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In today’s lecture we will learn about Primality Testing, our objective is the following, so

design an algorithm a Randomized Algorithm, such that first should run in polynomial

time; that means, of the input as of size. Let us say k then the algorithm should take no

more than k raised to alpha steps for some fixed alpha.

The second requirement is for every prime, the algorithm should output prime ok. And

for  every  composite  number  the  algorithm should  output  composite  with  probability

greater than half ok. So, this probability is over the random choices that the algorithm

mix; and this should be true for every composite number ok.

So,  we  will  use  some  elementary  principles  from  group  theory,  so  let  us  initially

understand what is a group? So, a group is a collection of mathematical objects you can

call it as a set with binary operation let us say we call it a star such that, first star is

associative  so since it  is  an binary operation  we will  assume closure it  is  for  any 2

elements in the set.



If you combine them using star, use the resultant element will be a element of the group.

Second there exists an element e or identity such that for every x belonging to g x star e

is equal to e star x. And the third requirement is for every element there exist an inverse

that is there is an element y such that xy is equal to identity that is equal to y times x as

well ok. So, if binary operation which is these 3 properties is essentially called as called

a group. 

So, you can think of groups as mathematical structures wherein you can multiply and

divide ok. So, if you call the operation as multiplication you can call it by whatever name

you  can  call  it  addition,  multiplication  whatever  is  the  binary  operation  you  can

essentially multiply and divide that inverse operation you can perform ok.
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So, let us see an example the example that we would require, so this will be called as Z

p, so let us say p is a prime number and if you look at numbers 1 2 up to p minus 1 ok.

So, let us say p equal 7; then this will be these numbers from 1 to 6 of course, if you add

5 and 6 you will get 11, but that is not 1 of the elements of Z p ok.

But here the operation we are going to redefine it. So, we will have mod 7 multiplication

ok. So, we can just represent this entire thing by a table ok. So, 1 2 3 4 5 6 1 2 3 4 5 6 are

the elements 1 2 1 that will be 1 so mod 7 as well. So, this is a special group which is an

additional property of commutativity ok.



So, we will say that a group is commutative if a star b is equal to b star a, the order does

not really matter 2 into 2 is 4 2 into 3 is 6 2 into 4 is 8 which is 1; 2 into 5 is 10 which is

3 mod 7 this is 5; so you can just fill up the elements of this group 3 4 is 2 5 ok. So, this

will be the multiplication table for this particular group since it is under multiplication

we will just Z star p.

Now, you can see that this particular operation has many nice properties, each row is a

permutation of 1 to 6 and we can take this operation and do multiplication as well as

division that is if you have let us say a times b is equal to a times c we can write we can

basically  apply cancellation.  So, this  would imply that  a equals c sorry apply that  b

equals b equals c because we can just multiply both the sides with a inverse. So, inverse

times a times b this is equal to a inverse times a times c.

So, this gives you identity this gives you identity times anything is going to be identity.

So, from all these rules we can conclude that b must be equal to c. So, we can basically

do cancellation; so that is a group and Z p star so there is a theorem Z p star is a cyclic

group for every prime number ok. For example, if you so cyclic group means it can be

obtained by taking some particular element and multiplying with itself. 

So, here if you take the number so let us try, if you take the number 3 3 square is 9 that is

2. So, let us compute 3 3 square 3 cube 3 raised to 4 3 raised to 5 and 3 raised to 6. This

is equal to 3 this is equal to 9 which is equal to 2, and this is 2 into 3 that is going to be 6

and this is going to be equal to 6 into 3 that is 18 that is 4 12 this is equal to 5 and 5 into

to 3 is 15 which is equal to 1. 

So, you can see that the entire group all the elements in the group were generated; so Z

star 7 was generated by 3. So, therefore, Z star 7 is a cyclic group ok. So, this is not in

general true for an arbitrary group, but for every group which is obtained from a prime

number in this format is going to be a cyclic group ok. So, this is a theorem that we will

need, and also require a couple of other theorems.
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The next theorem that we will use is called Lagrange theorem ok; so this states that so

suppose this is this group, and let us say this is a sub group sub group is a you need to

define what is a sub group? Sub group is a sub set of the subset of G such that that subset

is a group in its own right under the same operation, let us say G was a group under star

if you find a subset which is a group under the operation star that will be a sub group. 

