the

edges and we are just now taking those coin tosses and deciding which are the edges of

H. While we do this we can also construct the spanning tree F side by side ok. Now when

we add an H to H we can at that point wonder whether that edge will create a cycle in H;

if it creates a cycle in H that is not going to be an edge for F.

In fact,  that is going to be an F heavy edge ok. Once again while we are looking at

construction of H in an iterative fashion; whenever we are adding a particular edge to

edge that is if the coin toss resulted in a head, we could have added that edge, but at that

stage we will check whether that edge creates a cycle in the already constructed spanning

forest. So, we had let us say some particular set H and along with it we had a spanning

forest a partial spanning tree. And while we are adding an H we look at whether adding

that H creates a cycle in F. 

If it creates a cycle in F that edges going to be a heavy edge ok. So, we will just mark

out; so we will just ignore the heavy edges and we will just mark out the other edges the

other edges are essentially the light edges ok. So, each edge I mean if you are looking at

in this order e 1 e 2 e m certain edges I will just mark out this essentially means while

considering e 2 if I look at the iterative spanning forest in that forest if I where to add e



2; e 2 would have been a light edge; that means, adding e 2 will not create a cycle in the

spanning forest.

Now, these light edges in whatever I marked as light edges need not be present in F; they

would be present only if the coin toss was successful. While we are constructing H we

said toss the coin keep on adding to H so, but we will just mark out an H. So, we could

just reverse the order in which these things is being done; in the sense we will first check

the edge if the edge can be added successfully without creating a cycle in F; we will

mark it out. And after marking it out we toss a coin the toss results in a head; we will add

that to the set H and that H surely would be there in the in F as well ok.

But note that the starred edges are precisely the light edges ok. Note that this entire thing

is the analysis we are not trying to compute which are the light edges; you can think of it

as an alternate definition of the light edges. That is if you consider the entire construction

of H in an iterative sense that is in the increasing order of the weights; those edges which

could have been added if the coin tosses successful without creating a cycle in F, those

are precisely the light edges.

So, if we want to count the number of light edges; they are precisely then number of star

edges. Amongst these star edges later on some of them would get added to F and the rest

would stay there as light edges. So, summarize this by saying number of light edges is

equal to number of stars ok. So, how do we estimate light edges? We will just need to

count how many stars would be there ok. When does a particular edge get a star? Well

first of all the preceding edges should have I mean if you look at the spanning forest by

the previously selected edges; in that the vertices connecting e 2 or e i say u v they

should be in distinct components.
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We can think of this in a different way. So, the other edges which are not star does not

play any role because we just need to constantly starred edges. So, we can think of there

are all these starred edges coming up and for each of them you toss a coin. If the toss

results in a head; you include that into the spanning forest they anyway get starred into H

and by virtue of it being a light edge; it also gets added in the spanning forest ok. So, we

have this sequence of stars, now once all the edges have been exhausted all the stars

would also have been exhausted.

But let us say we keep on tossing further dummy coins which does not really depend on

any edge ok. So, these are the edges and these are dummy tosses and we will keep on

tossing till we get let us say n minus 1 heads ok. So, this is an mean in order to count the

expected number of light edges we are counting in a slightly different way. So, there

were stars and lot of edges these stars gets decided based on the ordering. If we had a

particular ordering e 1 e 2 e m and if we had a particular outcome for the coin tosses

heads, tails; once this is fixed the stars on the edges gets fixed. Certain edges would be

starred edges and the others would be non starred edges; the non starred edges can all be

thrown out because they are all heavy edges.

So, now let us just look at the starred edges there will be certain number of them and we

append those with certain I mean let us an infinite number of dummy tosses or dummy

edges. Some of these starred edges before the dummy edges would get added into F. At



most n minus 1 of them gets added to F because F is a spanning forest it can have no

more the n minus 1 edges in it ok. So, if we look at the sequence of stars and say we keep

on tossing  till  we get  n  minus 1 heads;  that  would be  certainly  more  than  the total

number of stars. So, let us say X is a random variable denoting number of tosses required

for n minus 1 stars ok. So, if we do it on this particular sequence by the time we get n

minus 1 stars; we would have surely added all the edges to F.

I mean these coin tosses if it had resulted in a particular F all those edges would have

been added or. So, in particular all the light edges would have been accounted. So, the

random variable X; we can say it is greater than the number of F light edges ok. And

since both these are positive we can say that the expected value of X is going to be

greater than the expected number of light edges ok.

So, if we calculate this that is certainly an upper bound on the number of light edges, but

X is just tossing coins till you get n minus 1 stars. But if each coin was of let us say bias

P number of times you have to toss to get one heads is 1 by P; so, this will be at most; so

this is expectation.
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So, expectation of X is nothing, but n by P where P is the bias of the coin or n minus 1 by

P ok. So, what this means is in our algorithm after throwing out these heavy edges; we

are left with precisely n minus 1 by P light edges; where n is the number of edges in the



graph that you are looking at. So, now we can just put in all these inductive steps and

compute what is a total running time P for as is 0.5.
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So, let us look at the total running time; if you denote it by T m n; this is the total running

time for a graph with if the input graph contains m vertices; sorry m edges and n vertices.

Then this is T m n is going to be less than or equal to 3 phases that is let us say C times

m plus n. So, we know the 3 phases and each of those phases takes linear amount of

time. So, C times m plus n plus random selection that is again linear time; so that is

absorbed into this. So, the first step is taken care of second step is taken care of last step

just returns the spanning tree; so those three together takes C m plus n.

Now if you run the MST algorithm on G 2 G 2 will take T of m we expected number of

edges in G 2 is going to be m by 2 and the expected number of vertices is n by ok. So,

we had run 3 phases; so the number of vertices would be n by 8 each phase it  gets

divided by 2 plus if we had thrown out all the heavy edges; then G 1 will contain T of the

number of edges that this remaining will be proportional to.

So, it is n minus 1 n minus 1 here being n by let us say we will bound this by n by P

where n as will n by 8. So, n by 8 divided by half; so 2 n by 8 and number of vertices is n

by 8 ok. So, this is equal to C m plus n plus T m by 2 n by 8 plus T n by 4 n by 8 ok; so

that is the recurrence. So, T m n is going to be less than or equal to this quantity.



If you plug in T m n is equal to let us say when 2 C m plus n ok. Suppose this is the

bound that we impose and then we will get when it satisfies this equation 1; T m n is

going to be less than or equal to C m plus n T m by 2 n by 8 is at most 2 C m by 2 plus n

by 8 plus 2 C n by 4 plus n by 8 ok. So, this is equal to C m plus n plus C m plus 2.

So, C n by 4 plus C n by 2 plus C n by 4 n by 4 n by 4 n by 2 and this is n by 2. So, this

together is C n ok; so C m plus. So, this is C 2; C m plus n. So, we know that if we have

T m n to be at most 2 C m plus n, then it satisfies the recurrence. So, this takes no more

than  linear  amount  of  time  in  an  expected  sense;  that  is  a  randomized  linear  time

algorithm for computing minimum spanning tree.

Thank you.