So, if you look at the; if you look at this group Z star 7 and if you take the numbers let us

say 1 and 6 you can verify that this is going to be a sub group of Z star 7. So, Lagrange

theorem says that, the order of the group divides the order of the sub the order of the

subgroup divides the order of the group which essentially means so if G had 35 elements;

any subgroup must have either 1 element or 5 or 7 or 35 elements ok.

These subgroups are essentially are I mean these are called the trivial subgroups, because

35 element subgroup is a group itself and the single element subgroup is going to be the

group which consists of just identity element; so, these are non trivial subgroups ok. So,

these are the theorems that we would require and there are some additional results that

we would need, but we will derive them on the fly ok.
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So, now let us look at primality; so we were given a number n ok, we will assume few

things about n first we can assume that n is odd next we will assume that, n is not a prime

power that is it is not of the form p power ok. So, we will assume that p is not n is not a

not of the form a to the power b this can be easily checked ok, for any input is it of the

form a to the power b this can be checked in polynomial time deterministic polynomial

time ok.

So, once we have completed these checks for the input, we can assume that n is odd and

n is not of the form e to the power b particular n is not a prime power ok, and our

algorithm the steps of the algorithm are as follows. So, choose a random a from 2 to n

minus 1, so compute R such that R satisfies the following condition; n minus 1 should be

equal to 2 power S times R and R is an odd number.

So notice that this can be done only in one particular way, for any number you just take

out all the powers all the even all the powers of 2 from it and whatever remains that is

what we call as R ok. And this can be this can of course, be done in polynomial time and

since n is an odd number n minus 1 is going to be an even number; so R certainly is less

than n minus 1 and then we will compute the following compute the following terms.

So, we will first compute a to the R and then a to the 2 R a to the 4 all the way up to a to

the so we keep on repeatedly squaring the numbers that we have obtained these are all a



to the R squared will give a to the 2 R and that squared will give a to the 4 R and then

finally, we will get a to the 2 to the S times R ok.

Now, a to the 2 to the S times R should be equal to 1 why so? Well it depends on whether

n is prime or not. So, we will compute these and then based on the values that we have

obtained here;  so these values  we will  look at  it  more carefully, and based on these

values we will conclude whether the number as prime or composite.
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So, if a to the 2 to the S times R is not equal to 1 we will output composite. So, if that is

not so else, if so in that case a to the 2 to the S R is going to be equal to 1. So, if the so if

the last term is going to be 1 in the other cases ok, maybe there are 1s before that ok, but

there is a last stage at which, I mean last position at which a number which is not 1 when

squared gave you 1 look at that position ok. So that position let us call it as t.

So, we will say else we will determine the index at which the last 1 appears ok. So, let us

call this as the index i and if the i minus first position is not equal to minus 1 so minus 1

here means the number p minus 1. So, these squaring operations we are carrying that out

in mod mod n all these operations we are carrying out mod n and if the i minus first

position was not equal to minus 1.

So, minus 1 is the equivalent of p minus 1. so p minus 1 mod p we will we can just write

it as minus 1 or minus 1 as a symbol for p minus 1 ok; and notice that minus 1 squared



will is essentially p minus 1 the whole square you can verify that that is going to be 1

mod p ok. So, if this is the case if this is not equal to minus 1 then we will declare

composite  and  otherwise  declare  prime,  so  otherwise  output  prime  so  this  is  our

algorithm ok.

So, there are 2 places where the algorithm outputs composite, and if it does not output

composite the output is going to be prime. So, now, we need to argue that this algorithm

has  the  correctness  requirements  that  we  had  initially  mentioned;  clearly  there  are

algorithm  runs  in  polynomial  time  because  all  these  calculations  this  is  S  repeated

squarings and S is so S is less than say log n.
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So, when we talk about polynomial time we want to mention, that the algorithm works in

polynomial time no I mean so the input size is x then the algorithm works in x to the

power alpha at most it does not take more than x to the power alpha for any input of size

x ok.

So, here if an n bit binary string as being given or an n bit decimal number as given the

input size is log n ok. And so we want the algorithms running time to be log n to the k for

some fixed k ok. So, here all these operations S is at most log n so we have only log n

multiplications and each the numbers involved are between 1 and log n between 0 and

log n. So, all those operations can be carried out in polynomial time.



Now, let us look at the cases where it is declaring the number as composite ok. So, first is

when a to the 2 to the S R not equal to 1 so we will write this as Lemma if a to the 2 to

the S times R is not equal to 1 mod p, mod n then the number n is not prime by is this so

well; we define the set Z star p consisting of all elements from 1 to p minus 1. We could

also write this set Z star n minus or n for an arbitrary number n which consists of all x

such that x less than n and g c d x n is equal to 1.

So, take all the numbers which are relatively prime to a number and collect them in a

basket, and allow the multiplication operation to be mod n multiplication you can check

that that will in the form a group. For example if you take Z star 15 this will consist of

the following elements 1 2 4 7 8 11 13 and 14. So, there are 8 elements here and you can

verify that, this collection forms a group under mod n multiplication ok.

So, Z star n is always a group, so you can do the operations there, but note that if n is

prime, then Z star n has n minus 1 elements and if n is not prime then Z star n has less

than n minus 1 elements. In fact the number of elements there will be given by the Euler

Totient function ok.

(Refer Slide Time: 27:02)

So, whenever n is prime this is this group has n minus 1 elements, and other words it has

less than n minus 1 elements and we can show that if you take any group any finite group

G and you take any element a a to the number of elements. So, we will denote it by order



G  this  is  going  to  be  equal  to  1  ok.  Why  is  this  so?  We will  just  show  this  for

commutative groups our group is anywhere commutative.

So, take all these elements 1 2 up to p minus 1 ok, now when you multiply this with an

arbitrary element let us say x you will get x times 1 x times 2 x times p minus 1 ok; now

this collection as a set is going to be exactly equal to G; this is anyway equal to G and

this  is  also going to  be G because  all  these products  are  going to  give  you distinct

elements it is x times y 1 is equal to x times y 2 implies y 1 equals y 2 we can apply

cancellation ok

So, if you take distinct elements y 1 and y 2; you will get distinct products x y 1 and x y

2 ok. So, there are going to be p minus 1 elements here all of them being distinct, so that

has to be exactly the group G. So, we can write 1 so if you take the product of all the

elements 1 2 up to p minus 1, that is going to be equal to x times 1 times x times 2 times

x times p minus 1 ok.

So now you can just cancel off things can rearrange, so this v if you write it as p minus 1

factorial this is going to be equal to x raised to p minus 1 times p minus 1 factorial all

these operations carried out mod mod mod p minus 1 or mod n so these gets cancelled.

So, we will get x raised to p minus 1 is equal to 1 mod p this is also known as, so this

result when applied to Z p star is also known as Fermat's little theorem ok.

So, what we know is, when the number is prime it has to be the case that x raised to p

minus 1 should be equal to 1. So, if it is not 1 then we can readily declare it as composite

ok; and 2 raised to S times R is nothing but n minus 1 ok; so if this is not equal to 1 then

the number is not prime and therefore, we are correctly declaring it as composite.

Now, let  us look at  the second instance where we are declaring it  as composite;  we

checked at the last index from where there was from where the sequence of 1s it began

ok; 1 before that that index if a number other than 1 appears other than minus 1 appears

then we had declared it as composite ok.
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So, let us look at this more carefully so we had computed a raised to R a raised to R a

raised to 4 R and let us say a raised to 2 to the i R and then a raised to 2 to the i plus 1 R

all the way up to a raised to 2 to the S R this has to be 1, and if a 1 appears at any place it

is square is also going to remain as 1 of course, if a minus 1 appears at some place at the

next place the minus 1 squared is going to give you 1.

So, if you look at the last 1 the position before it could be either a minus 1 or it could be

something else as well ok. If it is some other number let us say this 3, then we would

have declared it as composite why is this a correct thing to do. So, these will be what we

will refer to as non trivial square roots of unity or square roots of unity ok.

So, if you look at the equation x square equals 1 this is precisely 2 roots when we are

talking about real numbers plus 1 and minus 1. We could in a general in an algebraic

structure known as a field we could look at the equation x square equals identity ok. And

or so in this case there I mean if it is a field there can be precisely 2 roots plus 1 and

minus 1.

So, here we have a case of we need to first show that the algebraic structure that we are

working with is in the other field,  and then what we have essentially found is a non

trivial  square root of unity. And if the algebraic structure that we were working with

happens to be derived from a prime number that is going to be a field and for non primes

it is not going to be a field.



So, that is the essential idea behind why we are declaring the number to be composite

when we see a non trivial square root of unity. So, let us try and prove this using more I

mean simple number theoretic arguments. So, let us just look at this equation. So, we

will define what is called as a quadratic residue ok. So, if a is equal to x square mod n ok,

then we will say that a is a Quadratic residue ok.

So if you take for example, n equals 10 and if you take the number 5; 5 is a quadratic

residue, so 5 is a quadratic residue as let us say I mean 5 is equal to 25 mod 10; then this

is the square. It so happens that it is square of 5 itself, but let us say I mean if we had

taken n equals say 9 and in that case we can say that 7 equals 25 mod 9 therefore 7 is a

quadratic residue ok.

So, any number which you obtain by taking the remainder when you divide a square that

is  take  a  number  multiply  in  to  itself  whatever  mean  the  group,  and  compute  the

remainder mod n, number that you get is what is called as a quadratic residue.
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So it is a claim, exactly half so we will prove the following statement so a equals say

alpha to the power k mod n is a quadratic residue if and only if k is even ok. So, here I

am assuming that alpha alpha as a generator of let say Z p ok. So, we are looking at the

group consisting of 1 to p minus 1 and in this particular group, let us say alpha is a

generator and we are looking at all numbers so since alpha is a generator the different



elements will be alpha alpha square alpha raised to p minus 1 p being an odd prime it is

going to be I mean p minus 1 is going to be an even number.

So, here we are saying that all these quantities there I mean these quantities are going to

be quadratic residues well one thing is clear these will be quadratic residues because they

are alpha raised to some 2 to the power 2 times k which can be written as alpha raised to

k the whole square. So, when you go mod n whatever you get that is by definition of

quadratic residue; but what we want to argue is that these alone are quadratic residues

and there are no other quadratic residues how do we say that?

So, suppose not ok; that means, alpha to the let us say I mean 2 t plus 1 for some t is a

quadratic residue. Therefore, mean let us say this is equal to a we can write this as alpha

2 t plus 1 mod n which is equals so a I mean whatever is your a; a is equal to alpha raised

to 2 t plus 1 mod n that is a perfect square right. I mean this alpha 2 t plus 1 is a perfect

square, so that is some beta raised to 2 k all these so we will not write mod n because all

these things are carried out in mod n. 

So b to the so a can be written as b to the 2 k and since it is beta to the power 2 k we can

write since this is a cyclic group beta itself is going to be alpha 2; let us say some power

r times 2 k. Therefore, we can write alpha to the 2 t plus 1 is equal to alpha to the 2 rk

now this implies that alpha to the 2 t minus so 2 t plus 1 minus 2 r k is equal to identity

this would imply that alpha to the 2 t plus 1 2 times t minus rk plus 1 is equal to identity

ok.

But if alpha to the to some power is identity ok, the smallest  number which has this

property that alpha to the let us say it I means say capital T is equal to identity means T

should be a multiple of p minus 1. If it is anything smaller than p minus 1 that means,

alpha does not generate I mean alpha does not generate the entire group. And if it  is

something which is not a multiple then we can take the remainder of I mean let us say

alpha to the T equals 1 take T mod p minus 1 alpha so let us call this as T prime alpha to

the T prime will also be equal to 1 ok.

So, we can say that this number 2 t minus rk plus 1 should be a multiple of p minus 1 any

multiple of p minus 1 is an even number, but this is an odd number. So, this is not just

possible ok. So, we can just write this down as the following 2 times t minus r k plus 1



should be a multiple of p minus 1 and thus an even number so that will give us the

required contradiction ok.

So, every quadratic so we can say that if it is a if any number is a quadratic residue, then

alpha to the k that k should be even. And this would also mean that the square roots of a

so we can write this as an observation. So, by square roots a we mean those numbers

which when squared modulo n gives a are going to be alpha to the power 2 j ok.
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So, we can write the square root says alpha to the j and alpha to the j plus p minus 1 by 2

so you can think of this mod p p being an even odd number p minus 1 by 2 is going to be

a an integer that plus j. So, alpha j is 2 j if you square it you will get a and if you square

alpha to the power j plus p minus 1 by 2, there also you will get alpha to the 2 j times

alpha to the p minus 1 alpha to the p minus 1 is going to be 1 this is going to be a.

So, these are going to  be the square root and there cannot be any other  square root

because you can say that if there was any other square root alpha to the power i ok, then

we will get so let us see what goes wrong; if alpha to the i is a square root of a then alpha

to the j so alpha to the 2 j is equal to alpha to the 2 i ok. And since these are equal we can

conclude that alpha to the 2 times j minus i should be equal to identity it should be equal

to 1 and therefore, j minus 1; so, what are the possibilities?



So, j minus i should either be 0 or j minus i should be equal to p minus 1 j minus i equals

p minus sorry j minus i should be p minus 1 by 2 only then 2 times j minus i will be

equal to p minus 1. This cannot be any other multiple because 2 times j minus 1 cannot

be as largest let I mean j minus i is at most as big as p minus 1 it is it is going to be

definitely smaller than p minus 1 therefore, 2 times p minus 1 cannot be larger than p

minus 1.

Therefore we can conclude that 2 times j minus i must be equal to p minus 1 and this

would tell us that i is going to be equal to j yeah. So, j plus p minus 1 or j minus p minus

1 does not really matter mod p so this will tell us that j minus i is equal to p minus 1 by 2

or j is equal to p minus i by 2 plus i. So, there are only 2 possibilities essentially; so you

can have precisely I mean if p was a prime number; it can have at most 2 roots of unity

and we know that those roots i mean it can any number can have it at most 2 roots.
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So, if  p is  a prime number, then any element  a can have at  most 2 roots ok.  So, in

particular if you take the element 1 it can have only 2 roots 1 and minus 1, because these

are anywhere roots it cannot have any additional roots when we find the number which

satisfies this condition that is it is a non trivial square root of unity then we can declare it

as composite ok.

So,  what  we  have  concluded  is  the  following  whenever  this  algorithm  declares  the

number as composite there is a sound reason; I mean it is never incorrect on that count



ok. It is always correctly declaring the number as composite whenever it declares it as

composite; it does not make a mistake in that. Whereas, whenever it declares a number

as prime things could go wrong we will check with what probability things could go

wrong.
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So, let me just summarize whatever we have done so far; so we have an algorithm with

the  following  properties.  First  for  all  primes  the  algorithm would  return  the  correct

answer; this is because what we had argued is that for every composite number I mean

whenever the algorithm declares as a number as composite it is never a prime number

ok.

So,  that  would essentially  mean that  whenever  the  algorithm declares  the answer  as

whenever  the  algorithm  gets  an  input  as  a  prime  number  it  cannot  declare  that  as

composite, and hence for all primes the algorithm must return the correct answer. The

second thing that we have that our algorithm we have checked is the algorithm runs in

polynomial  time  what  we  need  to  verify  is  that,  for  every  composite  there  exists  a

significantly high probability this is this we have not showed yet probability that the

algorithm returns composite outputs composite ok.

So, let us see what happens for a composite number ok, so we had randomly chosen a

number from 2 to n minus 1 ok. So, the numbers which will then the choices of a which

will result in the number being declared as composite; we will try to bound that set, but



we will show is these a’s which will make the number a composite number or the as

which  will  bear  testimony to  the  compositeness  of  the  number  n will  essentially  be

significant collection of means significant subset of 2 to n minus 1.

To show this what we will indeed prove as the numbers which do not which bear false

testimony, will essentially form a group it will form a strict subgroup of the set Z n star

since it is a subgroup of Z n star it is size is surely less than half of the size of the total

elements in Z n star. So,  that will  surely be less than n by 2 and I mean that  is by

Lagrange theorem and that we will basically conclude our proof that is the part we will

do in the next class.


